

drmaa-wg@gridforum.org 1

GWD-R Daniel Templeton, Sun Microsystems (editor)
Distributed Resource Management
Application API (DRMAA) Working Group

Peter Tröger, University of Potsdam (editor)

 January, 2005

Distributed Resource Management Application API Object-Oriented Bindings 0.3

Status of This Memo

This memo is a Global Grid Forum Grid Working Draft - Recommendation (GWD-R) in
process, in general accordance with the provisions of Global Grid Forum Document GFD-C.1,
the Global Grid Forum Documents and Recommendations: Process and Requirements, revised
April 2002.

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.

drmaa-wg@gridforum.org 2

Table of Contents
1 ABSTRACT ..3
2 INTRODUCTION..3

2.1 HOW TO READ THIS DOCUMENT...3
3 DESIGN DECISIONS..3

3.1 SERVICE PROVIDER INTERFACE...3
4 GENERAL CONCEPTS ...4

4.1 IDL LANGUAGE MAPPING..4
4.2 THE DRMAA MODULE...5

5 APPLICATION PROGRAMMING INTERFACE (API) SECTION...6
5.1 JOBCONTROLACTION ENUMERATION..7
5.2 JOBPROGRAMSTATE ENUMERATION..7
5.3 JOBSUBMISSIONSTATE ENUMERATION ..7
5.4 FILETRANSFERMODE VALUE TYPE..7
5.5 VERSION VALUE TYPE ...8
5.6 EXCEPTIONS ..8
5.7 THE PARTIALTIMESTAMP FORMAT..12

6 SERVICE PROVIDER INTERFACE (SPI) SECTION...13
6.1 JOBINFO INTERFACE ..14
6.2 JOBTEMPLATE INTERFACE...15
6.3 SESSION INTERFACE ..21
6.4 SESSIONFACTORY INTERFACE ...31

7 ANNEX..32
7.1 COMPLETE IDL INTERFACE ...32
7.2 CORRELATION OF DRMAA ERROR CODES AND EXCEPTIONS ..36
7.3 CORRELATION OF DRMAA AND OO JOB TEMPLATE ATTRIBUTES...37

8 SECURITY CONSIDERATIONS..38
9 REFERENCES ...38
10 AUTHOR INFORMATION..38
11 INTELLECTUAL PROPERTY STATEMENT ...39
12 FULL COPYRIGHT NOTICE...39

drmaa-wg@gridforum.org 3

1 Abstract
This document describes the common base for the Distributed Resource Management
Application API (DRMAA) object-oriented language bindings. The document is based on the
implementations work of the DRMAA 1.0 GWD-R document.

2 Introduction
This document describes the object-oriented binding for the DRMAA interface. It arises from
the results of a collaborative effort to bring the JavaTM language binding and .NET language
binding into agreement, based on the DRMAA 1.0 specification.
The DRMAA Interface Specification was written originally with a procedural C-language slant.
As such, several aspects of the DRMAA interface needed to be altered slightly to better fit with
object-oriented languages. Among the aspects that changed are variable and method naming
and the error structure.
Although this document can be seen as stand-alone, it still bases on the concepts defined in the
DRMAA 1.0 specification. The text refers to the respective chapter of the DRMAA standard
whenever it is necessary.

2.1 How to read this document
In this document, the following conventions are used:

• IDL language elements and definitions are represented in a fixed-width font.
• References to IDL language elements and definitions are represented in italics.

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as
described in RFC-2119 [RFC 2119].

The document describes the DRMAA interface semantics with the help of OMG IDL [OMG IDL].
It includes a set of overall rules for the creation of specific language bindings for the given
specification. Specific examples are given for the Java language. These examples are not
normative.

3 Design Decisions
An effort has been made to choose design patterns that are not unique to a specific language.
However, in some cases, various languages disagree over some points. In those cases, the
most meritous approach was taken, irrespective of language.
The following text bases on the terminology of OMG IDL. From this reason, all operational
semantics are described in terms of interfaces and not of classes. This concept ensures the
possibility to map the described operational semantics to a variety of object-oriented, and even
procedural, languages. The usage of a class concept depends on the specific language-
mapping rules.
This specification assumes that all possible language bindings based on this document can use
an introspection concept. Therefore some methods from the DRMAA specification are
unnecessary. The drmaa_get_attribute(), drmaa_set_attribute(), drmaa_get_vector_attribute(),
drmaa_set_vector_attribute(), and drmaa_get_vector_attribute_names() methods are not
needed because introspective languages are able to obtain a list of property names from the
JobTemplate::getAttributeNames() method and use introspection to locate the appropriate
getters and getters. The getters and setters can also be directly accessed.

3.1 Service Provider Interface
The object-oriented binding borrows from Java the notion of a service provider interface. This
idea means that a common subset of the API need only be implemented once for a

drmaa-wg@gridforum.org 4

programming language, whereas each vendor can provide his own service provider
implementation. The service provider interface is accomplished by factoring common
functionality out into specific interfaces. The service provider then implements these interfaces
and uses the specific classes to build his own implementation. The advantage is that the
common core functionality need only be implemented once in any given language, and that
developers can become familiar with a single package that may hide beneath it several different
vendor implementations.

4 General concepts
4.1 IDL language mapping
Language binding documents based on this specification MUST define a mapping between the
IDL constructs used in this specification and their specific language constructs. A language
binding SHOULD NOT rely itself completely on the OMG language mapping documents
available for many programming languages. It must be considered that the OMG mappings
bring a huge overhead of irrelevant CORBA-related mapping rules into the specification.
Therefore it must be carefully decided whether a binding decision reflects a natural and simple
mapping of the intended purpose for the DRMAA interfaces. In most situations it SHOULD be
enough to reuse value type mappings only and to define custom mappings for the reference
types.

The language binding MUST use the described concept mapping in a consistent manner for the
overall specification.

It may be the case that IDL constructs do not map directly to an according language construct.
In this case it MUST be ensured that the according construct in the particular language retains
the intended semantic of the DRMAA interface definition.

Languages without an explicit notion of enumerations MAY map the IDL enumeration values to
constant class members, enabled by the distinct naming of all enumeration values in the
specification.

This specification tries to consider the possibility of a Remote Procedure Call scenario in a
DRMAA-conformant language mapping. It MUST therefore be ensured that the programming
language type for an IDL valuetype definition supports the serialization, comparison, cloning
and string representation of valuetype instances. The capabilities SHOULD be accomplished
through whatever mechanism is most natural for the specific programming language. The IDL
valuetype definitions SHOULD always map to a reference type in the binding specification.

Java binding example:

IDL Java

module definition package keyword

interface definition public abstract interface definition

enum definition with enumeration members Enumeration members become Java int
constants in the surrounding interface definition

string type java.lang.String

long type int

long long type long

drmaa-wg@gridforum.org 5

const type public static final

boolean type boolean

[readonly] attribute type Getter [and setter] methods in JavaBean style,
Boolean readonly attribute names are prefixed
with “is”,

exception type Class definition, derived from
java.lang.Exception

raises clause throws clause

valuetype definition public abstract class definition, may
additionally implement the Cloneable,
Serializable, and Comparable interfaces

factory definition class constructor

The DRMAA IDL definition defines specialized custom types:

// unbounded native string list
valuetype StringList sequence<string>;
// dictionary type, for unbounded key-value pair storage
valuetype Dictionary sequence< sequence<string,2> >;

The language-binding author SHOULD replace these type definitions directly with semantically
equal basic language constructs, if possible. This MAY include the usage of multiple types for
one of the above concepts, depending on the context.

Java binding example:

IDL Java

StringList java.util.List

Dictionary java.util.Map, java.util.Properties

4.2 The DRMAA Module
The object-oriented DRMAA binding distinguishes between the application programming
interface part (API) and the service provider interface part (SPI):

module DRMAA{
 // API part
 ...
 valuetype FileTransferMode{...};
 ...
 // SPI part
 ...
 interface Session{...};
 ...
}

drmaa-wg@gridforum.org 6

The API part contains all definitions and types that are not specific to the underlying DRM
system, but specific for the particular programming language. The SPI part defines the subset
of functionality that must be implemented by each DRMS vendor separately.
Language binding authors MUST map the IDL module encapsulation to an according package
or namespace concept and MAY change the module name according to programming language
conventions.

Java binding example:

IDL Java

module DRMAA package org.ggf.drmaa

5 Application Programming Interface (API) Section
The API part of the DRMAA module defines the vendor-independent, language-dependent parts
of the DRMAA programming interface. It consists of several DRMAA-related data structures and
the possible exception types.

module DRMAA{
 // API part
 enum JobControlAction {…};

enum JobProgramState {…};
enum JobSubmissionState {…};

 valuetype FileTransferMode {…};
 valuetype Version {…};
 exception AuthorizationException {…};
 exception InvalidContactStringException {…};
 exception DefaultContactStringException {…};
 exception NoDefaultContactStringSelectedException {…};
 exception DeniedByDrmException {…};
 exception DrmCommunicationException {…};
 exception DrmsExitException {…};
 exception HoldInconsistentStateException {…};
 exception ReleaseInconsistentStateException {…};
 exception ResumeInconsistentStateException {…};
 exception SuspendInconsistentStateException {…};
 exception DrmsInitException {…};
 exception InvalidArgumentException {…};
 exception InvalidJobException {…};
 exception ConflictingAttributeValuesException {…};
 exception InvalidAttributeFormatException {…};
 exception InvalidAttributeValueException {…};
 exception NoResourceUsageException {…};
 exception ExitTimeoutException {…};
 exception NoActiveSessionException {…};
 exception AlreadyActiveSessionException {…};
 exception TryLaterException {…};
 exception InternalException {…};
 exception OutOfMemoryException {…};
 exception UnsupportedAttributeException {…};
 exception InvalidJobTemplateException {…};
 native PartialTimestamp;
 // SPI part
 ...
};

drmaa-wg@gridforum.org 7

5.1 JobControlAction enumeration

The JobControlAction enumeration is used as a input parameter type by the control() method in
the Session interface. The meanings of the enumeration values are specified in the description
of the method in section 6.3.8.

enum JobControlAction {

SUSPEND,
 RESUME,
 HOLD,
 RELEASE,
 TERMINATE
};

5.2 JobProgramState enumeration

The JobProgramState enumeration is used as a input parameter type by the
jobProgramStatus() method in the Session interface. The meanings of the enumeration values
are specified in the description of the method in section 6.3.11.

enum JobProgramState {

UNDETERMINED,
 QUEUED_ACTIVE,
 SYSTEM_ON_HOLD,
 USER_ON_HOLD,
 USER_SYSTEM_ON_HOLD,
 RUNNING,
 SYSTEM_SUSPENDED,
 USER_SUSPENDED,
 USER_SYSTEM_SUSPENDED,
 DONE,
 FAILED
};

5.3 JobSubmissionState enumeration

The JobSubmissionState enumeration is used as the type of the
JobTemplate::jobSubmissionState interface attribute. In the context of the job template, the
enumeration values have the following meaning:

• HOLD_STATE: The job may be queued but it is not eligible to run.
• ACTIVE_STATE: The job is currently running.

enum JobSubmissionState {

HOLD_STATE,
ACTIVE_STATE

};

5.4 FileTransferMode value type

The FileTransferMode value-type is used by the JobTemplate interface to indicate the value for
the transferFiles attribute. The type contains three attributes which determine the streams that
will be staged in or out.

drmaa-wg@gridforum.org 8

valuetype FileTransferMode {
 attribute boolean inputStream;
 attribute boolean outputStream;
 attribute boolean errorStream;
 factory FileTransferMode();
 factory FileTransferMode(in boolean inputStream,

in boolean outputStream,
in boolean errorStream);

};

5.4.1 inputStream

This attribute defines whether to transfer input stream files. If this attribute contains true, the
inputStream attribute of the corresponding job template SHALL be treated as the source from
which input files should be copied.

5.4.2 outputStream

This attribute defines whether to transfer output stream files. If this attribute contains true, the
outputStream attribute of the corresponding job template SHALL be treated as the destination to
which output files should be copied.

5.4.3 errorStream

This attribute defines whether to transfer error stream files. If this attribute contains true, the
errorStream attribute of the corresponding job template SHALL be treated as the destination to
which error files should be copied.

5.5 Version value type

The Version value type is a holding structure for the major and minor version numbers of the
DRMAA implementation as contained in the version attribute of the Session interface. The
string representation (see section 4.1) of a Version instance MUST be of the form
“<major>.<minor>”.

valuetype Version {
 readonly attribute long major;
 readonly attribute long minor;
 factory Version(in long major, in long minor);
};

5.5.1 major

This attribute SHALL contain the major version number.

5.5.2 minor

This attribute SHALL contain the minor version number.

5.6 Exceptions

drmaa-wg@gridforum.org 9

All exceptions in specific bindings MUST contain a possibility to store and read a textual
description of the exception cause for the exception instance.
Language bindings MAY decide to derive all exceptions from given environmental exception
base class(es). Language bindings SHOULD replace exceptions with a semantically equivalent
native runtime environment exception whenever this is appropriate.

exception AlreadyActiveSessionException {string message;};
exception AuthorizationException {string message;};
exception ConflictingAttributeValuesException {string message;};
exception DefaultContactStringException {string message;};
exception DeniedByDrmException {string message;};
exception DrmCommunicationException {string message;};
exception DrmsExitException {string message;};
exception DrmsInitException {string message;};
exception ExitTimeoutException {string message;};
exception HoldInconsistentStateException {string message;};
exception InternalException {string message;};
exception InvalidArgumentException {string message;};
exception InvalidAttributeFormatException {string message;};
exception InvalidAttributeValueException {string message;};
exception InvalidContactStringException {string message;};
exception InvalidJobException {string message;};
exception InvalidJobTemplateException {string message;};
exception NoActiveSessionException {string message;};
exception NoDefaultContactStringSelectedException {string message;};
exception NoResourceUsageException {string message;};
exception OutOfMemoryException {string message;};
exception ReleaseInconsistentStateException {string message;};
exception ResumeInconsistentStateException {string message;};
exception SuspendInconsistentStateException {string message;};
exception TryLaterException {string message;};
exception UnsupportedAttributeException {string message;};

Language bindings MAY decide to introduce a hierarchical ordering of the DRMAA exceptions
through class derivation. In this case it MAY also happen that new exceptions are introduced for
behavior aggregation.

If the language supports the distinction between static (‘checked’) and runtime (‘unchecked’)
exceptions, all but the following exceptions must be represented as checked exception:

• InternalException
• OutOfMemoryException
• UnsupportedAttributeException
• InvalidJobTemplateException

5.6.1 AlreadyActiveSessionException

Initialization failed due to existing DRMAA session.

5.6.2 AuthorizationException

The user is not authorized to perform the given operation.

5.6.3 ConflictingAttributeValuesException

Comment [DT1]: We need to talk
about this too. I was thinking about
moving a couple others to being
unchecked.

drmaa-wg@gridforum.org 10

The value of this attribute conflicts with one or more previously set properties.

5.6.4 DefaultContactStringException

The DRMAA implementation could not use the default contact string to connect to DRM system.

5.6.5 DeniedByDrmException

The DRM system rejected the job. The job will never be accepted due to DRM configuration or
job template settings.

5.6.6 DrmCommunicationException

Could not contact DRM system.

5.6.7 DrmsExitException

A problem was encountered while trying to exit the session.

5.6.8 DrmsInitException

A problem was encountered while trying to initialize the session.

5.6.9 ExitTimeoutException

The wait() or synchronize() method call on the Session interface returned before all selected
jobs entered the DONE or FAILED state.

5.6.10 HoldInconsistentStateException

The job cannot be moved to a HOLD state.

5.6.11 InternalException

Unexpected or internal DRMAA error like system call failure, etc.

5.6.12 InvalidArgumentException

A parameter value is fundamentally invalid, such as being of the wrong type or being null.

5.6.13 InvalidAttributeFormatException

The value for the job template property is improperly formatted, such as a badly formatted time
stamp.

5.6.14 InvalidAttributeValueException

The value for the job template property is invalid.

drmaa-wg@gridforum.org 11

5.6.15 InvalidContactStringException

The given contact string is not valid.

5.6.16 InvalidJobException

The job specified by the given job id does not exist.

5.6.17 InvalidJobTemplateException

The job template is not valid. It was either created incorrectly, i.e. not via
Session::createJobTemplate(), or it has already been deleted via Session::deleteJobTemplate()
method.

5.6.18 NoActiveSessionException

Method call failed because there is no active session.

5.6.19 NoDefaultContactStringSelectedException

No defaults contact string was provided or selected. DRMAA requires that the default contact
string is selected when there is more than one default contact string due to multiple DRMAA
implementations being present and available.

5.6.20 NoResourceUsageException

This exception is thrown by Session::wait() when a job has finished but no resource usage or
exit status data could be provided.

5.6.21 OutOfMemoryException

This exception can be throw by any method at any time when the DRMAA implementation has
run out of free memory.

5.6.22 ReleaseInconsistentStateException

The job is not in a HOLD state, and hence cannot be released.

5.6.23 ResumeInconsistentStateException

The job is not in a suspended state (*_SUSPENDED), and hence cannot be resumed.

5.6.24 SuspendInconsistentStateException

The job is not is a state from which it can be suspended.

5.6.25 TryLaterException

The DRMS rejected the operation due to excessive load. A retry attempt may succeed,
however.

drmaa-wg@gridforum.org 12

5.6.26 UnsupportedAttributeException

The given job template attribute is not supported by the current DRMAA implementation.

5.7 The PartialTimestamp format

The PartialTimestamp type is used by the JobTemplate interface to represent partially specified
time stamps, as required by the Distributed Resource Management Application API
Specification 1.0. The PartialTimestamp SHOULD be an extension of the native language
date/time representation if possible and reasonable. For this reason, the following text
describes the functional requirements without a specific signature for the type definition. The
IDL definition covers this aspect by specifying a native data type.

native PartialTimestamp;

The PartialTimestamp MUST support the following fields: century (>=19), year (0-99), month (1-
12), date (1-31), hour (0-23), minute (0-59), second (0-61), zone offset hour (-11-12), and zone
offset minute (0-59). It MUST support the following essential operations: “get field value”, “set
field value”, “get time as native date/time object”, “convert to string” and “parse from string.” If
possible, these operations SHOULD leverage structure already present in the native date/time
class, even if this leads to a mapping with multiple classes or interfaces. The two field
operations MAY be represented as attributes.
The “get field value” operation MUST return the current value for the given field. The “set field
value” operation MUST set the current value for the given field. The “get time as native
date/time object” operation MUST resolve the partial time to a specific time that is the soonest
possible time that is not in the past, and SHOULD return that specific time as a native date/time
representation. The “convert to string” operation MUST return the partial time as a String which
adheres to the following format: [[[[CC]YY/]MM/]DD] hh:mm[:ss] [{-|+}UU:uu],
where:

• CC is the first two digits of the year [19,]
• YY is the last two digits of the year [0,99]
• MM is the two digits of the month [01,12]
• DD is the two-digit day of the month [01,31]
• hh is the two-digit hour of the day [00,23]
• mm is the two-digit minute of the day [00,59]
• ss is the two-digit second of the minute [00,61]
• UU is the two-digit hours since (before) UTC [-11,12]
• uu is the two-digit minutes since (before) UTC [0,59]

In order for this operation to be performed, the PartialTimestamp must have no unset field of a
lower order than the highest order set field, with the exception of second and the zone offsets.
For example, if the year is set, the month, date, hour, and minute must also be set for this
operation to be performed. Failure to meet this criterion MUST result in an
InvalidArgumentException being thrown, or the corresponding error code being returned in
languages which do not support exceptions. The “parse from string” operation MUST parse a
string in the above format to generate a PartialTimestamp as return value. If the string is not in
the above format, an InvalidArgumentException MUST be thrown or the corresponding error
code MUST be returned in languages which do not support exceptions.
The PartialTimestamp MAY also support the following four operations: “get field modifier,” “set
field modifier,” “add to field,” and “roll field.” If possible, these operations SHOULD leverage
structure already present in the native language date/time representation. The two field
operations MUST be represented as attributes. The “get field modifier” operation MUST return
any additional modifiers set for the given field. An additional modifier is added to the field's
value after it has been resolved to a specific time. The “set field modifier” operation MUST set
the additional modifiers for the given field. The “add to field” operation MUST add a given value

drmaa-wg@gridforum.org 13

to the given field. If supported by the native date/time representation, this operation SHOULD
attempt to resolve out of range field values that may result from the operation. For example,
adding “1” to the date of a PartialTimestamp instance which is set to January 31st SHOULD
result in the PartialTimestamp being set to February 1st. If this operation is supported, the “get
field modifier” and “set field modifier” operations MUST also be supported. The “roll field”
operation is similar to the “add to field” operation, except that the operation cannot modify a field
of a higher order than the given field. Such modifications are simply lost. For example, adding
“1” to the date of a PartialTimestamp which is set to January 31st MAY result in the
PartialTimestamp being set to January 1st.
The PartialTimestamp MUST also support a notion of unset fields. A special value is assigned
to all fields which have not been explicitly set. This special value MUST be of the same type as
the date/time properties and MAY be the maximum value for that data type.
Language bindings are free to define convenience functions in addition to the functionalities
described here.

6 Service Provider Interface (SPI) Section

The SPI part of the DRMAA module consists of several interfaces. The Session interface
represents the majority of the functionality defined by the DRMAA specification. It utilizes all the
data structures defined in the API and SPI section.

module DRMAA{
 // API part
 ...
 // SPI part
 interface JobInfo {…};
 interface JobTemplate {…};
 interface Session{
 void init(in string contactString);
 void exit();
 JobTemplate createJobTemplate();
 void deleteJobTemplate(
 in JobTemplate jobTemplate);
 string runJob(
 in JobTemplate jobTemplate);
 StringList runBulkJobs(
 in JobTemplate jobTemplate,
 in long beginIndex,
 in long endIndex,
 in long step)
 void control(
 in string jobName,
 in JobControlAction operation)
 void synchronize(
 in StringList jobList,
 in long long timeout,
 in boolean dispose)
 JobInfo wait(
 in string jobName,
 in long long timeout)
 JobProgramState getJobProgramStatus(
 in string jobName)
 readonly attribute string contact;
 readonly attribute Version version;
 readonly attribute string drmsInfo;
 readonly attribute string drmaaImplementation;
 };

drmaa-wg@gridforum.org 14

 interface SessionFactory{
 Session getSession();
 };
};

6.1 JobInfo interface

The information regarding a job's execution is encapsulated in instances that fulfil the JobInfo
interface. With the help of the JobInfo attributes, an application can discover information about
the resource usage and exit status of a job. The structure of the JobInfo interface is as follows:

interface JobInfo {
 readonly attribute string jobId;
 readonly attribute Dictionary resourceUsage;
 readonly attribute boolean exited;
 readonly attribute long exitStatus;
 readonly attribute boolean signaled;
 readonly attribute string terminatingSignal;
 readonly attribute boolean coreDump;
 readonly attribute boolean aborted;
 readonly attribute string reason;
};

The following sections explain the meanings of the JobInfo member attributes.

6.1.1 jobId

The identifier of the completed job.

6.1.2 resourceUsage

The completed job's resource usage data.

6.1.3 exited

This attribute SHALL contain true if the job terminated normally. False MAY also indicate that
although the job has terminated normally, an exit status is not available, or that it is not known
whether the job terminated normally. In both cases the exitStatus attribute SHALL NOT contain
exit status information. True indicates more detailed diagnosis can be retrieved from the
exitStatus attribute.

6.1.4 exitStatus

If exited is true, this attribute contains the operating system exit code of the job.

6.1.5 signaled

This attribute SHALL contain true if the job terminated due to the receipt of a signal. False MAY
also indicate that although the job has terminated due to the receipt of a signal, the signal is not
available, or that it is not known whether the job terminated due to the receipt of a signal. In
both cases terminatingSignal SHALL not provide signal information.

Comment [PT2]: This attribute
should throw an exception if exited is
false, but which one ?

drmaa-wg@gridforum.org 15

6.1.6 terminatingSignal

If signaled is true, this attribute SHALL contain a representation of the signal that caused the
termination of the job. For signals declared by POSIX, the symbolic names SHALL be returned
(e.g., SIGABRT, SIGALRM). For signals not declared by POSIX, a DRM dependent string
SHALL be returned.

6.1.7 coreDump

If signaled is true, this attribute SHALL contain true if a core image of the terminated job was
created.

6.1.8 aborted

This attribute SHALL contain true if the job ended before entering the running state.

6.1.9 reason

If aborted is true, this attribute SHALL contain a string representation of the reason why the job
aborted. This string representation SHALL be implementation dependent.

6.2 JobTemplate interface
In order to define the attributes associated with a job, a DRMAA application uses the
JobTemplate interface. Instances of such templates are created via the active Session
implementation. A DRMAA application gets a JobTemplate from the active Session instance,
specifies in the template any required job parameters, and the passes the template back to the
session when requesting that a job be executed. When finished, the DRMAA application should
call the Session::deleteJobTemplate() method to allow the underlying implementation to free
any resources bound to the JobTemplate object. The structure of the JobTemplate interface is
as follows:

interface JobTemplate{
 const string HOME_DIRECTORY = "$drmaa_hd_ph$";
 const string WORKING_DIRECTORY = "$drmaa_wd_ph$";
 const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";
 attribute string remoteCommand;
 attribute StringList args;
 attribute JobSubmissionState jobSubmissionState;
 attribute Dictionary jobEnvironment;
 attribute string workingDirectory;
 attribute string jobCategory;
 attribute string nativeSpecification;
 attribute StringList email;
 attribute boolean blockEmail;
 attribute PartialTimestamp startTime;
 attribute string jobName;
 attribute string inputPath;
 attribute string outputPath;
 attribute string errorPath;
 attribute boolean joinFiles;
 attribute FileTransferMode transferFiles;
 attribute PartialTimestamp deadlineTime;
 attribute long long hardWallclockTimeLimit;
 attribute long long softWallClockTimeLimit;
 attribute long long hardRunDurationLimit;
 attribute long long softRunDurationLimit;

Comment [PT3]: This attribute
should throw an exception if signaled
is false, but which one ?

Comment [PT4]: This attribute
should throw an exception if signaled
is false, but which one ?

Comment [PT5]: This attribute
should throw an exception if aborted
is false, but which one ?

drmaa-wg@gridforum.org 16

 StringList getAttributeNames();
};

The JobTemplate implementation MUST support two types of exceptions for the setter
operations in case there is such a concept in the programming language:

• InvalidAttributeValueException – The attribute value is invalid for the property, e.g. a
startTime that is in the past.

• ConflictingAttributeValuesException – the attribute value conflicts with a previously set
attribute value.

In most cases, a DRMAA implementation will require that job templates be created through the
Session::createJobTemplate() method, however. In those cases, passing a template created
without this method to the Session::deleteJobTemplate(), Session::runJob(), or
Session::runBulkJobs() methods MUST result in an InvalidJobTemplateException being thrown
or a corresponding error code being returned if exceptions are not supported.

A JobTemplate instance must be comparable to another JobTemplate instances for equality.
This comparability SHOULD be accomplished through whatever mechanism is most natural for
the regarding language.

A JobTemplate instance must be convertible to a String for printing. This should be
accomplished through whatever mechanism is most natural for the implementation language.
The resulting String MUST contain the values of all set properties.

The access to attribute values MUST operate in a pass-by-value mode. An according language
binding must ensure that this behavior is always fulfilled.

In the job template there is a distinction between mandatory and optional attributes. An object-
oriented language binding implementation MUST provide implementations for all DRMAA
attributes, both required and optional. The setter and getter implementations for optional
attributes MUST throw UnsupportedAttributeException in languages which support exceptions.
In languages which do not support exceptions, the optional attribute setters and getters MUST
return some form of error. The service provider implementation SHOULD then override the
setters and getters for supported optional attributes with methods that operate normally.

The SPI implementation is also allowed to add implementation-specific attributes. The
JobTemplate::getAttributeNames() method SHALL return the names of all properties supported
by the service provider implementation, including required, optional, and implementation
specific attributes. In order to get the values for supported attributes, such as in a property
sheet, one should use introspection to call the appropriate setter and getter for each attribute.

6.2.1 Constants

The JobTemplate interface defines a set of constants which are used in the context of some of
the attributes:

const string HOME_DIRECTORY = "$drmaa_hd_ph$";
const string WORKING_DIRECTORY = "$drmaa_wd_ph$";
const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";

The HOME_DIRECTORY constant is a place holder used to represent the user's home
directory when building paths for the workingDirectory, inputPath, outputPath, and errorPath
attributes.

Comment [DT6]: We need to
choose a word: attribute or property,
and stick with it.

Comment [PT7]: Languages
without introspection need
setAttribute() and getAttribute()

Comment [PT8]: Printing & Cloning
for a non-value type may be a
problem

drmaa-wg@gridforum.org 17

The WORKING_DIRECTORY constant is a place holder used to represent the current working
directory when building paths for the inputPath, outputPath, and errorPath attributes.

The PARAMETRIC_INDEX constant is a place holder used to represent the id of the current
parametric job subtask when building paths for the workingDirectory, inputPath, outputPath, and
errorPath attributes.

6.2.2 remoteCommand

The command that should be executed on the remote host. In case this parameter contains
path information, it MUST be seen as relative to the execution host file system and is therefore
evaluated there. The attribute value SHOULD NOT relate to binary file management or file
staging activities.

6.2.3 args

The list of command-line arguments for the job to be executed.

6.2.4 jobSubmissionState

Defines the state of the job at submission time. For more information see section 5.3.

6.2.5 jobEnvironment

The environment values that define the remote environment. The values MUST override the
remote environment values if there is a collision. If this is not possible, the behaviour is
implementation dependent.

6.2.6 workingDirectory

This attribute specifies the directory where the job is executed. If the attribute is not set, the
behaviour is is implementation dependent. The attribute value MUST be evaluated relative to
the execution host file system. The attribute value MAY contain the HOME_DIRECTORY or
PARAMETRIC_INDEX constant values as placeholder. A HOME_DIRECTORY placeholder at
the begin denotes the remaining portion of the attribute value as a relative directory name
resolved relative to the job users home directory at the execution host. The
PARAMETRIC_INDEX placeholder MAY be used at any position within the attribute value in
case of parametric job templates and SHALL be substituted by the underlying DRM system with
the parametric jobs' index.
The workingDirectory MUST be specified in a syntax that is common at the host
where the job is executed.
If the attribute is set and no placeholder is used, an absolute directory specification is expected.
If the attribute is set and the directory does not exist, the job enters the state
JobProgramState.FAILED.

6.2.7 jobCategory

An implementation-defined string specifying how to resolve site-specific resources and/or
policies. Site administrators MAY create a job category suitable for an application to be
dispatched by the DRMS; the associated category name SHALL be specified as a job
submission attribute. The DRMAA implementation MAY then use the category name to manage
site-specific resource and functional requirements of jobs in the category. Such requirements
need to be configurable by the site operating a DRMS and deploying an application on top of it.

drmaa-wg@gridforum.org 18

More information can be found in section 2.4.1 of the DRMAA 1.0 specification document.

6.2.8 nativeSpecification

An implementation-defined string that is passed by the end user to DRMAA to specify
site-specific resources and/or policies.
 As far as the DRMAA interface specification is concerned, the native specification is an
implementation-defined string and is interpreted by each DRMAA library. One MAY use job
categories and native specification with the same job submission for policy specification. In this
case, the DRMAA library is assumed to be capable of joining the outcome of the two policy
sources in a reasonable way.
Native specification MAY be used without the requirement to maintain job categories,
and submit options MAY be specified directly.
More information can be found in section 2.4.2 of the DRMAA 1.0 specification document.

6.2.9 email

A list of email addresses that is used to report the job completion and status.

6.2.10 blockEmail

This Boolean parameter decides whether the sending of email is blocked by default or not,
regardless of the DRMS setting.

6.2.11 startTime

This attribute specifies the earliest time when the job MAY be eligible to be run.

6.2.12 jobName

A job name SHALL comprise alphanumeric and _ characters.The DRMAA implementation MAY
truncate any client-provided job name to an implementation-defined length that is at least 31
characters.

6.2.13 inputPath

Specifies the job standard input as path to a file. Unless set elsewhere, if not explicitly set in the
job template, the job is started with an empty input stream. If set, specifies the network path of
the jobs input stream file of the form

[hostname]:file_path

When the transferFiles job template attribute is supported and has a value where the
FileTransferMode::inputStream attribute set to true, the input file SHOULD be fetched by the
underlying DRM system from the specified host, or from the submit host if no hostname
was specified.
When the transferFiles job template attribute is not supported or it’s values member
FileTransferMode::inputStream is set to false, then the input file is always expected at the host
where the job is executed, irrespective of a possibly hostname specified.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric jobs'
index.
A HOME_DIRECTORY placeholder at the begin of the attribute value denotes the

drmaa-wg@gridforum.org 19

remaining portion as a relative file specification resolved relative to the job users home directory
at the host where the file is located.
A WORKING_DIRECTORY placeholder at the begin of the attribute value denotes the
remaining portion as a relative file specification resolved relative to the jobs working directory at
the host where the file is located.
The inputPath MUST be specified in a syntax that is common at the host where the file is
located.
If set, and the file can't be read, the job enters the state JobProgramState.FAILED.

6.2.14 outputPath

Specifies how to direct the jobs’ standard output to a file. If not explicitly set in the job template,
the whereabouts of the jobs output stream is not defined. If set, specifies the network path of
the jobs output stream file of the form

[hostname]:file_path

When the transferFiles job template attribute is supported and its value's member
FileTransferMode::outputStream attribute is set to true, the output file SHALL be transferred by
the underlying DRM system to the specified host or to the submit host if no hostname is
specified.
When the transferFiles job template attribute is not supported or the
FileTransferMode::outputStream attribute is set to false, then the output file is always kept at the
host where the job is executed irrespectively of a possibly hostname specified.
The PARAMETRIC_INDEX placeholder can be used at any position with parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric jobs'
index.
A HOME_DIRECTORY placeholder at the begin denotes the remaining portion as a relative file
specification resolved relative to the job users home directory at the host where the file is
located.
A WORKING_DIRECTORY placeholder at the begin denotes the remaining portion as a relative
file specification resolved relative to the jobs working directory at the host where the file is
located.
The outputPath MUST be specified in a syntax that is common at the host where the file is
located. If set and the file can't be written before execution the job enters the state
JobProgramState.FAILED.

6.2.15 errorPath

Specifies how to direct the jobs’ standard error to a file.
If not explicitly set in the job template, the whereabouts of the jobs error
stream is not defined. If set, specifies the network path of the jobs error stream file of the form

[hostname]:file_path

When the transferFiles job template attribute is supported and in it’s value the
FileTransferMode::errorStream attribute is set, the output file SHALL be transferred by the
underlying DRM system to the specified host or to the submit host if no hostname is specified.
When the FileTransferMode::errorStream attribute is not supported or it’s value does have the
FileTransferMode::errorStream set to false, the error file is always kept at the host where the
job is executed irrespectively of a possibly hostname specified.
The PARAMETRIC_INDEX placeholder can be used at any position for parametric job
templates and SHALL be substituted by the underlying DRM system with the parametric jobs'
index.

drmaa-wg@gridforum.org 20

A HOME_DIRECTORY placeholder at the begin denotes the remaining portion as a relative file
specification, resolved relative to the job users home directory at the host where the file is
located.
A WORKING_DIRECTORY placeholder at the begin denotes the remaining portion as a relative
file specification resolved relative to the jobs working directory at the host where the file is
located.
The errorPath MUST be specified in a syntax that is common at the host where the file is
located.
If set and the file can't be written before execution the job enters the state
JobProgramState.FAILED.

6.2.16 joinFiles

Specifies if the error stream should be intermixed with the output stream. If not explicitly set in
the job template the attribute defaults to false. If true is specified the underlying DRM system
SHALL ignore the value of the errorPath attribute and intermix the standard error stream with
the
standard output stream as specified with outputPath.

6.2.17 transferFiles

Specifies how to transfer files between hosts.
If not explicitly set in the job template, all members of the FileTransferMode type are non-set.
This attribute works in conjunction with the inputPath, outputPath and errorPath attributes.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

6.2.18 deadlineTime

Specifies a deadline after which the DRMS will terminate a job.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

6.2.19 hardWallclockTimeLimit

This attribute specifies when the job's wall clock time limit has been exceeded. The
implementation SHALL terminate a job that has exceeded its wall clock time limit. Suspended
time SHALL also be accumulated here. The value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

6.2.20 softWallClockTimeLimit

This attribute specifies an estimate as to how long the job will need wall clock time to complete.
Note that the suspended time is also accumulated here. This attribute is intended to assist the
scheduler. If the time specified in insufficient, the implementation MAY impose a scheduling
penalty. The value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

drmaa-wg@gridforum.org 21

6.2.21 hardRunDurationLimit

This attribute specifies how long the job MAY be in a running state before its limit has been
exceeded, and therefore is terminated by the DRMS. The value MUST be given in seconds.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

6.2.22 softRunDurationLimit

This attribute specifies an estimate as to how long the job will need to remain in a running state
to complete. This attribute is intended to assist the scheduler. If the time specified in insufficient,
the implementation MAY impose a scheduling penalty.

This attribute is optional. In case an implementation MUST throw an
UnsupportedAttributeException if this attribute is not supported.

6.2.23 getAttributeNames

This method SHALL return the list of supported attribute names. This list includes supported
DRMAA reserved attribute names (both required and optional) and implementation-specific
attribute names.

6.3 Session interface

The following chapter explains the set of constants, methods and attributes defined in the
Session interface.

6.3.1 Constants

The Session interface defines a set of constant values, which are used in the context of several
interface functions.

const long long TIMEOUT_WAIT_FOREVER = -1;
const long long TIMEOUT_NO_WAIT = 0;
const string JOB_IDS_SESSION_ANY = "DRMAA_JOB_IDS_SESSION_ANY";
const string JOB_IDS_SESSION_ALL = "DRMAA_JOB_IDS_SESSION_ALL";

The TIMEOUT_WAIT_FOREVER constant is used with the wait() and synchronize() methods to
indicate that the methods should not return until the given job or jobs have entered the DONE or
FAILED state.

The TIMEOUT_NO_WAIT constant is used with the wait() and synchronize() methods to
indicate that the methods should return immediately if the given job or jobs have not yet entered
the DONE or FAILED state.

The JOB_IDS_SESSION_ANY constant is used with the wait() method to indicate that the
method may operate on any job currently in the RUNNING state in the session.

The JOB_IDS_SESSION_ALL constant is used with the control() and synchronize() methods to
indicate that the methods should operate on all jobs currently in the RUNNING state in the
session.

drmaa-wg@gridforum.org 22

6.3.2 init

The init() method is used to initialize a DRMAA session for use. The contactString parameter is
an implementation-dependent string that may be used to specify which DRM system to use.
This method must be called before any other DRMAA calls, except for the getter functions of the
contact, drmsInfo, and drmaaImplementation attributes defined in the Session interface.
If contact is null, the default DRM system is used, provided there is only one DRMS available.
If contact is null, and more than one DRMAA implementation is available, init() SHALL throw
a NoDefaultContactStringSelectedException or return a corresponding error code if exceptions
aren't supported. init() SHOULD be called only once, by only one of the threads. The main
thread is recommended. A call to init() by another thread or additional calls to init() by the same
thread with throw a AlreadyActiveSessionException or return a corresponding error code if
exceptions are not supported.

void init(in string contactString)
 raises (DrmsInitException,
 InvalidContactStringException,
 AlreadyActiveSessionException,
 DefaultContactStringException,
 NoDefaultContactStringSelectedException,
 OutOfMemoryException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidArgumentException,
 InternalException);

Parameters

contact - implementation-dependent string that may be used to specify which DRM system to
use. If null, will select the default DRM system if there is only one DRMS available.

Exceptions

• DrmsInitException – failed while initializing the session.
• InvalidContactStringException – the contact parameter is invalid.
• AlreadyActiveSessionException – the session has already been initialized.
• DefaultContactStringException – the contact parameter is null and the default contact

string could not be used to connect to the DRMS.
• NoDefaultContactStringSelectedException – the contact parameter is null and more

than one DRMS is available.
• OutOfMemoryException – the DRMAA implementation does not have enough free

memory to perform the operation.
• DrmCommunicationException – the DRMS could not be contacted for this request.
• AuthorizationException – the user does not have permission to perform this action.
• InvalidArgumentException – an argument value is invalid.
• InternalException – an error has occurred in the DRMAA implementation.

6.3.3 exit

The exit() is used to disengage from the DRM and allow the DRMAA implementation to perform
any necessary internal cleanup. This method ends the current DRMAA session but doesn't
affect any jobs (e.g., queued and running jobs remain queued and running). exit() should be
called only once, by only one of the threads. Additional calls to exit() beyond the first SHALL
throw a NoActiveSessionException or return a corresponding error code if exceptions aren't
supported.

drmaa-wg@gridforum.org 23

void exit()
 raises (DrmsExitException,
 NoActiveSessionException,
 DrmCommunicationException,
 AuthorizationException,
 OutOfMemoryException,
 InternalException);

Exceptions

• DrmsExitException – failed while exiting the session.
• NoActiveSessionException – the session has not been initialized or exit() has already

been called
• DrmCommunicationException – the DRMS could not be contacted for this request.
• AuthorizationException – the user does not have permission to perform this action.
• OutOfMemoryException – the DRMAA implementation does not have enough free

memory to perform the operation.
• InternalException – an error has occurred in the DRMAA implementation.

6.3.4 createJobTemplate

The createJobTemplate() method SHALL return a new job template. The job template is used to
set the defining characteristics for jobs to be submitted. Once the job template has been
created, it should also be deleted (via deleteJobTemplate()) when no longer needed. Failure to
do so may result in a memory leak.

JobTemplate createJobTemplate()
 raises (DrmCommunicationException,
 NoActiveSessionException,
 OutOfMemoryException,
 AuthorizationException,
 InternalException);

Returns

The createJobTemplate() method SHALL return a blank JobTemplate object.

Exceptions

• DrmCommunicationException – unable to communicate with the DRMS
• NoActiveSessionException – the session has not been initialized or exit() has already

been called
• OutOfMemoryException – the DRMAA implementation does not have enough free

memory to perform the operation.
• AuthorizationException – the user does not have permission to perform this action.
• InternalException – an error has occurred in the DRMAA implementation.

6.3.5 deleteJobTemplate

The deleteJobTemplate() method is used to deallocate a job template, and SHALL perform all
necessary steps required to free all memory associated with this job template. In languages
where memory is not freed explicitly, e.g. languages that use garbage collectors, this method
SHALL perform all necessary steps required to prepare this job template to be freed. This
method SHALL have no effect on running jobs. This method MUST only work on JobTemplate
instances that were created with the createJobTemplate() method and have not previously been

drmaa-wg@gridforum.org 24

deleted with the deleteJobTemplate() method and MUST otherwise throw an
InvalidJobTemplateException.

void deleteJobTemplate(in JobTemplate jobTemplate)

 raises (DrmCommunicationException,
 NoActiveSessionException,
 OutOfMemoryException,
 AuthorizationException,
 InvalidArgumentException,
 InvalidJobTemplateException,
 InternalException);

Parameters

jobTemplate - the JobTemplate object to delete.

Exceptions

• DrmCommunicationException – unable to communicate with the DRMS.
• NoActiveSessionException – the session has not been initialized or exit() has already

been called.
• OutOfMemoryException – the DRMAA implementation does not have enough free

memory to perform the operation.
• AuthorizationException – the user does not have permission to perform this action.
• InvalidArgumentException – the argument value is invalid.
• InvalidJobTemplateException – the given job template was not created with

createJobTemplate() or has already been deleted .
• InternalException – an error has occurred in the DRMAA implementation.

6.3.6 runJob

The runJob() method SHALL submit a job with attributes defined in the job template given as a
parameter. The returned job identifier SHOULD be a String identical to that returned from the
underlying DRM system. This method MUST only work on JobTemplate instances that were
created with the createJobTemplate() method and have not previously been deleted with the
deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.

string runJob(in JobTemplate jobTemplate)
 raises (TryLaterException,
 DeniedByDrmException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidJobTemplateException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

Parameters

jobTemplate - the job template to be used to create the job.

Returns

drmaa-wg@gridforum.org 25

The runJob() method SHOULD return a job identifier string identical to that returned from the
underlying DRM system.

Exceptions

• TryLaterException – the request could not be processed due to excessive system load.
• DeniedByDrmException – the DRMS rejected the job. The job will never be accepted

due to job template or DRMS configuration settings.
• DrmCommunicationException – unable to communicate with the DRMS.
• InvalidJobTemplateException – the given job template was not created with

createJobTemplate() or has already been deleted.
• AuthorizationException – the user does not have permission to submit jobs.
• NoActiveSessionException – the session has not been initialized or exit() has already

been called.
• OutOfMemoryException – the DRMAA implementation does not have enough free

memory to perform the operation.
• InvalidArgumentException – the argument value is invalid.
• InternalException – an error has occurred in the DRMAA implementation.

6.3.7 runBulkJobs

The runBulkJobs() method SHALL submit a set of parametric jobs, dependent on the implied
loop index, each with attributes defined in the given job template. Each job in the set is identical
except for it's index. The first parametric job has an index equal to beginIndex. The next job
has an index equal to beginIndex + step, and so on. The last job has an index equal to
beginIndex + n * step, where n is equal to (endIndex – beginIndex) / step. Note that the value
of the last job's index may not be equal to endIndex if the difference between beginIndex and
endIndex is not evenly divisble by step. The smallest valid value for beginIndex is 1. The
largest valid value for endIndex is language dependent. The beginIndex value must be less
than or equal to the endIndex value, and only positive index numbers are allowed. The index
number can be determined by the job in an implementation specific fashion. The returned job
identifiers SHOULD be Strings identical to those returned from the underlying DRM system.

The JobTemplate interface defines a PARAMETRIC_INDEX placeholder for use in specifying
paths. This placeholder is used to represent the individual identifiers of the tasks submitted
through this method.

This method MUST only work on JobTemplate instances that were created with the
createJobTemplate() method and have not previously been deleted with the
deleteJobTemplate() method and MUST otherwise throw an InvalidJobTemplateException.
StringList runBulkJobs(in JobTemplate jobTemplate,
 in long beginIndex,
 in long endIndex,
 in long step)
 raises (TryLaterException,
 DeniedByDrmException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidJobTemplateException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

Parameters

jobTemplate - the job template to be used to create the job.

drmaa-wg@gridforum.org 26

beginIndex - the starting value for the loop index.
endIndex - the terminating value for the loop index.
step - the value by which to increment the loop index each iteration.

Returns

The runBulkJobs() method SHOULD return a list of job identifier Strings identical to that
returned by the underlying DRM system

Exceptions

• TryLaterException – the request could not be processed due to excessive system load.
• DeniedByDrmException – the DRMS rejected the job. The job will never be accepted

due to job template or DRMS configuration settings.
• DrmCommunicationException – unable to communicate with the DRMS.
• InvalidJobTemplateException – the given job template was not created with

createJobTemplate() or has already been deleted.
• AuthorizationException – the user does not have permission to submit jobs.
• NoActiveSessionException – the session has not been initialized or exit() has already

been called.
• OutOfMemoryException – the DRMAA implementation does not have enough free

memory to perform the operation.
• InvalidArgumentException – an argument value is invalid.
• InternalException – an error has occurred in the DRMAA implementation.

6.3.8 control

The control() method SHALL to hold, release, suspend, resume, or kill the job identified by
jobName respective to the operation parameter. If this parameter is equal to
JOB_IDS_SESSION_ALL, then this method SHALL act on all jobs submitted during this
DRMAA session up to the moment control() is called. To avoid thread races in multithreaded
applications, the DRMAA implementation user should explicitly synchronize this call with any
other job submission calls or control calls that may change the number of remote jobs.

The legal values for operation and their meanings SHALL be:

• JobControlAction::SUSPEND: stop the job,
• JobControlAction::RESUME: (re)start the job,
• JobControlAction::HOLD: put the job on-hold,
• JobControlAction::RELEASE: release the hold on the job, and
• JobControlAction::TERMINATE: kill the job.

This method SHALL return once the action has been acknowledged by the DRM system, but
MAY return before the action has been completed.

Some DRMAA implementations MAY allow this method to be used to control jobs submitted
external to the DRMAA session, such as jobs submitted by other DRMAA sessions in other
DRMAA implementations or jobs submitted via native utilities.
void control(in string jobName,
 in JobControlAction operation)
 raises (DrmCommunicationException,
 AuthorizationException,
 ResumeInconsistentStateException,
 SuspendInconsistentStateException,
 HoldInconsistentStateException,
 ReleaseInconsistentStateException,
 InvalidJobException,

drmaa-wg@gridforum.org 27

 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

Parameters

jobName - The String id of the job to control.
operation - the control action to be taken.

Exceptions

• DrmCommunicationException – unable to communicate with the DRMS.
• AuthorizationException – the user does not have permission to modify jobs.
• ResumeInconsistentStateException – the job is not in a state from which is can be

resumed.
• SuspendInconsistentStateException – the job is not in a state from which is can be

suspended.
• HoldInconsistentStateException – the job is not in a state from which is can be held.
• ReleaseInconsistentStateException – the job is not in a state from which is can be

released.
• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has already
been called.

• OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

• InvalidArgumentException – an argument value is invalid.

• InternalException – an error has occurred in the DRMAA implementation.

6.3.9 synchronize

This method SHALL wait until all jobs specified by jobList have finished execution. If jobList
contains only JOB_IDS_SESSION_ALL, then this method waits for all jobs submitted during this
DRMAA session up to the moment synchronize() is called. To avoid thread race conditions in
multithreaded applications, the DRMAA implementation user should explicitly synchronize this
call with any other job submission or control calls that may change the number of remote jobs.

To prevent blocking indefinitely in this call, the caller may use a timeout specifying after how
many seconds to block in this call. The constant value TIMEOUT_WAIT_FOREVER may be
specified to wait indefinitely for a result. The constant value TIMEOUT_NO_WAIT may be
specified to return immediately if no result is available. If the call exits before the timeout has
elapsed, all the jobs have been waited on or there was an interrupt. If the invocation exits on
timeout, an ExitTimeoutException SHALL be thrown or a corresponding error code returned if
exceptions aren't supported. The caller should check system time before and after this call in
order to be sure of how much time has passed.

The dispose parameter specifies how to treat the reaping of the remote job's internal data
record, which includes a record of the job's consumption of system resources during its
execution and other statistical information. If set to true, the DRM SHALL dispose of the job's
data record at the end of the synchronize() call. If set to false, the data record SHALL be left
for future access via the wait() method.
void synchronize(in StringList jobList,
 in long long timeout,
 in boolean dispose)
 raises (DrmCommunicationException,

drmaa-wg@gridforum.org 28

 AuthorizationException,
 ExitTimeoutException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

Parameters

jobList - the list of names for the jobs to synchronize.
timeout - the maximum number of seconds to wait.
dispose - specifies how to treat reaping information.

Exceptions

• DrmCommunicationException – unable to communicate with the DRMS.
• AuthorizationException – the user does not have permission to synchronize against

jobs.
• ExitTimeoutException – the call was interrupted before all given jobs finished.
• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has already
been called.

• OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

• InvalidArgumentException – an argument value is invalid.

• InternalException – an error has occurred in the DRMAA implementation.

6.3.10 wait

This method SHALL wait for a job with jobName to finish execution or fail. If
JOB_IDS_SESSION_ANY is provided as the jobName, this method SHALL wait for any job
submitted during this DRMAA session up to the moment wait() is called. This method is
modeled on the wait3 POSIX routine.

The timeout value SHALL be used to specify the desired behavior when a result is not
immediately available. The constant value TIMEOUT_WAIT_FOREVER may be specified to
wait indefinitely for a result. The constant value TIMEOUT_NO_WAIT may be specified to return
immediately if no result is available. Alternatively, a number of seconds may be specified to
indicate how long to wait for a result to become available.

If the call exits before timeout, either the job has been waited on successfully or there was an
interrupt. If the invocation exits on timeout, an ExitTimeoutException SHALL be thrown or a
corresponding error code returned if exceptions aren't supported. The caller should check
system time before and after this call in order to be sure how much time has passed.

The method SHALL reap job data records on a successful call, so any subsequent calls to
wait() SHALL fail, throwing an InvalidJobException, meaning that the job's data record has been
already reaped. This exception is the same as if the job were unknown. (The only case where
wait() MAY be successfully called on a single job more than once is when the previous call to
wait() timed out before the job finished.)

When successful, the resource usage information for the job SHALL be provided as a
Dictionary of usage parameter names and their values in the returned job info. The values
contain the amount of resources consumed by the job and are implementation defined.

drmaa-wg@gridforum.org 29

JobInfo wait(in string jobName,
 in long long timeout)
 raises (DrmCommunicationException,
 AuthorizationException,
 NoResourceUsageException,
 ExitTimeoutException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

Parameters

jobName - the id of the job for which to wait.
timeout - the maximum number of seconds to wait.

Returns

This method SHALL return the resource usage and status information as JobInfo object.

 Exceptions

• DrmCommunicationException – unable to communicate with the DRMS.
• AuthorizationException – the user does not have permission to wait for a job.
• NoResourceUsageDataException – the resource usage information for the given job is

unavailable.
• ExitTimeoutException – the call was interrupted before the given job finished.
• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has already
been called.

• OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

• InvalidArgumentException – an argument value is invalid.

• InternalException – an error has occurred in the DRMAA implementation.

6.3.11 jobProgramStatus

The jobProgramStatus() method SHALL return the program status of the job identified by
jobName. The possible values returned from this method are:

• JobProgramState:UNDETERMINED: process status cannot be determined,
• JobProgramState:QUEUED_ACTIVE: job is queued and active,
• JobProgramState:SYSTEM_ON_HOLD: job is queued and in system hold,
• JobProgramState:USER_ON_HOLD: job is queued and in user hold,
• JobProgramState:USER_SYSTEM_ON_HOLD: job is queued and in user and system

hold,
• JobProgramState:RUNNING: job is running,
• JobProgramState:SYSTEM_SUSPENDED: job is system suspended,
• JobProgramState:USER_SUSPENDED: job is user suspended,
• JobProgramState:USER__SYSTEM_SUSPENDED: job is user and system suspended,
• JobProgramState:DONE: job finished normally, and
• JobProgramState:FAILED: job finished, but failed.

drmaa-wg@gridforum.org 30

The DRMAA implementation MUST always get the status of the job from the DRM system
unless the status has already been determined to be FAILED or DONE and the status has been
successfully cached. Terminated jobs SHALL return a FAILED status.
JobProgramState jobProgramStatus(in string jobName)
 raises (DrmCommunicationException,
 AuthorizationException,
 InvalidJobException,
 NoActiveSessionException,
 OutOfMemoryException,
 InvalidArgumentException,
 InternalException);

Parameters

jobName - the id of the job whose status is to be retrieved.

Returns

The jobProgramStatus() method SHALL return the program status.

Exceptions

• DrmCommunicationException – unable to communicate with the DRMS.
• AuthorizationException – the user does not have permission to query for a job's status.
• InvalidJobException – the job id does not represent a valid job.

• NoActiveSessionException – the session has not been initialized or exit() has already
been called.

• OutOfMemoryException – the DRMAA implementation does not have enough free
memory to perform the operation.

• InvalidArgumentException – an argument value is invalid.

• InternalException – an error has occurred in the DRMAA implementation.

6.3.12 contact

If this attribute is read before the first call to the init() method, then it SHALL return a string
containing a comma-delimited list of default DRMAA implementation contacts strings, one per
DRM implementation provided. If the value of the attribute is queried after a successful call to
init(), this attribute SHALL contain the contact String for the DRM system to which the session is
attached. The returned Strings are always implementation dependent.

readonly attribute string contact;

6.3.13 version

This attribute SHALL contain a Version object containing the major and minor version numbers
of the DRMAA library. This attribute may not be read before init() has been called.

readonly attribute Version version;

6.3.14 drmsInfo

drmaa-wg@gridforum.org 31

If the value of this attribute is read before the first successful call to the init() method, this
attribute SHALL return a string containing a comma-delimited list of DRM system identifiers,
one per DRM system implementation provided. If the value is read after init(), this attribute
SHALL contain the selected DRM system. The returned Strings are implementation dependent.

readonly attribute string drmsInfo;

6.3.15 drmaaImplementation

If the value of this attribute is read before the first successful call to init(), this attribute SHALL
return a string containing a comma-delimited list of DRMAA implementations, one per DRMAA
implementation provided. If read after init(), this attribute SHALL contain the selected DRMAA
implementation. The returned Strings are implementation dependent and MAY contain the DRM
system as a component.

readonly attribute string drmaaImplementation;

6.4 SessionFactory interface

In order to enable an object-oriented language binding implementation to be supported by
multiple different vendors, a factory interface is needed to allow a DRMAA application to retrieve
a vendor specific implementation of the Session interface. The SessionFactory interface serves
this purpose and additionally allows the vendor the freedom to return different Session
implementations depending on the need.

interface SessionFactory{

Session getSession();
}

The creation of an object that implements the SessionFactory interface is language-binding
dependent. If the programming language supports the concept of static methods, then the
SessionFactory interface SHOULD be extended by a parameterless, static method
getFactory(), which returns a DRM-related object instance for the SessionFactory interface.

It is likely that with a future version of this specification, the SessionFactory interface will be
expanded to included a method to explicitly request a specific service provider implementation,
or it will be replaced with a form of driver architecture.

6.4.1 getSession

The getSession() method SHALL return a Session object appropriate to this SessionFactory
instance. If the SessionFactory instance is capable of producing more than one type of Session
object, which type will be returned is implementation dependent.

Session getSession()
 raises ();

Returns

The getSession() method SHALL return a Session object.

Comment [PT9]: In OO world this
should be a StringList type instead.
Same for the other attributes that
return comma-separated strings. We
could also split up the functionality
before and after init() in two attributes.

Comment [DT10]: We need to talk
about this.

drmaa-wg@gridforum.org 32

7 Annex

7.1 Complete IDL interface

valuetype StringList sequence<string>;
valuetype Dictionary sequence< sequence<string,2> >;

module DRMAA{
 // API part
 enum JobControlAction {
 SUSPEND,
 RESUME,
 HOLD,
 RELEASE,
 TERMINATE };

 enum JobProgramState {
 UNDETERMINED,
 QUEUED_ACTIVE,
 SYSTEM_ON_HOLD,
 USER_ON_HOLD,
 USER_SYSTEM_ON_HOLD,
 RUNNING,
 SYSTEM_SUSPENDED,
 USER_SUSPENDED,
 USER_SYSTEM_SUSPENDED,
 DONE,
 FAILED };

 enum JobSubmissionState {
 HOLD_STATE,
 ACTIVE_STATE };

 valuetype FileTransferMode {
 attribute boolean inputStream;
 attribute boolean outputStream;
 attribute boolean errorStream;
 factory FileTransferMode();
 factory FileTransferMode(
 in boolean inputStream,
 in boolean outputStream,
 in boolean errorStream); };

 valuetype Version {
 readonly attribute long major;
 readonly attribute long minor;
 factory Version(in long major, in long minor); };

 exception AuthorizationException {
 string message; };
 exception InvalidContactStringException {
 string message; };
 exception DefaultContactStringException {
 string message; };
 exception NoDefaultContactStringSelectedException {
 string message; };
 exception DeniedByDrmException {

drmaa-wg@gridforum.org 33

 string message; };
 exception DrmCommunicationException {
 string message; };
 exception DrmsExitException {
 string message; };
 exception HoldInconsistentStateException {
 string message; };
 exception ReleaseInconsistentStateException {
 string message; };
 exception ResumeInconsistentStateException {
 string message; };
 exception SuspendInconsistentStateException {
 string message; };
 exception DrmsInitException {
 string message; };
 exception InvalidArgumentException {
 string message; };
 exception InvalidJobException {
 string message; };
 exception ConflictingAttributeValuesException {
 string message; };
 exception InvalidAttributeFormatException {
 string message; };
 exception InvalidAttributeValueException {
 string message; };
 exception NoResourceUsageException {
 string message; };
 exception ExitTimeoutException {
 string message; };
 exception NoActiveSessionException {
 string message; };
 exception AlreadyActiveSessionException {
 string message; };
 exception TryLaterException {
 string message; };
 exception InternalException {
 string message; };
 exception OutOfMemoryException {
 string message; };
 exception UnsupportedAttributeException {
 string message; };
 exception InvalidJobTemplateException {
 string message; };

 native PartialTimestamp;

 // SPI part
 interface JobInfo {
 readonly attribute string jobId;
 readonly attribute Dictionary resourceUsage;
 readonly attribute boolean exited;
 readonly attribute long exitStatus;
 readonly attribute boolean signaled;
 readonly attribute string terminatingSignal;
 readonly attribute boolean coreDump;
 readonly attribute boolean aborted; };

 interface JobTemplate{
 const string HOME_DIRECTORY = "$drmaa_hd_ph$";

drmaa-wg@gridforum.org 34

 const string WORKING_DIRECTORY = "$drmaa_wd_ph$";
 const string PARAMETRIC_INDEX = "$drmaa_incr_ph$";

 attribute string remoteCommand;
 attribute StringList args;
 attribute JobSubmissionState jobSubmissionState;
 attribute Dictionary jobEnvironment;
 attribute string workingDirectory;
 attribute string jobCategory;
 attribute string nativeSpecification;
 attribute StringList email;
 attribute boolean blockEmail;
 attribute PartialTimestamp startTime;
 attribute string jobName;
 attribute string inputPath;
 attribute string outputPath;
 attribute string errorPath;
 attribute boolean joinFiles;
 attribute FileTransferMode transferFiles;
 attribute PartialTimestamp deadlineTime;
 attribute long long hardWallclockTimeLimit;
 attribute long long softWallClockTimeLimit;
 attribute long long hardRunDurationLimit;
 attribute long long softRunDurationLimit;

 StringList getAttributeNames();
 };

 interface Session{
 const long long TIMEOUT_WAIT_FOREVER = -1;
 const long long TIMEOUT_NO_WAIT = 0;
 const string JOB_IDS_SESSION_ANY =
 "DRMAA_JOB_IDS_SESSION_ANY";
 const string JOB_IDS_SESSION_ALL =
 "DRMAA_JOB_IDS_SESSION_ALL";

 readonly attribute string contact;
 readonly attribute Version version;
 readonly attribute string drmsInfo;
 readonly attribute string drmaaImplementation;

 void init(in string contactString)
 raises (DrmsInitException,
 InvalidContactStringException,
 AlreadyActiveSessionException,
 DefaultContactStringException,
 NoDefaultContactStringSelectedException,
 OutOfMemoryException,
 InternalException);

 void exit()
 raises (DrmsExitException,
 NoActiveSessionException,
 InternalException);

 JobTemplate createJobTemplate()
 raises (DrmCommunicationException,
 OutOfMemoryException,
 InternalException);

drmaa-wg@gridforum.org 35

 void deleteJobTemplate(in JobTemplate jobTemplate)
 raises (DrmCommunicationException,
 InvalidJobTemplateException,
 InternalException);

 string runJob(in JobTemplate jobTemplate)
 raises (TryLaterException,
 DeniedByDrmException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidJobTemplateException,
 InternalException);

 StringList runBulkJobs(in JobTemplate jobTemplate,
 in long beginIndex,
 in long endIndex,
 in long step)
 raises (TryLaterException,
 DeniedByDrmException,
 DrmCommunicationException,
 AuthorizationException,
 InvalidJobTemplateException,
 InternalException);

 void control(in string jobName,
 in JobControlAction operation)
 raises (DrmCommunicationException,
 AuthorizationException,
 ResumeInconsistentStateException,
 SuspendInconsistentStateException,
 HoldInconsistentStateException,
 ReleaseInconsistentStateException,
 InvalidJobException,
 InternalException);

 void synchronize(in StringList jobList,
 in long long timeout,
 in boolean dispose)
 raises (DrmCommunicationException,
 AuthorizationException,
 InvalidJobException,
 ExitTimeoutException,
 InternalException);

 JobInfo wait(in string jobName,
 in long long timeout)
 raises (DrmCommunicationException,
 AuthorizationException,
 NoResourceUsageException,
 ExitTimeoutException,
 InvalidJobException,
 InternalException);

 JobProgramState jobProgramStatus(in string jobName)
 raises (DrmCommunicationException,
 AuthorizationException,
 InvalidJobException,
 InternalException);

drmaa-wg@gridforum.org 36

 };

 interface SessionFactory{
 Session getSession(); };
};

7.2 Correlation of DRMAA error codes and exceptions

The following table shows how the error codes defined in the Distributed Resource
Management Application API Specification 1.0, correlated to the exceptions in this specification.

Error Code Name (DRMAA_ERRNO_...) Exception Name

SUCCESS none

INTERNAL_ERROR InternalException

DRM_COMMUNICATION_FAILURE DrmCommunicationException

AUTH_FAILURE AuthorizationException

INVALID_ARGUMENT InvalidArgumentException

NO_ACTIVE_SESSION NoActiveSessionException

NO_MEMORY OutOfMemoryException

INVALID_CONTACT_STRING InvalidContactStringException

DEFAULT_CONTACT_STRING_ERROR DefaultContactStringException

DRMS_INIT_FAILED DrmsInitException

ALREADY_ACTIVE_SESSION AlreadyActiveSessionException

DRMS_EXIT_ERROR DrmsExitException

INVALID_ATTRIBUTE_FORMAT InvalidAttributeFormatException

INVALID_ATTRIBUTE_VALUE InvalidAttributeValueException

CONFLICTING_ATTRIBUTE_VALUES ConflictingAttributeValuesException

TRY_LATER TryLaterException

DENIED_BY_DRM DeniedByDrmException

INVALID_JOB InvalidJobException

RESUME_INCONSISTENT_STATE ResumeInconsistentStateException

SUSPEND_INCONSISTENT_STATE SuspendInconsistentStateException

drmaa-wg@gridforum.org 37

Error Code Name (DRMAA_ERRNO_...) Exception Name

HOLD_INCONSISTENT_STATE HoldInconsistentStateException

RELEASE_INCONSISTENT_STATE ReleaseInconsistentStateException

EXIT_TIMEOUT ExitTimeoutException

NO_RUSAGE NoResourceUsageException

none InvalidJobTemplateException

none UnsupportedAttributeException

The DRMAA_ERRNO_SUCCESS code clearly does not need to be represented as an
exception. The object-oriented binding specification introduces two new exceptions which have
no error code correlatives. The InvalidJobTemplateException is used to indicate that the job
template object currently being used is not valid. This may be, for example, because it has
already been deleted via Session::deleteJobTemplate(). The UnsupportedAttributeException is
used to indicated that for the current DRMAA implementation the accessed property of a job
template is unsupported.

7.3 Correlation of DRMAA and OO job template attributes

The following table shows the relation between DRMAA attribute names and the attribute
names used in this document.

DRMAA Attribute OO Property

drmaa_remote_command remoteCommand

drmaa_v_argv args

drmaa_js_state jobSubmissionState

drmaa_v_env jobEnvironment

drmaa_wd workingDirectory

drmaa_job_category jobCategory

drmaa_native_specification nativeSpecification

drmaa_v_email email

drmaa_block_email BlockEmail

drmaa_start_time startTime

drmaa_job_name jobName

drmaa-wg@gridforum.org 38

DRMAA Attribute OO Property

drmaa_input_path inputPath

drmaa_output_path outputPath

drmaa_error_path errorPath

drmaa_join_files joinFiles

drmaa_transfer_files transferFiles

drmaa_deadline_time deadlineTime

drmaa_wct_hlimit hardWallclockTimeLimit

drmaa_wct_slimit softWallclockTimeLimit

drmaa_run_duration_hlimit hardRunDurationLimit

drmaa_run_duration_slimit softRunDurationLimit

8 Security Considerations

Security issues are not discussed in this document. The scheduling scenario described here
assumes that security is handled at the point of job authorization/execution on a particular
resource.

9 References

[OMG IDL] Object Management Group. Common Object Request Broker Architecture: Core

Specification, Chapter 3, March 2004
[RFC 2119] S. Bradner. RFC 2119 – Key words for use in RFCs to Indicate Requirement

Levels, March 1997

10 Author Information

Daniel Templeton
dan.templeton@sun.com
Sun Microsystems GmbH
Dr.-Leo-Ritter-Str. 7
D-93049 Regensburg
Germany

Peter Tröger
peter.troeger@hpi.uni-potsdam.de
Hasso-Plattner-Institute, University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam
Germany

drmaa-wg@gridforum.org 39

11 Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this specification can be obtained
from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

12 Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and
derivative works. However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the GGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures for
copyrights defined in the GGF Document process must be followed, or as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

