
DRMAA: Distributed Resource
Management Application API

Peter Tröger,
Hasso-Plattner-Institute (HPI) @ University of Potsdam

GGF 14 DRMAA session

Chicago, June 28, 2005

DRMAA GGF14 Chicago, June 28, 2005 2

Agenda

• First things first
– GGF IP

– Sign-up sheet

– Note takers

• DRMAA introduction

• Status of the DRMAA implementations

• Status of the DRMAA documents

• Open floor, open issues

DRMAA GGF14 Chicago, June 28, 2005 3

Scope: Run a Job API
(Steps from: Ten Actions when SuperScheduling”, GGF SchedWD 8.5, J.M. Schopf, July 2001)

• Phase 1: Resource Discovery
– Step 1 Authorization Filtering
– Step 2 Application requirement definition
– Step 3 Minimal requirement filtering

• Phase 2 System Selection
– Step 4 Gathering information (query)
– Step 5 Select the system(s) to run on

• Phase 3 Run job
– Step 6 (optional) Make an advance reservation
– Step 7 Submit job to resources
– Step 8 Preparation Tasks
– Step 9 Monitor progress (maybe go back to 4)
– Step 10 Find out Job is done
– Step 11 Completion tasks

DRMAA GGF14 Chicago, June 28, 2005 4

Resource Management Systems Differ Across
Each Component

Unix only
System: Remote initialized, with
SGE local variables exported

GDI API Interface plus

Command line interfaceGrid Engine

Unix
Windows

User: Remote initializedProprietary API.DataSynapse

Unix Windows
System: Remote initialized, with
PBS local variables exported

API (script option)

Batch Utilities via “PBS
Scripts”

PBS

Unix /
Windows

User: Local disk exported

System: Remote initialized
(option)

Has API plus Batch
Utilities via “LSF Scripts”LSF

Platform MixExecution EnvironmentInterface Format

Application

Scheduler

Task Definition

Submit

Task Monitoring

Executing Host

Staging

Task

DRMAA GGF14 Chicago, June 28, 2005 5

DRMAA Charter

• Develop an API specification for the submission
and control of jobs to one or more Distributed
Resource Management (DRM) systems.

• The scope of this specification is all the high level
functionality which is necessary for an application to
consign a job to a DRM system including common
operations on jobs like termination or suspension.

• The objective is to facilitate the direct interfacing
of applications to today's DRM systems by
application's builders, portal builders, and
Independent Software Vendors (ISVs).

DRMAA GGF14 Chicago, June 28, 2005 6

DRMAA History

• BOF at GGF 3 in Frascati, Oct 2001
• WG status at GGF 4, Toronto, February 2002

• Participation from Altair (PBS), Sun Microsystems
(SGE), Intel, IBM (LoadLeveler), University of
Wisconsin (Condor), Cadence (Rocks system),
Globus project

• Sideline engagement from EnFuzion, Entropia,
Platform (LSF), GridIron project, United Devices

• June 2004: DRMAA 1.0 document accepted as
proposed recommendation by GFSC

DRMAA GGF14 Chicago, June 28, 2005 7

• General features
– Session concept
– Asynchronous job

monitoring
– Scalability
– Native features

• Language bindings
– C/C++
– Perl, Python
– Fortran, Java

• Libraries
– Serial / thread safe

– Tracing / diagnosis

• Advanced features
– Debugging support

– File staging

– Security

– Job categories

What have been the Issues?

Submit, control & monitor, and query status of jobs

DRMAA GGF14 Chicago, June 28, 2005 8

DRMAA API Function Groups

• Init / Exit
• Job template handling

– Allocation / Deletion
– Job template parameter setter/getter routines

• Job submission
– Individual jobs

—One time
—Multiple times – just re-adjust the job template (parameter sweep)

– Bulk jobs - implicit parameterization

• Job monitoring and control
• Auxiliary or system routines

– Error message routines
– Informational interfaces

DRMAA GGF14 Chicago, June 28, 2005 9

Job Template

• Description of all job requirements / parameters
• Mandatory and optional parameters
• Same intention as JSDL, but designed as ‘smallest

common denominator’ between possible backend’s
• Functions to create/delete job templates

– job_template *drmaa_allocate_job_template (void)
– void drmaa_delete_job_template (job_template *jt)

• Setter/getter job template routines
– int drmaa_set_attribute(job_template *jt, char *name, char *value);
– int drmaa_set_vector_attribute(job_template *jt, char *name, char

**values);
– char* drmaa_get_attribute(job_template *jt, char *name);
– char** drmaa_get_vector_attribute(job_template *jt, char *name);

DRMAA GGF14 Chicago, June 28, 2005 10

Job Submission

• Jobs submitted to the DRM system are
identified via an opaque job identifier (char*)

• Single job identifiers are returned by
– int drmaa_run_job(job_template *jt, char *job_id)

• Bulk job submissions return multiple job
identifiers
– int drmaa_run_bulk_job(char **job_ids,

job_template *jt, int start, int end, int incr)

DRMAA GGF14 Chicago, June 28, 2005 11

Job Monitoring, Control, and Status

• Monitoring/Control functions
– int drmaa_control(char *job_id, int action);

– int drmaa_synchronize(char **job_ids);

– int drmaa_job_ps(char *job_id, int *remote_ps);

• Blocking and non-blocking waiting for one or
more jobs to finish (like POSIX wait4(2))
– char *drmaa_wait(char *jobid, int *status, int

timeout, char **rusage);

– drmaa_wif[exited|signaled|aborted] and friends to
get more information about failed jobs

DRMAA GGF14 Chicago, June 28, 2005 12

Job State Transition

DRMAA GGF14 Chicago, June 28, 2005 13

Job Categories

• Cluster consists of
machines where X jobs
run and others where
they don’t run

• X jobs run at all
machines in cluster

DRM
Installation

with
DRMAA

Implementation

Job Type X DRMAA
enabled

Application

DRM
Installation

with
DRMAA

Implementation

Job Type X DRMAA
enabled

Application

Site A Site B

DRMAA GGF14 Chicago, June 28, 2005 14

Native DRMS Options

• The end user interacts with the DRMS via
native_specification parameter
– Simple solution
– DRMAA implementation ignores the DRMAA DRMS

implicitly used and disallowed options
– Dist. Appls. Developers and DRMS vendors are not involved

in the local environment spec.

– The burden is on the end users to define the execution
environment

—Need to know DRM
—Need to know the remote application installation

DRMAA GGF14 Chicago, June 28, 2005 15

DRMAA Placement

• On top of DRM systems

• On top of Globus

• Beneath GRAM

• UNICORE TSI interface to DRMSs

• CoG adapter

• On top of CoG

• Interfaced by a Portal, application, shell

• Portable command line utilities (qsub, qstat)

DRMAA GGF14 Chicago, June 28, 2005 16

A World of Submission API’s

Client Application / Portal

Condor Job
Manager

COG

GRAM Architecture

PBS Job
Manager

SGE Job
Manager

Condor DRMS PBS DRMS SGE DRMS

DRMAA

DRMAA ?

GridWay

DRMAA

DRMAA WSDL /
OGSA BES

WSRF

DRMAA Job Manager

SAGA ?

DRMAA GGF14 Chicago, June 28, 2005 17

DRMAA in Practice

• Multiple implementations since 2004
– Product implementation in Sun Grid Engine 6

— C- and Java-binding implementation

– Prototype in Condor 6.7 series
—C-binding implementation

– CPAN Perl DRMAA module (Tim Harsch)
—On-top-of DRMAA C-library

– GridWay DRMAA implementation
—Allows DRMAA on-top-of Globus

– Prototype for Globus 3 DRMAA job manager (HPI)
—Based on DRMAA Perl implementation

• Tutorials, programming examples, test suites
– http://gridengine.sunsource.net
– http://www.dcl.hpi.uni-potsdam.de/research/drmaa
– GGF12 tutorial, JavaOne 05 tutorial materials

DRMAA GGF14 Chicago, June 28, 2005 18

Need for Improvement !?!

• Feedback from practical usage of available
implementation(s) fed‘s back into spec
– Just look at the GridForge tracker and the SGE / Condor

mailing lists

• Some details under-specified
– Behavior in multi-threaded environments

• C-centric style makes it hard to develop conformant
object-oriented bindings
– Massive feedback from Java and .NET language binding

specification work

• Several missing error codes
• But: Keep the API as small as it is !!!

DRMAA GGF14 Chicago, June 28, 2005 19

DRMAA IDL Spec

• Started work in early 2005
• Based on Java- and .NET-binding experiences
• Specification through standardized OMG Interface

Definition Language (IDL)
– No, that does not mean CORBA ;-)
– Example: W3C DOM specification
– DRMAA language bindings will (and should) not rely on IDL

language bindings from OMG
—Complicated, weired semantics
—Simple custom binding by specifying consistent mapping rules
—Examples for Java in the IDL-spec

– Usage of IDL avoids wording issues (i.e. ‚attribute‘ vs. ‚property‘)
– Allows for true language-independent description of namespaces,

enumerations, constants, and time values

DRMAA GGF14 Chicago, June 28, 2005 20

DRMAA IDL Spec (contd.)

• Improved, more consistent description text for all
functions
– More details regarding advanced OO-specific features

(multiple session objects, exception hierarchies)

– Consider languages with introspection functionalities

– Some details about RPC-DRMAA scenarios (SOAP, RMI, ...)

• More parameter placeholders (e.g. for job ID)

• A lot more possible error codes for the operations

DRMAA GGF14 Chicago, June 28, 2005 21

Backward Compatibility

• C- and Java bindings in their current state can be mostly
derived also from the IDL spec
– Demand for consistent name mapping might change one or two

method names in the C-binding

– Introduction of new job state / error codes does not break
existing applications

– DRMAA has already a notion of versioning

• .NET binding will be re-designed based on the IDL spec

• No official binding documents for Perl and Python so far

DRMAA GGF14 Chicago, June 28, 2005 22

DRMAA Documents

• DRMAA GFD-P-R or GFD.22 document
– Since June 2004

• C binding v1.0
– Ready for submission to GFCS

• C binding experimental document v0.98

• Java binding 0.6.1
– Fairly complete

• .NET binding v0.2
– Needs a synch with IDL-spec

• IDL document
– v0.3 and nearly feature complete
– Need to augment with the DRMAA GFD-P-R text
– Will be submitted as a standalone GFD-P-R doc

DRMAA GGF14 Chicago, June 28, 2005 23

Next Steps

• Putting the DRMAA-IDL spec in the GGF document
chain (GGF14 version is nearly final)

• Prerequisite for some announced activities
– .NET-binding implementation (HPI)

—On-top-of DRMAA C-library

– Improved Condor C library
—Join the efforts at http://sf.net/projects/condor-ext

– Python binding specification
– Maybe more implementations

• DRMAA collaborates with SAGA, JSDL, and OGSA-
BES for identifying synergy effects

DRMAA GGF14 Chicago, June 28, 2005 24

Conclusion

• Please take part in the discussion
– Bi-weekly con calls

– Toll Free: (866)545-5198 Code: 6898552
– Regular: (865)521-8904

– GridForge tracker
– E-mail: drmaa-wg@gridforum.org
– Archive: Use the link at http://drmaa.org

• Please implement DRMAA and tell us your
experience
– It‘s easy, Dan did it 4 times ;-) ...

DRMAA GGF14 Chicago, June 28, 2005 25

Thank you !

