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Agenda

• First things first
– GGF IP
– Sign-up sheet
– Note takers

• Introduction
• dpovray example 
• Object Oriented DRMAA API
• Open floor, open issues
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DRMAA Charter

• Develop an API specification for the submission and 
control of jobs to one or more Distributed Resource 
Management (DRM) systems.

• The scope of this specification is all the high level 
functionality which is necessary for an application to 
consign a job to a DRM system including common 
operations on jobs like termination or suspension.

• The objective is to facilitate the direct interfacing of 
applications to today's DRM systems by application's 
builders, portal builders, and Independent Software 
Vendors (ISVs).
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DRMAA history

• BOF at GGF 3 in Frascati, Oct 2001
• WG status at GGF 4, Toronto, February 2002

• Participation from PBS, SGE, Intel, LoadLeveler, Condor, Cadence, 
Globus GRAM

• Sideline engagement from EnFuzion, Entropia, LSF, GridIron, UD

03 Jul: Close public comment Jun
04 1H: 2 Reference implementation prototypes:

C implementations UofW Condor, Sun’s SGE 
CPAN Perl DRMAA-C module
Sun’s SGE Java
DRMAA over Globus: GridWay project
Feedback from reference implementations fed back into spec.

04 Jun: DRMAA recommendation document accepted by GFSC
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In a Nutshell

• DRMAA scope and purpose:
– Submit, control & monitor, and query status of 

jobs.
– DRMAA library could be implemented on top on 

OGSA and DRM systems.

• Weekly con calls
– Toll Free:  (866)545-5198 Code:  6898552
– Regular:    (865)521-8904

• E-mail: drmaa-wg@gridforum.org

• Archive:  http://www-unix.gridforum.org/mail_archive/drmaa-
wg/threads.html
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DRMAA is a Third Type of Parallelism

• PThreads and Windows threads: 1 node or SMP
• OpenMP: SMP directive based

• MPI/PVM: cluster messaging API
• ClusterMP: OpenMP on cluster

• DRMAA: cluster DRM system abstraction API
• Grid solutions

– Globus Toolkit GRAM
– CoG
– UNICORE
– GAT/SAGA
– GridRCP solutions
– Grid web services ( OGSA )
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Resource Management Systems Differ Across 
Each Component

Unix onlySystem: Remote initialized, with 
SGE local variables exported

GDI API Interface plus
Command line interfaceGrid Engine

Unix WindowsUser: Remote initializedProprietary API.DataSynapse

Unix WindowsSystem: Remote initialized, with PBS 
local variables exported

API (script option)
Batch Utilities via “PBS 
Scripts”

PBS

Unix / Windows 
User: Local disk exported 
System: Remote initialized (option)

Has API plus Batch Utilities 
via “LSF Scripts”LSF

Platform MixExecution EnvironmentInterface Format

Application

Scheduler

Task definition

Submit

Task Analysis

Executing Host

Staging
Task
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Scope: Run a Job API
(Steps from:  Ten Actions when SuperScheduling”, GGF SchedWD 8.5, J.M. Schopf, July 2001)

• Phase 1: Resource Discovery
– Step 1 Authorization Filtering
– Step 2 Application requirement definition
– Step 3 Minimal requirement filtering

• Phase 2 System Selection
– Step 4 Gathering information (query)
– Step 5 Select the system(s) to run on

• Phase 3 Run job
– Step 6 (optional) Make an advance reservation
– Step 7 Submit job to resources
– Step 8 Preparation Tasks
– Step 9 Monitor progress (maybe go back to 4)
– Step 10 Find out Job is done
– Step 11 Completion tasks
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DRMAA Placement

• On top of DRM systems
• On top of Globus
• Beneath GRAM
• UNICORE TSI interface to DRMSs
• CoG adapter
• On top of CoG
• Interfaced by a Portal, application, shell
• Portable command line utilities (qsub, qstat)
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• Language bindings
– C/C++
– Perl, Python
– Fortran, Java

• General features
– DRMAA sessions
– Asynchronous job 

monitoring
– Protocol based
– Scalability
– Wide characters

• Libraries
– Serial / thread safe
– Tracing / diagnosis

• Advanced features
– Debugging support
– Data streaming
– Security
– Categories

What have been the Issues?
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API groups

• Init/exit
• Job template interfaces

– Allocate/delete
– Setter/getter job template routines

• Job submit
– Individual jobs

—One time
—Multiple times – templates ( version 2 )

– Bulk jobs, implicit parameterization
• Job monitoring and control
• Auxiliary or system routines

– trace file specification
– error message routines
– informational interfaces



DRMAA GGF12 Brussels, Sept 22, 2004 12

Job Template

• Functions to create/delete job template
– job_template *drmaa_allocate_job_template (void)
– void drmaa_delete_job_template (job_template *jt)

• Setter/getter job template routines
– int drmaa_set_attribute(job_template *jt, char *name, 

char *value);
– int drmaa_set_vector_attribute(job_template *jt, char 

*name, char **values);
– char* drmaa_get_attribute(job_template *jt, char 

*name);
– char** drmaa_get_vector_attribute(job_template *jt, 

char *name);
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Job Submission

• Jobs submitted to the DRM system are 
identified via a job identifier

• For flexibility reasons a job identifier should be 
of type char *

• Single job identifiers are returned by 
– int drmaa_run_job( job_template *jt, char *job_id ) 

• Bulk job submissions return multiple job 
identifiers
– int drmaa_run_bulk_job( char **job_ids, 

job_template  *jt, int start, int end, int incr )
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Job Monitoring, Control, and Status

• Monitoring/Control functions
– int drmaa_control( char *job_id, int action );
– int drmaa_synchronize(char **job_ids );
– int drmaa_job_ps( char *job_id, int *remote_ps );

• Blocking and non-blocking waiting for one or 
more jobs to finish (like wait4(2))
– char *drmaa_wait(char *jobid, int *status, int

timeout, char **rusage); 
– Use Posix functions drmaa_wifexited, etc. to get 

more information about failed jobs.



DRMAA GGF12 Brussels, Sept 22, 2004 15

Native DRMS Options

• The end user interacts with the DRMS via 
native_resource_options parameter.
– Simple solution
– DRMAA implementation ignores the DRMAA DRMS 

implicitly used and disallowed options
– Dist. Appls. Developers and DRMS vendors are not involved 

in the local environment spec.

– The burden is on the end users to define the execution 
environment

—Need to know DRM 
—Need to know the remote application installation
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Job Categories

• Cluster consists of 
machines where X jobs 
run and others where 
they don’t run 

• X jobs run at all 
machines in cluster

DRM
Installation

with
DRMAA 

Implementation

Job Type X DRMAA
enabled

Application

DRM
Installation

with
DRMAA 

Implementation

Job Type X DRMAA
enabled

Application

Site A Site B


