Distributed Resource Management Application API (DRMAA) Working Group

DRMAA Proposed Recommendation Document 1.0

Cochairs

John Tollefsrud [j.t@sun.com], Sun Microsystems Hrabri Rajic [hrabri.rajic@intel.com], Intel

GGF8

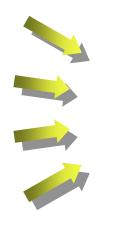
Seattle, WA USA June, 2003

"This is one boring spec"

- Charlie Catlett, Opening Plenary, GGF8

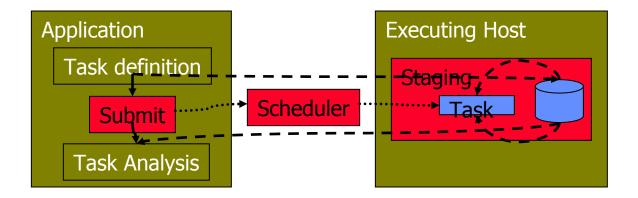
Agenda

Introduction to DRMAAJohn TollefsrudThe DRMAA 1.0 specificationHrabri RajicDRMAA adoptionInterference


- Altair Engineering/PBS GridIron Software enFusion Intel Sun Microsystems
- United Devices
- Q&A

Bill Nitzberg Steve Forde <Hrabri Rajic> Hrabri Rajic John Tollefsrud Jikku Venkat

Distributed Resource Management (DRM) Systems


- Batch/job management systems
- Local Job schedulers
- Queuing systems
- Workload
 management systems

Resource Management Systems Differ

- Core services are highly similar
 - especially from the users perspective
- DRM programming interfaces differ
 ISV/a are disinglined to use
 - ISVs are disinclined to use

Why DRMAA?

Adoption of distributed computing solutions in industry is widespread in industries dominated by software from Independent Software Vendors (ISVs)

Sector	% Revenue in 2005
Manufacturing (includes Auto, Aero, EDA, etc.)	45%
Life Sciences	15%
Financial	10%
Extraction (Oil/Gas/Mining)	8.0%
Chemistry/Chemical	6.0%
Telecommunications	5.0%
Other (CRM, Supply Chain, gaming, etc.)	11%
Clobal Grid Comp	uting Poport 2002

Global Grid Computing Report 2002 Technology Computing Partners

Why DRMAA?

- Distributed computing deployments in industry can be characterized as widespread and yet 'early adopter'
 - Direct interfacing of ISV apps to DRM systems is not the norm
 End users script command-line integrations
- •Fundamental improvements in the adoption pattern requires shifting the DRM integration to the ISV

The DRMAA goal

Create a well-considered DRM component interface to facilitate distributed computing deployments

DRMAA WG Charter

- Develop an API specification for the submission and control of jobs to one or more Distributed Resource Management (DRM) systems.
- The scope of this specification is all the high level functionality which is necessary for an application to consign a job to a DRM system including common operations on jobs like termination or suspension.
- The objective is to facilitate the direct interfacing of applications to today's DRM systems by application's builders, portal builders, and Independent Software Vendors (ISVs).

DRMAA Working Group

DRMAA discussed at DRMAA BOF, GGF3, Oct 2001

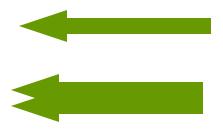
- Presentation and discussion on two first-draft proposals
 - -Hrabri Rajic, Intel
 - -Andreas Haas, Sun Microsystems
- WG status subsequently granted by GGF Steering Committee

Much committee work to integrate the proposals!

- Multiple working sessions at GGF4 GGF7
- Weekly and Biweekly con calls
- Editors from Cadence, IBM, Intel, Robarts Res. Inst, Sun, Veridian Systems/PBS
- Other contributors from Argonne, HP, NASA, Platform Computing, United Devices, USC, others

DRMAA v.1 document public comment period completed The current WG focus is a DRMAA C binding doc

Agenda


Introduction to DRMAA John Tollefsrud The DRMAA 1.0 specification Hrabri Rajic **DRMAA** adoption Altair Engineering/PBS **Bill Nitzberg GridIron Software** Steve Forde <hr/>
<hr/>
Hrabri Rajic> enFusion Hrabri Rajic Intel John Tollefsrud Sun Microsystems **United Devices** Jikku Venkat Q&A

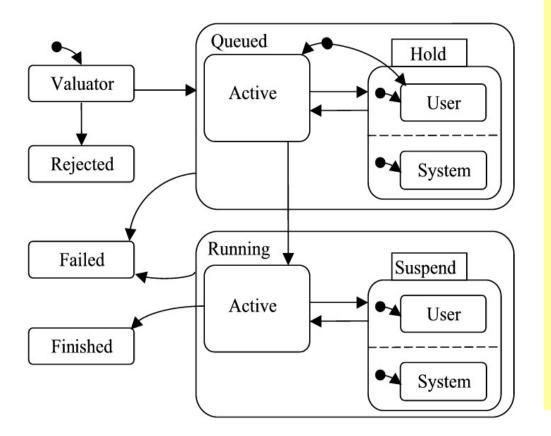
Scope: Run a Job API

(Steps from: Ten Actions when SuperScheduling", GGF SchedWD 8.5, J.M. Schopf, July 2001)

- Phase 1: Resource Discovery
 - Step 1 Authorization Filtering
 - Step 2 Application requirement definition
 - Step 3 Minimal requirement filtering
- Phase 2 System Selection
 - Step 4 Gathering information (query)
 - Step 5 Select the system(s) to run on
- Phase 3 Run job
 - Step 6 (optional) Make an advance reservation
 - Step 7 Submit job to resources
 - Step 8 Preparation Tasks
 - Step 9 Monitor progress (maybe go back to 4)
 - Step 10 Find out Job is done
 - Step 11 Completion tasks

C Implementation requirements

C-API library interface - no protocol


- Simplifies utilization by ISV
- Not transactional
- Object oriented wrappers/classes specification in the works

Shared library binding

- Prerequisite to allow end user to select DRM technology of their choice
- One session at the time
- Library supports only one DRM system per implementation
 - Simultaneous support of different DRM systems is beyond the scope of our project

DRMAA State Diagram

The remote job could be in following states:

- system hold
- user hold
- system and user hold simultaneously
- queued active
- system suspended
- user suspended
- system and user suspended simultaneously
- running
- finished (un)successfully

DRMAA Job Attributes

Mandatory job attributes:

- Remote command to execute
- Remote command input parameters, a vector parameter
- Job state at submission
- Job environment, a vector parameter
- Job working directory
- Job category
- Native specification
- Standard input, output, and error streams
- E-mail distribution list to report the job completion and status, a vector parameter
- E-mail suppression
- Job start time
- Job name to be used for the job submission

Optional job attributes:

- transfer files
- absolute job termination time
- wall clock time limit
- soft wall clock time limit
- job run duration hlimit
- job run duration slimit

API groups

- Init/exit
- Job template interfaces
 - Allocate/delete
 - Setter/getter job template routines
- Job submit
 - Individual jobs
 - One time
 - Multiple times templates (version 2)
 - Bulk jobs, implicit parameterization
- Job monitoring and control
- Auxiliary or system routines
 - Error message routine
 - Informational interfaces

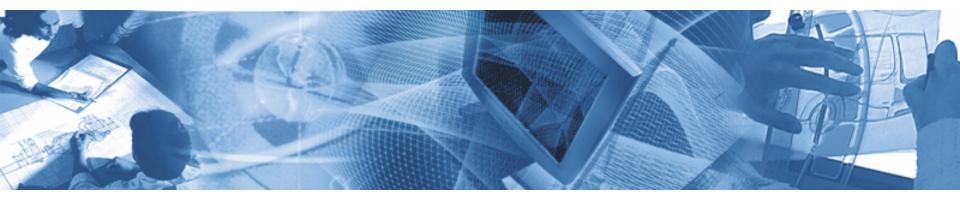
Site specific requirements

- Application Developers and DRMS vendors are not involved in the local environment specification
 - Execution policies
 - Physical environment

Two hierarchical mechanisms

- Job categories
 - Vendor determines the name and application parameter guidelines
 - Administrators, installation people
- Native specification
 - Opaque string that DRMAA impl. resolves
 - The burden is on the end users to define the execution environment
 - Need to know DRM
 - Need to know the remote application installation

DRMAA Adoption


Introduction to DRMAA The DRMAA 1.0 document **DRMAA** adoption Altair Engineering/PBS **GridIron Software** enFusion Intel Sun Microsystems **United Devices** Q&A

John Tollefsrud Hrabri Rajic

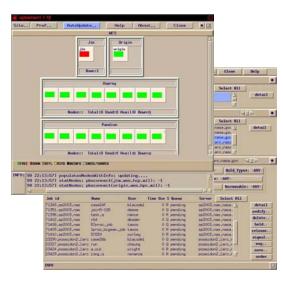
Bill Nitzberg Steve Forde <Hrabri Rajic> Hrabri Rajic John Tollefsrud Jikku Venkat

PBS Pro & DRMAA

Bill Nitzberg, CTO, Altair Grid Technologies

June 2003

Who is Altair?


- Product development, consulting and software technology company
 - Founded in 1985
 - 2,000+ Clients
 - Offices in 10 Countries
 - Worldwide Customer Base

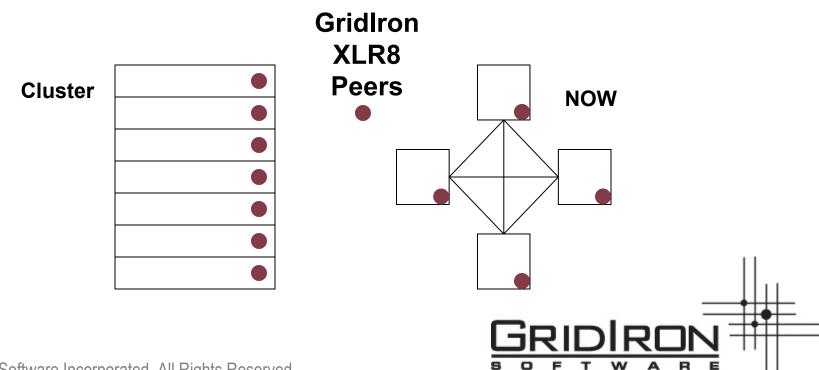
Tokyo, Japan	Bangalore, India	Torino, Italy	Stuttgart, Germany
Austin, USA	Shanghai, China	Lund, Sweden	Boston, USA
London, UK	Los Angeles, USA	Toronto, Canada	Lecce, Italy
München, Germany	Paris, France	Detroit, USA	Milwaukee, USA

PBS Pro - The Portable Batch System

Flexible workload management and job scheduler

- Desktops → Clusters → Datacenters → Multi-site Grids
 –UNIX, Windows, Linux, … && Serial, SMP, MPI, …
- Peer Scheduling, Cycle Harvesting
- Advance reservations, File staging, X.509 certs
- Front & back-end to The Globus Toolkit™
- Fully configurable scheduler module
- Detailed accounting
- GUIs, High Availability, ACLs
- POSIX 1003.2d compliant

DRMAA

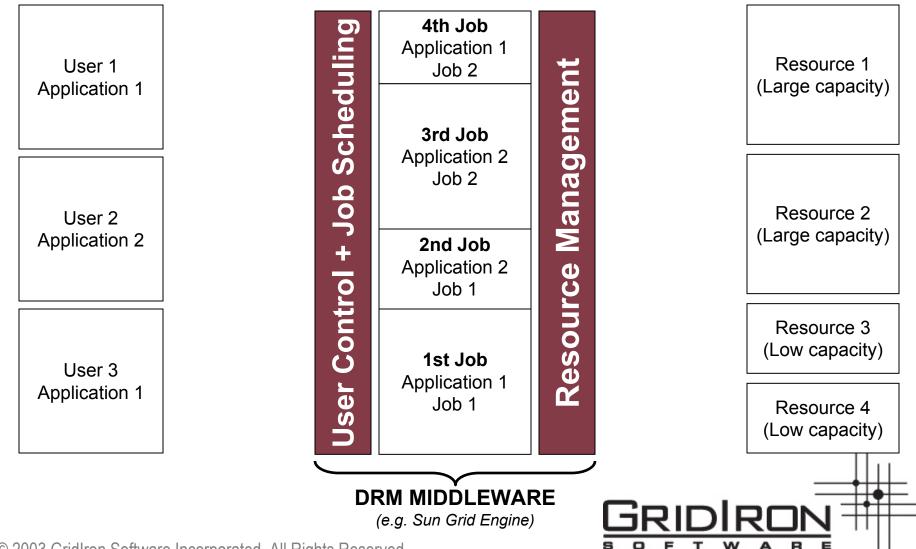

- Supports early "gridification" of commercial applications
- Altair is one of the DRMAA v1.0 authors
- We are committed to fostering & supporting GGF standards

www.pbspro.com

GridIron XLR8 - Context


Digital Content Creation Applications

GridIron XLR8 Parallel API's



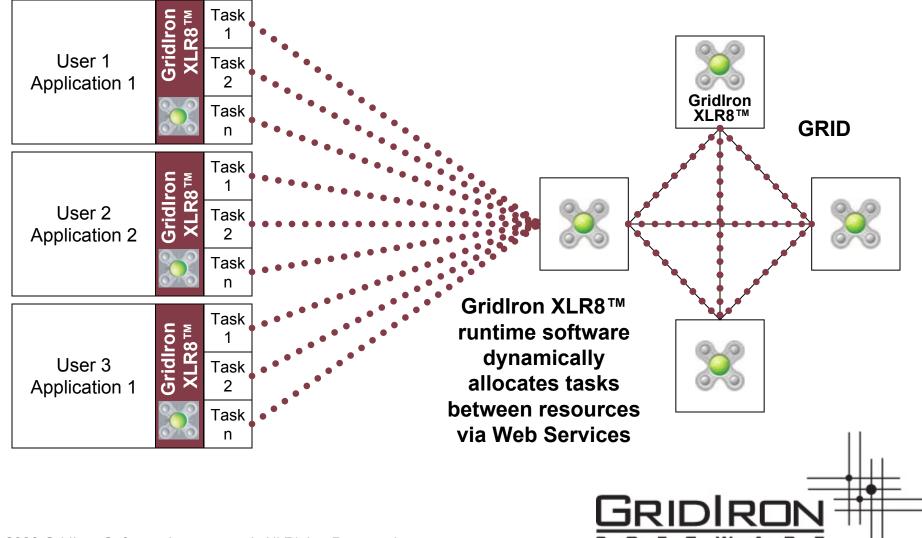
© 2003 GridIron Software Incorporated, All Rights Reserved

Scripted Distribution

Scripted Distribution

© 2003 GridIron Software Incorporated, All Rights Reserved

Scripted Distribution


PROs

- No code modification required
- User control
- Resource management

CONs

- Only scriptable applications
- Large jobs can only run as fast as the fastest resource
- Only efficient with a large queue (many jobs)
- Requires installation of application on each resource

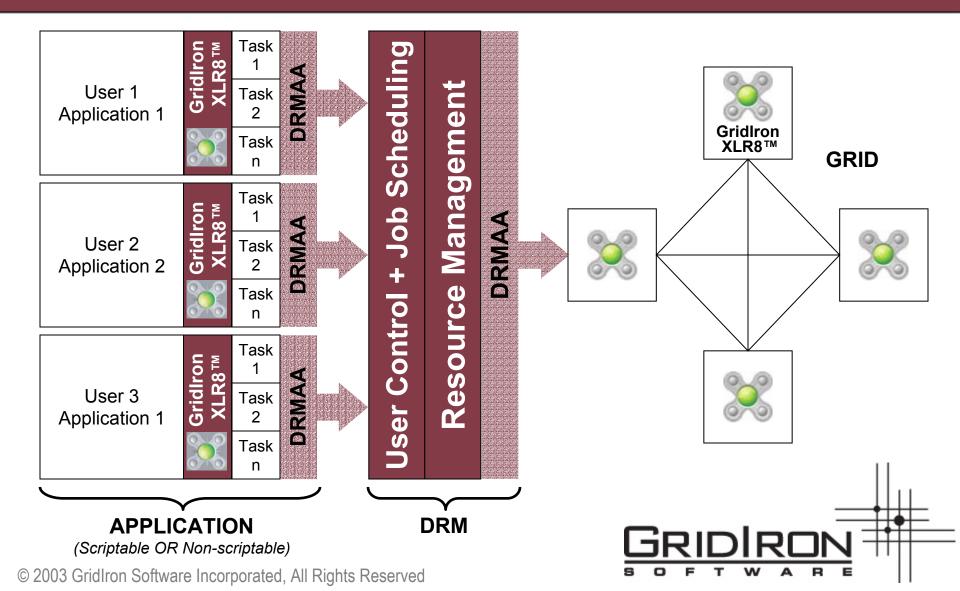
Programmatic Distribution

© 2003 GridIron Software Incorporated, All Rights Reserved

Programmatic Distribution

PROs

- Scriptable and nonscriptable applications
- User autonomy
- Zero configuration, zero administration runtime environment
- Effective with few jobs and/or few/small resources
- Thin runtime client


© 2003 GridIron Software Incorporated, All Rights Reserved

CONs

- Limited user control and resource management
- Requires code modification

DRMAA

The Best of Both Worlds

	Batch Queue	Parallel Programming	DRMAA
Scriptable applications	\checkmark	\checkmark	\checkmark
Non-scriptable applications	×	\checkmark	\checkmark
User administration and resource control	\checkmark	×	\checkmark
User independence and autonomic resource management	×	\checkmark	\checkmark
User to resource optimization (many jobs to many resources)	\checkmark	×	\checkmark
Big jobs on small resources	×	\checkmark	\checkmark
Few jobs on many resources	×	\checkmark	\checkmark
Thin runtime client Š application not required on resources	×	\checkmark	\checkmark

© 2003 GridIron Software Incorporated, All Rights Reserved

Summary

- DRMAA allows synergistic integration of batch queue scriptable and programmatic solutions, e.g.
 Sun ONE Grid Engine and GridIron XLR8™
- Delivers the best of both worlds:
 - Scriptable and non-scriptable applications
 - User control and resource management
 - User autonomy
 - Zero configuration autonomic runtime environment
 - Many-to-many job to resource optimization
 - Few/large jobs to few/small resources
 - Thin client runtime software

Steve Forde CTO/President GridIron Software Inc. sforde@gridironsoftware.com

© 2003 GridIron Software Incorporated, All Rights Reserved

EnFuzion From axceleon

The high performance distributed computing solution optimized for parametric studies

GGF8 DRMAA DISCUSSION...

- Axceleon's EnFuzion is the high performance distributed computing solution optimized for parametric studies
- Axceleon views DRMAA as a very important enabling technology
- DRMAA will enable developers to utilize the power of computational grids in a wide range of environments.
- Axceleon supports the DRMAA standardization activity and is planning to implement DRMAA in its EnFuzion product.

DRMAA at Intel

Hrabri Rajic

- Intel is one of the founders of the GGF DRMAA Working Group.
- One DRMAA co-chair is from Intel.
- Intel actively contributes to DRMAA documents.
- Intel talks to ISVs about DRMAA.
- Intel is backing and participating in DRMAA activities.

DRMAA adoption at Sun Microsystems

John Tollefsrud j.t@sun.com

Grid Computing at Sun

Cluster Grids Departmental Computing

- Simplest Grid deployment
- Maximum utilization of departmental resources
- Resources allocated based on priorities

Enterprise Grids Enterprise Computing

- Enterprise resource sharing
- Policy driven
- Gives multiple groups seamless access to enterprise resources

Global Grids Internet Computing

- Resource sharing over the Internet
- Global view of distributed datasets
- Built on Cluster Grids and Enterprise Grids

John Tollefsrud

Grid Engine software

Sun ONE Grid Engine

- Queuing, prioritizing, scheduling
- Solaris Sparc, Solaris X86, Linux
- Free download from the Sun Download Center

Sun ONE Grid Engine, Enterprise Edition

- Equitable, enforceable sharing between groups and projects
- Alignment of resources with business goals via policies
- Solaris Sparc, Solaris X86, Linux

Grid Engine Open Source Project

•500,000+ lines of source code

.Binaries: Solaris, Linux, AIX, HP/ux, IRIX, Tru64

.User and developer community aliases

.SISSL source license

.Code basis for S1GE/EE

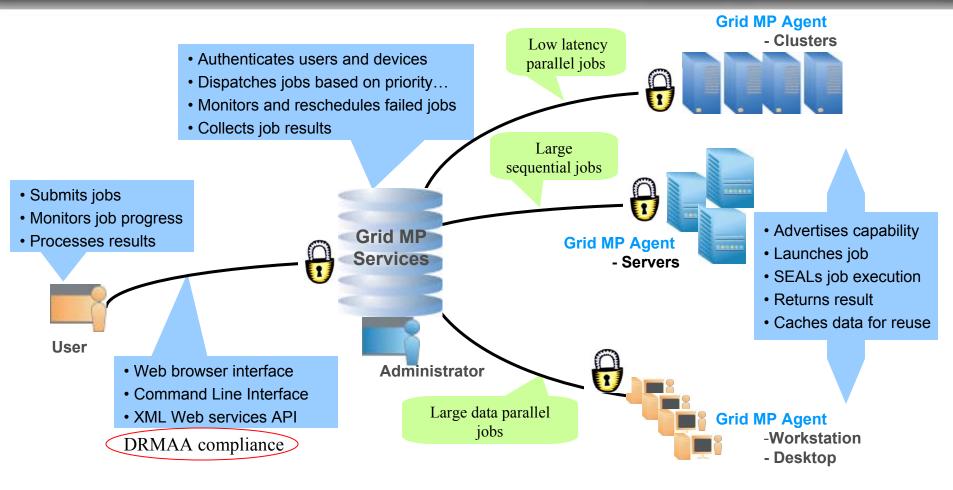
www.gridengine.sunsource.net

Planned Grid Engine DRMAA support

DRMAA 1.0 spec C binding

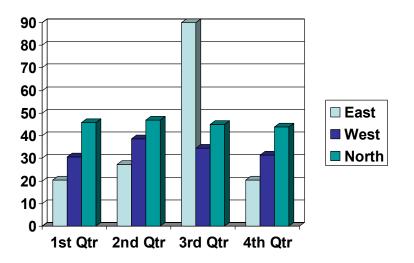
Grid Engine Project

- DRMAA implementation source stable snapshot on current SGE 5.3
- DRMAA test-client source
 Summer 2003


Sun ONE Grid Engine

• Support in SGE/EE 6.0

Release date tbd


How Grid MP^(*) Works

UD and DRMAA

- UD customers and partners will benefit from DRMAA
 - Protects their investment in developing application scripts and application utilities
 - Provides a common job submission layer in a heterogeneous environment – multiple DRMs
- UD supports the DRMAA specification
- Will comply with the standard in a future release of the Grid MP

DRMAA Q&A

Introduction to DRMAA The DRMAA 1.0 document DRMAA adoption Altair Engineering/PBS GridIron Software

enFusion

Sun Microsystems

United Devices

Intel

Q&A

John Tollefsrud Hrabri Rajic

Bill Nitzberg Steve Forde <Hrabri Rajic> Hrabri Rajic John Tollefsrud Jikku Venkat

