
DRMAA: Distributed Resource
Management Application API

Andreas Haas, Sun
Hrabri Rajic, Intel

GGF 12 DRMAA session
Brussels, Sept 22, 2004

DRMAA GGF12 Brussels, Sept 22, 2004 2

Agenda

• First things first
– GGF IP
– Sign-up sheet
– Note takers

• Introduction
• dpovray example
• Object Oriented DRMAA API
• Open floor, open issues

DRMAA GGF12 Brussels, Sept 22, 2004 3

DRMAA Charter

• Develop an API specification for the submission and
control of jobs to one or more Distributed Resource
Management (DRM) systems.

• The scope of this specification is all the high level
functionality which is necessary for an application to
consign a job to a DRM system including common
operations on jobs like termination or suspension.

• The objective is to facilitate the direct interfacing of
applications to today's DRM systems by application's
builders, portal builders, and Independent Software
Vendors (ISVs).

DRMAA GGF12 Brussels, Sept 22, 2004 4

DRMAA history

• BOF at GGF 3 in Frascati, Oct 2001
• WG status at GGF 4, Toronto, February 2002

• Participation from PBS, SGE, Intel, LoadLeveler, Condor, Cadence,
Globus GRAM

• Sideline engagement from EnFuzion, Entropia, LSF, GridIron, UD

03 Jul: Close public comment Jun
04 1H: 2 Reference implementation prototypes:

C implementations UofW Condor, Sun’s SGE
CPAN Perl DRMAA-C module
Sun’s SGE Java
DRMAA over Globus: GridWay project
Feedback from reference implementations fed back into spec.

04 Jun: DRMAA recommendation document accepted by GFSC

DRMAA GGF12 Brussels, Sept 22, 2004 5

In a Nutshell

• DRMAA scope and purpose:
– Submit, control & monitor, and query status of

jobs.
– DRMAA library could be implemented on top on

OGSA and DRM systems.

• Weekly con calls
– Toll Free: (866)545-5198 Code: 6898552
– Regular: (865)521-8904

• E-mail: drmaa-wg@gridforum.org

• Archive: http://www-unix.gridforum.org/mail_archive/drmaa-
wg/threads.html

DRMAA GGF12 Brussels, Sept 22, 2004 6

DRMAA is a Third Type of Parallelism

• PThreads and Windows threads: 1 node or SMP
• OpenMP: SMP directive based

• MPI/PVM: cluster messaging API
• ClusterMP: OpenMP on cluster

• DRMAA: cluster DRM system abstraction API
• Grid solutions

– Globus Toolkit GRAM
– CoG
– UNICORE
– GAT/SAGA
– GridRCP solutions
– Grid web services (OGSA)

DRMAA GGF12 Brussels, Sept 22, 2004 7

Resource Management Systems Differ Across
Each Component

Unix onlySystem: Remote initialized, with
SGE local variables exported

GDI API Interface plus
Command line interfaceGrid Engine

Unix WindowsUser: Remote initializedProprietary API.DataSynapse

Unix WindowsSystem: Remote initialized, with PBS
local variables exported

API (script option)
Batch Utilities via “PBS
Scripts”

PBS

Unix / Windows
User: Local disk exported
System: Remote initialized (option)

Has API plus Batch Utilities
via “LSF Scripts”LSF

Platform MixExecution EnvironmentInterface Format

Application

Scheduler

Task definition

Submit

Task Analysis

Executing Host

Staging
Task

DRMAA GGF12 Brussels, Sept 22, 2004 8

Scope: Run a Job API
(Steps from: Ten Actions when SuperScheduling”, GGF SchedWD 8.5, J.M. Schopf, July 2001)

• Phase 1: Resource Discovery
– Step 1 Authorization Filtering
– Step 2 Application requirement definition
– Step 3 Minimal requirement filtering

• Phase 2 System Selection
– Step 4 Gathering information (query)
– Step 5 Select the system(s) to run on

• Phase 3 Run job
– Step 6 (optional) Make an advance reservation
– Step 7 Submit job to resources
– Step 8 Preparation Tasks
– Step 9 Monitor progress (maybe go back to 4)
– Step 10 Find out Job is done
– Step 11 Completion tasks

DRMAA GGF12 Brussels, Sept 22, 2004 9

DRMAA Placement

• On top of DRM systems
• On top of Globus
• Beneath GRAM
• UNICORE TSI interface to DRMSs
• CoG adapter
• On top of CoG
• Interfaced by a Portal, application, shell
• Portable command line utilities (qsub, qstat)

DRMAA GGF12 Brussels, Sept 22, 2004 10

• Language bindings
– C/C++
– Perl, Python
– Fortran, Java

• General features
– DRMAA sessions
– Asynchronous job

monitoring
– Protocol based
– Scalability
– Wide characters

• Libraries
– Serial / thread safe
– Tracing / diagnosis

• Advanced features
– Debugging support
– Data streaming
– Security
– Categories

What have been the Issues?

DRMAA GGF12 Brussels, Sept 22, 2004 11

API groups

• Init/exit
• Job template interfaces

– Allocate/delete
– Setter/getter job template routines

• Job submit
– Individual jobs

—One time
—Multiple times – templates (version 2)

– Bulk jobs, implicit parameterization
• Job monitoring and control
• Auxiliary or system routines

– trace file specification
– error message routines
– informational interfaces

DRMAA GGF12 Brussels, Sept 22, 2004 12

Job Template

• Functions to create/delete job template
– job_template *drmaa_allocate_job_template (void)
– void drmaa_delete_job_template (job_template *jt)

• Setter/getter job template routines
– int drmaa_set_attribute(job_template *jt, char *name,

char *value);
– int drmaa_set_vector_attribute(job_template *jt, char

*name, char **values);
– char* drmaa_get_attribute(job_template *jt, char

*name);
– char** drmaa_get_vector_attribute(job_template *jt,

char *name);

DRMAA GGF12 Brussels, Sept 22, 2004 13

Job Submission

• Jobs submitted to the DRM system are
identified via a job identifier

• For flexibility reasons a job identifier should be
of type char *

• Single job identifiers are returned by
– int drmaa_run_job(job_template *jt, char *job_id)

• Bulk job submissions return multiple job
identifiers
– int drmaa_run_bulk_job(char **job_ids,

job_template *jt, int start, int end, int incr)

DRMAA GGF12 Brussels, Sept 22, 2004 14

Job Monitoring, Control, and Status

• Monitoring/Control functions
– int drmaa_control(char *job_id, int action);
– int drmaa_synchronize(char **job_ids);
– int drmaa_job_ps(char *job_id, int *remote_ps);

• Blocking and non-blocking waiting for one or
more jobs to finish (like wait4(2))
– char *drmaa_wait(char *jobid, int *status, int

timeout, char **rusage);
– Use Posix functions drmaa_wifexited, etc. to get

more information about failed jobs.

DRMAA GGF12 Brussels, Sept 22, 2004 15

Native DRMS Options

• The end user interacts with the DRMS via
native_resource_options parameter.
– Simple solution
– DRMAA implementation ignores the DRMAA DRMS

implicitly used and disallowed options
– Dist. Appls. Developers and DRMS vendors are not involved

in the local environment spec.

– The burden is on the end users to define the execution
environment

—Need to know DRM
—Need to know the remote application installation

DRMAA GGF12 Brussels, Sept 22, 2004 16

Job Categories

• Cluster consists of
machines where X jobs
run and others where
they don’t run

• X jobs run at all
machines in cluster

DRM
Installation

with
DRMAA

Implementation

Job Type X DRMAA
enabled

Application

DRM
Installation

with
DRMAA

Implementation

Job Type X DRMAA
enabled

Application

Site A Site B

