DRMAA Proposal Doc Version 1.6

DRMAA Interface Specification

by
DRMAA Working Group participants

Document maintained by Hrabri.Rajic@intel.com

History:

Date Document Comment

Apr 29,2002 | Sched-drmaa-1.2 | This version combines sched-drmaa-1.0 and 1.1 documents and
DRMAA working group discussion till April 16.

May 8, 2002 | Sched-drmaa-1.3 | Addition of “job categories” and “explicit native resource
specification” sections contributed by Andreas Haas.

Minor polishes in response to DRMAA telecom discussion of
Apr 30, ‘02.

May 13, 2002 | Sched-drmaa-1.4 | First pass at expanding Section 3 based on May 13 DRMAA
video conference meeting. [Blame Nitzberg for errors.]

May 14, 2002 | Sched-drmaa-1.5 | Second pass based on May 14 DRMAA video conference
meeting.

June 30, 2002 | Sched-drmaa-1.6 | Pre-GGFS5 status progress incorporated. Notes and DRMAA
status presentation put into appendices.

1 Introduction

Distributed Resource Management Application API (DRMAA) hides the differences of the Distributed
Resource Management Systems (DRMSs) and provides an API intended for distributed application
developers or ISVs. It is one of the DRMAA working group goals to target a very broad audience by
providing an easy to use programming model. The mandate of the DRMAA working group is to produce
DRMAA specification 1.0.

Language issues

In is our position that the API should be implemented in multiple languages, C/C++ being the primary
choice. The secondary choices are scripting languages, Perl and Python. Perl is especially heavily used in
the biotech arena where there is great need for numerous parametric calculations.

It is possible to design an Interface Definition Language that will effectively resolve the issue of one
interface serving multiple languages. While this is a viable approach, we feel that it will slow the progress
on the implementation side significantly. The interfaces are described using an IDL like language.

Another viable approach would be to design a protocol instead of the API. Both of these alternatives
should be considered in more detail when the time comes to address the long term comprehensive
solutions.

Library Issues

An ideal library would have paths to handle all DRMSs and versions to be linked statically or dynamically.
This is not something that will be feasible. A real possibility is a situation where one vendor implements
multiple, but not all DRMSs. The packaging could come as one library, where a DRMS is selected at run
time setting an environmental variable for the desired DRMS, or as one DRMS link per library. The
authors advocate the latter approach. In this setup the shared library is selected at run time by end users.

DRMAA Working Group 6/30/02 1

DRMAA Proposal Doc Version 1.6
It is expected that the developers will be linking the library from serial and multithreaded codes. The
library should be thread safe.

It is expected that the debugging of the distributed programs will be more challenging than single machine
versions. We advocate providing production and debugging version of the library.

Library should provide the DRMAA API version number to the external programs (such as SCCS’s
“what” and RCS’s “ident”) and to the distributed applications programmatically.

User program and DRMAA interaction

All of the DRMSs are asynchronous in nature. They notify the end user of the status of a finished job via e-
mail, which as an only option is not acceptable to the users of DRMAA library. We propose to deal with
the asynchrony similarly to Unix and Windows process interfaces, by blocking on the wait call for a
specific job request or possibly to all of them in the same process. This is in contrast to Globus GRAM
interface that is modeled on the reactive mode of execution. The support for reactive mode is to be
addressed in the future DRMAA versions, because more and more programs come with graphic user
interface these days.

The rest of the document is presented as follows. The Chapter 2 deals with the API design issues. Chapter
3.contains the DRMAA API specification.

2 API Design Issues

Developers have been using Unix system, fork/exec, popen, and the wait interfaces for years to spawn
additional processes and wait for the end of their execution to get their exit codes. Windows has equivalent
utilities like CreateProcess and WaitForSingleObject. DRMAA provides its own set of interfaces that are
OS neutral. It borrows Unix process API simplicity and tries to be consistent with libc interfaces.

2.1 Basic Guidelines

Even though the API should be self-contained, it is not always possible to consolidate all variations of end
user and DRMS interactions under the API. For this reason, we advocate that the developers should
provide a way for the end user to specify DRMS particular options. The primary mean to achieve this is
through use of “job categories”.

Additionally, there might be a need for possibility that the DRMS specific options are specified at run time
as command line options. The end user could loose portability this way, which is a small price to pay to be
able to run the application in uncommon configurations. Besides that, DRMAA providers and ISVs are
the ones that target multiple DRMSs; the end user does that at a much lesser degree.

The API centers around job_id parameter that is passed back by the DRMS upon job submission. Job id is
used for all the job control and monitoring purposes. [An additional similar parameter, job_name, that is
found in all DRMS implementations is part of the job submission interface. Job_name could be used by the
developer and/or internally by the implementation to group the jobs for easier user classification and
tracking. This parameter could be a key to achieve scalability for DRMAA implementations, especially
since DRMS user jobs could be running concurrently with those of the other DRMS users. |

There are few guidelines that were used in designing the uniform API:
* The API calling sequences should be simple and the API set small.

* The routine names should convey the semantic of the routine.

* The set should be as convenient as possible, even with the risk of being forced to emulate some
functionality if missing from a DRMS.

* All job manipulation is available without explicit job iterating.
e The server names are hidden, the DRMS is a black box.

* The end user could specify native resource options parameter if he/she needs to interact with the
DRMS.

DRMAA Working Group 6/30/02 2

DRMAA Proposal Doc Version 1.6

* The API should be extensible in a sense that future implementation are backward compatible with
earlier ones.

2.2 DRMAA Distributed Application Environment

DRMAA specification 1.0 does not have explicit file staging mechanisms. Setting implementation specific
job template attributes could enable file staging, provided the implementation supports it.

2.2.1 Building Portals

The nature of the DRMAA implementatio, as a shared library, makes it a good candidate for inclusion in a
Web Server to support a Web Portal to a DRMS. There are several options for doing this:
* Linked by a collection of CGI scripts that are referenced by resident Web Pages.
* Linked in a Web Server as a separate module.
* Linked as unmanaged DLL from .NET Web Forms.
* Built as a Perl module that is
0 included in mod_perl module.
0 accessed from Perl CGI scripts

Some of these options are suitable only for a particular Web Server.

The questions about maintaining a state, security, and authentication and authorization, require that
DRMAA implementation is viewed as just one component of a DRM Web Portal. Clearly, this is beyond
the scope of the current document and DRMAA Charter.

2.2.2 Job categories

The DRMAA interface specification should allow ISVs to write DRM-enabled applications even though
the properties of a concrete DRM installation, in particular the configuration of the DRM system, cannot be
known in advance.

Experiences made with integrations based on DRM CLI show that even when the same ISV application is
run as a job with the same DRM system the site specific policies in effect differ widely. These policies are
typically about questions like

e what resources are to be used by the job

» preferences where to run the job

e how prior the job should be treated by the DRM scheduler compared to other jobs

For supporting the variety of policies, job specific requests expressed by DRM submit options are very
common in the DRM product space.

Despite of these differences between two sites with the "same" job passed to the DRM system the
application actually does not change when seen from the perspective of the ISV. Also for the end user who
just wants a job to be started nothing changes due to different policies. This is an indication that there must
be possibility for hiding these site-specific differences behind the DRMAA interface.

The job "categories concept" is the approach the DRMAA working group recommends for encapsulating
site-specific details and completely hiding these details from applications making use of the DRMAA
interface. The core of the idea is to have these applications only supplying a string attribute specifying a job
category, i.e. a name specifying what kind of application that is to be dispatched by the DRMS. The
category name can be used by the DRMAA library to determine site-specific resource and functional
requirements of jobs in this category. Such requirements need to be configurable by the site operating a
DRM system and deploying an ISV application on top of it.

DRMAA Working Group 6/30/02 3

DRMAA Proposal Doc Version 1.6

An example can help to illustrate this idea:

* Atsite A rendering application X is used in a heterogeneous clustered environment which is
managed by a DRMS. Since application X is only available at a subset of these machines the
administrator sets up the DRMS in a way requiring from the end-users to put a -1 X=true into their
submit command line.

* Atsite B the same application is used in a homogenous clustered environment with rendering
application X supported at all machines managed by the DRMS. However since X jobs do
compete with applications Y sharing the same resources and X applications are to be treated with
higher priority than Y jobs end-users need to put a -p 1023 into their submit command line for
raising the dispatch priority.

An integration based on categories will allow to submit X jobs through the DRMAA interface in
compliance with the policies of both sites A and B without the need to know about these policies. The ISV
does this by specifying "X" as the category used for X rendering jobs submitted through the DRMAA
interface and by mentioning this in the "DRM integration" section of the X rendering software
documentation.

The administrators at the sites A and B site read the documentation or installation instructions about the
"X" DRMAA category. The documentation of their DRMS contains directions about the category support
of their DRMAA interface implementation. From this documentation they learn how to configure their
DRMS in a way that "-1 X=true" is used for "X" jobs at site A while "-p 1023" is used at site B for those
jobs.

As far as the DRMAA interface specification is concerned only a standardized mechanism for specifying
the category is required. The mechanism for associating the policy related portion of the submit command
line to the job is to be delivered by each DRMAA implementation. A standardization of this mechanism is
beyond the DRMAA standardization effort, because it is too much related to the administrative interface
and it is anticipated that for different DRMS different mechanisms will be appropriate.

NOTE: Categories require a separate specification, a task that is beyond current DRMAA Charter.

2.2.3 Native resource specification

The benefit of the categories concept from the last chapter is that it provides a means for completely hiding
site-specific policy details to be considered with a DRMAA job submission for a whole class of jobs. The
drawback however of this concept is that it requires one job category to be maintained for each policy to
be used.

To allow the DRMAA interface to be used also for submission of jobs where job-individual policy
specification is required "native resource specification" is supported. Native resource specification can be
used without the requirement to maintain job categories. Instead of specifying a category name and having
the DRMAA implementation associate the corresponding job submit options, the use of native resource
specification will allow directly specifying these submit options.

An example can help to illustrate this idea:

In order to implement the example from section 2.2.1 via native resource specifications, the native
option string "-1 X=true" had to be passed directly to the DRMAA interface while "-p 1023" had to be
used at site B.

As far as the DRMAA interface specification is concerned the native resource specification is an opaque
string and interpreted by each DRMAA library. It is possible to use job categories and native resource
specification with the same job submission for policy specification. It is assumed that in this case the
DRMAA library is capable of joining the outcome of the two policy sources in a reasonable way.

DRMAA Working Group 6/30/02 4

DRMAA Proposal Doc Version 1.6

2.3 Interface Routines General Description

The routines are naturally grouped in five categories: init/exit, job template handling, job submission, job
monitoring and control, and auxiliary or system routines like trace file specification and error message
routines. All the routines have a prefix “drmaa .

All of the routines should return an error code upon exit. A possible exception is an auxiliary error
message routine that could be modeled after the standard libc strerror routine. DRMAA needs an
equivalent of libc errno value for internal failures. In libc errno is a macro that expands to a modifiable
Ivalue, such as a dereferenced function pointer to address libc use in reentrant mode.

2.3.1 Init and exit routines

The calling sequence of the init routine should allow all of the considered DRMSs to be properly
initialized, either by interfacing to the batch queue commands or to the DRMS API. Likewise, the exit
routine should require parameters that will permit proper DRMS disengagement.

2.3.2 Job template routines
NOTE: This sections requires complete update.

The remote jobs and their attributes are specified with a job template opaque parameter. The job attributes
are divided in three groups:

* Core/base or implicit. These have provided setter and getter routines.

* Extended or reserved. These attributes are needed to address desired functionality for particular
DRMSs. They are set by using a generic setter routine where the name of the attribute is passed
as an extra parameter. All DRMAA libraries need to provide this routine with the default of
ignoring the request. Some of these attributes could move to the core/base set.

* Native. These attributes are particular to one or possibly few DRMSs. They are specified via
job category mechanism or via the generic setter routine.

The core/base or implicit attributes are:
* Remote command to execute, including the input parameters.
* Job state at submission (suspended/on hold or active).
» Job environment.
* Job working directory.
e Real or wall clock time limit.
» Standard input, output, and error streams.
* E-mail to report the job completion and status.

The extended or reserved attributes are:
» Job execution mode, synchronous or asynchronous.

* Input/output files to be staged and a parameter denoting shared or distributed file system.
DRMAA specification 1.0 assumes shared file system. This is to be used with care.

* Job name to be used for the job submission. (Alphanumeric and _ character allowed.)

¢ Time of execution.

2.3.3 Job submission routines

The job submission routines come in two versions. There is one version for submitting individual jobs and
one version for submitting bulk jobs.

TODO

DRMAA Working Group 6/30/02 5

DRMAA Proposal Doc Version 1.6
2.3.4 Job monitoring and controlling routines

Job monitoring and controlling API group needs to handle:
* job stopping, resuming, and killing
* waiting for the remote job till the end of its execution
» checking the exit code of the finished remote job
» checking the remote job status
* waiting for all the jobs to finish execution (this is a useful synchronization mechanism)

The Unix and Windows signals are replaced with the job control routines that have counterparts in DRMSs.
The only nontraditional feature is the passing of a NULL job id to indicate operations on all job_ids in the
current process.

The remote job could be in following states:

* queued

e system suspended

* user suspended

* running

e finished (un)successfully
To this list we need to add a possibility of DRMAA library not being able to determine the status of the
remote job.

2.3.5 Auxiliary routines

The auxiliary routines are needed for execution tracing and error monitoring. The tracing is especially
useful for the situations when there is multiple processes spawned few levels deep. The error codes
routines and variable drmaa_errno are libc equivalents. drmaa_errno is a macro such as a function
reference for reentrant DRMAA library implementation.

The next Chapter contains an example of an API as specified here.

3 API Specification

For convenience, the API is divided in its five logical sections: init/exit, job template handling, job
submission, job monitoring and control, and auxiliary routines.

Disclaimer #1: IDL like language is used here to avoid questions about allocation/deallocation issues. We
plan to fully specify C/C++ bindings to insure binary compatibility.

Disclaimer #2: The routine names are tentative.

3.1 C/C++ DRMAA API

The NOTES and | SSUES that are provided in blue italic font are to be discussed
at GGF5.

A R Maj or Assunptions/Restrictions ---------- */

e Callbacks (asynchronous notification) -- Polling only in v1.0

e« No explicit file staging.

e« Jobl D Uni queness -- "As unique as the underlying DRM nakes thent
A Initialization & Exit Routines ---------- */

DRMAA Working Group 6/30/02 6

DRMAA Proposal Doc Version 1.6

drrmaa_i ni t (cont act)
IN contact /* contact information for DRM system (string) */

Initialize DRVMAA APl library and create a new DRVMAA Session. ' Contact'
is an inplenentation dependent string which may be used to specify

whi ch DRM systemto use. This routine must be called before any

other DRMAA cal ls, except for drmaa_version().

ADD: If 'contact' is NULL, the default DRMsystemw || be used.

drmea_exit()

Di sengage from DRVAA |ibrary and allow the DRVMAA library to perform

any necessary internal clean up.

This routine ends this DRVAA Session, but does not effect any jobs (e.g.,
queued and running jobs remai n queued and running).

drmea_ver si on(maj or, mnor)
OQUT nmj or /* maj or version nunber (non-negative integer) */
OUT mi nor /* minor version nunber (non-negative integer) */

Returns the mgjor and minor version nunbers of the DRVAA |ibrary;
for DRMAA 1.0, 'mgjor' is 1 and "mnor' is O.

DRM engi ne dr naa_get _DRM engi ne()
Qutput (string) is inplenentation dependent and could contain the DRM
engine and the inplenentation vendor as its parts.

Gener al Not es:

NOTE: There is only one DRMAA session open at the time. Another session could
be opened only after the current one is closed. Nesting of sessions is not
allowed. It is expected that the DRVAA library will free all the session
resources, although this is not guaranteed, so old session resources are not to
be used |l ater.

| SSUE 1: Extensibility issue with regard to backward conpatibility. |f DRVAA

2.0 allows multiple connections that neans drnma_session paranmeter is part of
the interface. Visit this after all of the issues have been resol ved.

A Job Tenplate Routines ---------- */

drrmea_al | ocate_job_tenplate()
RETURNS /* new job tenplate (opaque handle) */

All ocate a new job tenpl ate.
drmea_del ete_job_tenplate(jt)
I NOUT jt /* job tenpl ate (opaque handl e) */

Deall ocate a job tenplate. This routine has no effect on jobs.

drmea_set _attribute(jt, nanme, val ue)

I NOUT jt /* job tenpl ate (opaque handl e) */
I'N name /* attribute name (string) */
I'N value /* attribute value (string) */
Adds ('name', 'value') pair to list of attributes in job tenplate "jt'.

DRMAA Working Group 6/30/02 7

DRMAA Proposal Doc Version 1.6

Only non-vector attributes nay be passed.

drmea_set _vector_attribute(jt, nane, val ue)

I NOUT jt /* job tenpl ate (opaque handl e) */
I'N name /* attribute nane (string) */
I'N val ues /* vector of attribute value (string vector) */
Adds ('name', 'values') pair to list of vector attributes in job tenplate

it
Only vector attributes nmay be passed.

The following are reserved attribute nanes available in all
i mpl enentations of DRMAA v1.0 (and their respective neanings).
Vector attributes are marked with a 'V :
renot e conmand to execute
V i nput paraneters
These paraneters are passed as argunents to the job.
The attribute nane is "argv".
job state at submi ssion (on hold, active)
V job environnent
This environment is set for the job. The attribute nane
is "envv".
job working directory
wal | clock tinme limt
j ob category
e-mail to report the job conpletion and status
If e-mail is to be sent to the submitter by the DRM system
this e-mail adress is used. The attribute name is "emil".
standard input, output, and error streans (staging cannot be assuned)

The following are reserved attribute nanes avail abl e which are
not required to be inplemented by a conform ng DRVAA v1.0
inmplenentation. For attributes that are inplenmented, the meanings
are required to be as follows:

i nput/output files (including stdin/out/err) to be staged and

a paraneter denoting shared or distributed file system
job nanme to be used for the job submission ([A-Za-z0-9_]+)
start job not later then

NOTE: We nay break each of the above out into a separate set/get
routi nes for inproved type checking (and ease of passing conpl ex
paraneters). They are listed in the form above as a short-hand.
As with all nam ng issues, it is proposed to postpone this decision.

| SSUE: W need to set up a nmechanismto discuss (and flesh-out)
these attributes & add/delete attributes. We real ly need
a formal proposal to discuss ...

drmea_get _attribute(jt, nanme, val ue)
I'N jt /* job tenplate (opaque handle) */
I'N name /* attribute nane (string) */
RETURNS value /* attribute value (string) */

If "nane’ is an existing non-vector attribute nanme in the job tenplate
' j tl ,
t hen the value of 'nane' is returned; otherwise, NULL is returned.
drmaa_get _vector_attribute(jt, nane, val ue)
I'N jt /* job tenpl ate (opaque handl e) */

I'N name /* attribute nanme (string) */
RETURNS val ues /* vector of attribute value (string vector) */

If "nane’ is an existing vector attribute nane in the job tenplate "jt',
t hen the values of 'nanme' are returned; otherwi se, NULL is returned.

DRMAA Working Group 6/30/02 8

DRMAA Proposal Doc Version 1.6

ISSUE 1: Do we want to allow one to get the attributes associated
with native attributes?

| SSUE 2: Enunerated paraneter job tenplate setter/getter attribute routine
The idea here is to prevent having proliferation of nunber of setter and
getter routines while ensuring type safety. drmaa_basic_attributes_t
enuneration will have basic/core attributes |isted. drmaa_set _attribute
and drnmaa_get _attribute functions are affected. Vector setter/getter
routines could be handled simlarly. drnma_basic_attributes_t enuneration
and their replacenents could be defined as:

t ypedef enum drnaa_basic_attributes {
comrand = 0,
env,
email ,
stdi nput,
st dout put,
stderror,
time_limt,
initial _job_state,
} drnmaa_basic_attributes_t;

/* set an attrName attribute */
int drnaa_set_attribute(drnaa_job_tenplate *jt,
drmea_basic_attributes_t dbat, char *val ue);

/* get attribute value for attribute attrNane */
char* drmaa_get_attribute(drmma_job_tenplate *jt,
drmea_basic_attributes_t dbat);

A Job Subm ssion Routines ---------- */

drmaa_run_job(job_id, jt)
QUT job_id /* job identifier (string) */
IN jt /* job tenplate (opaque handle) */

Subnit a job with attributes defined in the job tenplate "jt'.

The job identifier '"job_id is a printable, NULL term nated string,
identical to that returned by the underlying DRM system

drmea_run_bul k_jobs(job_ids, pjt, start, end, incr)

QUT job_ids /* job identifiers (array of strings) */

IN pjt /* paraneterized job tenpl ate (opaque handle) */
IN start /* begi nning index (unsigned integer?)*/

IN end /* ending index (unsigned integer?) */

IN incr /* loop increnent (integer)*/

Subnmit a set of paranetric jobs, dependent on the inplied | oop index, each
with attributes defined in the paraneterized job tenplate 'pjt'.

The job identifiers '"job_ids' are all printable,

NULL terminated strings, identical to those returned by the underlying
DRM system Nonnegative | oop bounds are suggested to avoid file nanes
that start with mnus sign |ike command |ine options.

The speci al index placeholder is a DRVAA defined string
drmea_i ncr_ph /* == $incr_pl$ */
that is used to construct paranetric job tenpl ates.

DRMAA Working Group 6/30/02 9

DRMAA Proposal Doc Version 1.6

For exanpl e:
drmea_set _attribute(pjt, "stderr", drmma_incr_ph + ".err"); /*
C++/java string syntax used */

NOTE: Job tenplate and paraneterized job tenplate could be the sane structure.
Type-wi se, they do not differ at all, the paraneterized job tenplates need to be
parsed and substituted before they coul d be used.

A Job Control Routines ---------- */

drmaa_control (job_id, action, synchronous)
INjob_id /* job identifier (string) */
I'N action /* control action (const) */

Start, stop, restart, or kill the job identified by '"job_id".
If '"job_id is DRVMAA JOB ID ALL, then this routine

acts on all jobs *submtted* during this DRVAA sessi on.

The | egal values for 'action' and their neanings are:

DRMAA _CONTROL_SUSPEND: stop the job,

DRMAA CONTRCOL_RESUVE: (re)start the job,

DRMAA CONTROL_HOLD: put the job on-hold,

DRMAA CONTROL_RELEASE: rel ease the hold on the job, and

DRVAA_CONTROL_TERM NATE: kill the job.

This routine returns once the action has been acknow edged by
the DRM system but does not necessarily wait until the action
has been conpl et ed.

| SSUE: You can now do an action for which there is no correspondi ng
way to wait (or tell) if it conpletes in a nice way.
drmaa_synchroni ze(j ob_i ds)
IN job_ids /* job identifiers (array of strings) */
Wait until all jobs specified by 'job_ids' have finished

execution. If '"job_ids' is DRVAA JOB IDS ALL, then this routine
waits for all jobs *submtted* during this DRVAA Sessi on.

drmea_wai t(job_id, stat, tineout, rusage)

IN job_id /* job identifier (string) */

QUT stat /* status code of job (integer) */

IN tineout /* how long we block in this call (long) */
QUT rusage /* resource usage */

This routine waits for a job with job_id to finish execution. This routine is
nodel ed on wait3 POSI X routine.

| SSUE 1: Revisit 'timeout' paranmeter. Defined values for "wait forever" and
"don't wait at all"”

| SSUE 2: What about "reaping” the job_id (so DRVAA JOB | DS ALL)
doesn't include "exited" jobs... If we need this, we
shoul d add a separate DRMAA routine to reap.
I f someone wants this, they should make a proposal.

drmea_wi fexited(OUT exited, IN stat)
Can optionally evaluate into "exited' a zero value if status was
returned for a job that termnated not nornmally. A non-zero 'exited'
val ue indicates nore detailed diagnosis can be provided by neans of

DRMAA Working Group 6/30/02 10

DRMAA Proposal Doc Version 1.6

drmaa_wi fsignal ed(), drnmaa_wternsig() and drnmaa_wcoredunp() .

drmaa_wexi t st at us(OUT exit_code, IN stat)
If the OUT paraneter 'exited' of drrmaa_wi fexited() is non-zero,
this function evaluates into 'exit_code' the exit code that the
job passed to _exit() (see exit(2)) or exit(3C, or the val ue that
the child process returned from nain.

drmaa_wi f si gnal ed(OUT signaled, IN stat)
Eval uates into 'signaled a non-zero value if status was returned
for a job that term nated due to the receipt of a signal.

drmaa_wt ermsi g(QUT signal, IN stat)
If the OUT paraneter 'signaled of drnaa_w fsignaled(stat) is
non-zero, this function evaluates into signal the nunber of the
signal that caused the termination of the job.

dr maa_wcor edunp(QUT cor e_dunped, IN stat)
If the OUT paraneter 'signaled of drnaa_w fsignaled(stat) is
non-zero, this function evaluates into 'core_dunped' a non-zero val ue
if a core image of the term nated job was created.

The 'stat' drnmma_wait paraneter is used in a series of functions, defined above,
for providing nore detailed information about job termination if available. An
anal ogous set of nmacros is defined in POSIX for anal yzing wait3(2) OUT paraneter
"stat'. The m sl eadi ng upper-case function names rem nding to nmacros are
changed to | ower-case nanes.

| SSUE: | npl ementati on needs to know on which architecture the renote job was
runni ng, Wn32 or Unix/Linux, to correctly provide nore information. Could
rusage QUT parameter fromdrnaa_wait routine hel p here?

drmaa_j ob_ps(char *job_id, int *remote_ps);
IN job_id /* job identifier (string) */
OQUT renpte_ps /* program status (constant) */

Get the programstatus of the job identified by "job_id".

The possi ble values returned in 'renpbte_ps' and their neanings are:
DRMAA PS UNDETERM NED: process status cannot be determ ned,
DRMAA PS QUEUED: job is queued,

DRMAA PS SYSTEM SUSPENDED: job is system suspended,
DRMAA PS USER_SUSPENDED: job is user suspended,

DRMAA _PS RUNNI NG job is running,
DRMAA PS DONE: job finished normally, and
DRMAA PS FAI LED: job finished, but failed.

General Notes:

NOTE: The users could use joblDs fromold DRVAA sessions to query jobs. The

i npl ement ation could be able to resolve the requests only if the original DRM
server is connected to in both sessions. Nothing is guaranteed. The queried
joblDs, even if able to resolve, will not becone part of the current session.

| SSUE: Do we want to add a tineout argunent to the routines that m ght block?

PROPOSAL: Post pone di scussi ons of error handling and tracing until
we get everything else in better shape.

DRMAA Working Group 6/30/02 11

DRMAA Proposal Doc Version 1.6

NOTE 1:

In C we would probably want to return O on success and an errno
on failure (this is different fromlibc and open to debate),
except when we're returning a structure pointer (when

we can't return an errno). O course, in C++, we night want to
use real exception handling...

NOTE 2: Fromlibc docs:
The external variable errno is used to hold inplenmentation-defined error

codes fromlibrary routines. Al errno's are positive. Library routines
shoul d never clear errno.

drmea_set _trace_file(file_nane)
IN file_name /* File name (string) */

Specify a file for tracing. By default, all tracing information
is witten to stderr.
drmea_trace_t ext (text)
IN text /* Message to be logged in trace file (string) */
Wite "text' into the trace file.
drmaa_perror(text);
IN text /* Error nessage to be logged in trace file (string) */
Record the error nessage 'text' in the trace file.
error_string drrmaa_strerror (errno);
IN errno /* Errno nunber (integer) */
RETURNS /* Readabl e text version of errno (constant string) */
Get the error message text associated for the errno nunber*/
contact drmea_get_contact();
QUT cont act /* Current contact information for DRM system
(string) */

NOTE: Is this function needed if detailed error reporting is in place that
provides this infornation (assunes a need only when drrmaa_init fails)?

APPENDIX A DRMAA C/C++ API Notes

A R Maj or Assunptions/Restrictions ---------- */

Cal | backs (asynchronous notification) -- Polling only in v1.0
No explicit file staging.

Jobl D Uni queness -- "As uni que as the underlyi ng DRM nmakes t hent

DRMAA Working Group 6/30/02 12

DRMAA Proposal Doc Version 1.6

A Initialization & Exit Routines ---------- */

drmaa_i ni t (cont act)
IN contact /* contact information for DRM system (string) */

Initialize DRMAA APl library and create a new DRVMAA Session. ' Contact'
is an inplenmentation dependent string which nay be used to specify

whi ch DRM systemto use. This routine must be called before any

other DRMAA cal ls, except for drmaa_version().

ADD: If 'contact' is NULL, the default DRMsystemw || be used.
STRAW VOTE: 7/1/1 (Yes/No/Abstain) in favor of keeping contact'.

PROPOSAL: Allow multiple calls to drmaa_init() and return a
handl e that is used in all calls to specify which
DRM t o use.

STRAW VOTE: 1/6/2 (Yes/ No/ Abst ai n)

PROPOSAL: Add argunent "OUT 'output' (string)", which would return
an inpl ementati on dependent string the DRVAA inpl enentation used to
connect to DRM system wuseful to know if default connection fails.
(D scussi on was post poned.)
DONE

drmea_exit()

Di sengage from DRVAA |ibrary and allow the DRVAA library to perform

any necessary internal clean up.

This routine ends this DRVAA Session, but does not effect any jobs (e.g.,
queued and running jobs renmai n queued and running).

PROPOSAL: After drrmaa_exit(), allow drnaa_init() be be called
to start up again. Nesting is not allowed.
VOTE: 7/0/2 (yes/no/ abst ai n)

DONE

drmea_ver si on(maj or, mnor)
OQUT nmj or /* maj or version nunber (non-negative integer) */
OUT mi nor /* minor version nunber (non-negative integer) */

Returns the mgjor and minor version nunbers of the DRMAA |ibrary;
for DRMAA 1.0, 'mgjor' is 1 and "mnor' is O.

char *drnmma_get _DRM engi ne()
Qutput string is inplenmentati on dependent and could contain the DRM
engi ne and the inplenentati on vendor as its parts.

General Notes:

ISSUE 1: There is only one DRMAA session open at the tinme. Another session
could be opened only after the current one is closed. Nesting of sessions is
not allowed. It is expected that the DRMAA library will free all the session
resources, although this is not guaranteed, so old session resources are not to
be used | ater.

ISSUE 2: Extensibility issue. |If DRMAA 2.0 allows nultiple connections that
neans drnaa_session parameter is part of the interface. Wy not make this step
now? This was on the table before ...

A Job Tenplate Routines ---------- */

DRMAA Working Group 6/30/02 13

DRMAA Proposal Doc Version 1.6

drrmea_al | ocate_job_tenplate()
RETURNS /* new job tenplate (opaque handle) */

All ocate a new job tenpl ate.
drrmea_del ete_job_tenplate(jt)
I NOUT jt /* job tenpl ate (opaque handl e) */
Deall ocate a job tenplate. This routine has no effect on jobs.

drmea_set _attribute(jt, nane, val ue)

I NOUT jt /* job tenpl ate (opaque handl e) */
I'N name /* attribute nane (string) */
I'N value /* attribute value (string) */
Adds ('name', 'value') pair to list of attributes in job tenplate "jt'.

Only non-vector attributes nmay be passed.

drmea_set _vector_attribute(jt, nane, val ue)

I NOUT jt /* job tenpl ate (opaque handl e) */
I'N name /* attribute nane (string) */
I'N val ues /* vector of attribute value (string vector) */
Adds ('name', 'values') pair to list of vector attributes in job tenplate

it
Only vector attributes nmay be passed.

The following are reserved attribute nanes available in all
i npl enent ati ons of DRMAA v1.0 (and their respective neanings).
Vector attributes are marked with a 'V :
remot e conmmand to execute
V i nput paraneters
These paraneters are passed as argunents to the job.
The attribute nane is "argv".
job state at submi ssion (on hold, active)
V job environnent
This environment is set for the job. The attribute nane
is "envv".
job working directory
wal | clock tinme limt
j ob category
e-mail to report the job conpletion and status
If e-mail is to be sent to the submitter by the DRM system
this e-mail adress is used. The attribute name is "emil".
standard input, output, and error streans (staging cannot be assuned)

The following are reserved attribute nanes avail abl e which are
not required to be inplemented by a conform ng DRVAA v1.0
i npl enentation. For attributes that are inplenmented, the neanings
are required to be as follows:

i nput/out put files (including stdin/out/err) to be staged and

a paraneter denoting shared or distributed file system
job nanme to be used for the job submission ([A-Za-z0-9_]+)
start job not later then

NOTE: We may break each of the above out into a separate set/get
routines for inproved type checking (and ease of passing conpl ex
paraneters). They are listed in the formabove as a short-hand.
As with all naming issues, it is proposed to postpone this decision.

ISSUE 1: W need to set up a nechanismto discuss (and flesh-out)

these attributes & add/delete attributes. W really need
a formal proposal to discuss ...

DRMAA Working Group 6/30/02 14

DRMAA Proposal

drrmea_get _attribute(jt, nane, val ue)

I f
Ijtl

t hen the val ue of

I'N jt /* job tenpl ate (opaque handl e) */
I'N name /* attribute nane (string) */
RETURNS value /* attribute value (string) */

"name' is an existing non-vector attribute name in the job tenplate

nanme' is returned; otherwise, NULL is returned.

drmea_get _vector_attribute(jt, nane, val ue)

I f

I'N jt /* job tenpl ate (opaque handl e) */
I'N name /* attribute nane (string) */
RETURNS val ues /* vector of attribute value (string vector) */

"name' is an existing vector attribute nane in the job tenplate "jt',

t hen the values of 'nanme' are returned; otherwi se, NULL is returned.

ISSUE 1. Do we want to allow one to get the attributes associated

| SSUE 2:

with a job category? What about just getting a |ist of
avail able native attributes?

Enuner at ed parameter job tenplate setter/getter attribute routine

Doc Version 1.6

The idea here is to prevent having proliferation of nunber of setter and

getter routines. Instead, drmma_basic_attributes_t enuneration has all

the basic/core attributes |isted. drmea_set _attrName and
drrmea_get _attrNanme are only one affected formthe previous section.

drmea_basic_attributes_t enuneration and their replacenents are defined

as:

t ypedef enum drnmaa_basic_attributes {
command = 0,
email ,
st di nput,
st dout put,
stderror,
time_limt,
initial _job_state,
} drmaa_basic_attributes_t;

/* set an attrName attribute */
int drnaa_set_attribute(drnmaa_job_tenplate *jt,
drmea_basic_attributes_t dbat, char *val ue);

/* get attribute value for attribute attrNane */

char* drmaa_get_attribute(drmma_job_tenplate *jt,
drmea_basic_attributes_t dbat);

--------- Job Submission Routines ---------- */

drmaea_run_job(job_id, jt)

OUT job_id /* job identifier (string) */
IN jt /* job tenplate (opaque handle) */

Subnmit a job with attributes defined in the job tenplate "jt'.
The job identifier '"job_id is a printable, NULL term nated string,
identical to that returned by the underlying DRM system

drmea_run_bul k_jobs(job_ids, pjt, start, end, incr)

DRMAA Working Group 6/30/02

15

DRMAA Proposal Doc Version 1.6

QUT job_ids /* job identifiers (array of strings) */

IN pjt /* paraneterized job tenpl ate (opaque handle) */
IN start /* begi nning index (unsigned integer?)*/

IN end /* ending index (unsigned integer?) */

IN incr /* loop increnent (integer)*/

Subnmit a set of paranetric jobs, dependent on the inplied | oop index, each
with attributes defined in the paraneterized job tenplate "pjt'.

The job identifiers '"job_ids' are all printable,

NULL terminated strings, identical to those returned by the underlying
DRM system Nonnegative | oop bounds are suggested to avoid file nanes
that start with mnus sign |ike command |ine options.

The speci al index placeholder is a DRVAA defined string
drmea_i ncr_ph /* == $incr_pl$ */
that is used to construct paranetric job tenpl ates.

For exanpl e:
drmea_set _attribute(pjt, "stderr", drmama_incr_ph + ".err"); /*
C++/java string syntax used */

NOTE: Job tenpl ate and paraneterized job tenplate could be the sane structure.
Type-wi se, they do not differ at all, the paraneterized job tenplates need to be
parsed and substituted before they coul d be used.

ISSUE 1: It seens a bit tedious to set up and populate a job tenplate. Doing it
many tines over would require CPU cycles and nenory. The latter one requires
speci al consideration. W need nechanisns to avoid this inconveni ence. What
about either having a job definition tenplate that has placehol ders that get
popul ated at the job subm ssion instance? One alternative would be to have a
job tenpl ate duplication nmechanism Another alternative would be to recycle the
old job tenpl ates by changing some of its attribute val ues.

Job definition tenplate would require naned pl acehol ders. That coul d be

acconpl i shed by adding a special character at the beginning of the attribute
name, naking it a variable. Job submission interface would have an extra
paraneter that holds the variabl e/val ue pairs that would be used to create a
valid job request. This resenbles to a class definition and an object
instantiation scenari o.

The job tenplate woul d stay the same. Some of the attributes will have naned
pl acehol ders or variables that would need to be substituted wi th provi ded
val ues.

A proposed new interface:
drmaa_run_parametric_job(job_id, jt, sub_pairs)

QUT job_id /* job identifier (string) */
IN jt /* job tenplate (opaque handle) */
IN sub_pairs /* array of variabl e/value pairs */

Subnmit a job with attributes defined in the job tenplate "jt'.
The job identifier '"job_id is a printable, NULL term nated string,
identical to that returned by the underlying DRM system

A LR Job Control Routines ---------- */
ISSUE: Do we want to add a timeout argument to the routines

that mght block?

PROPOSAL: A job_id returned during a DRVAA Session will be valid

DRMAA Working Group 6/30/02 16

DRMAA Proposal Doc Version 1.6

for use in all routines during that Session.
APPROVED by consensus.

drmea_get _exit_status(job_id, exit_code)
IN job_id /* job identifier (string) */
OUT exit_code /* exit code of job (integer) */

Wait for the job identified by "job_id to exit. The exit status
of the job is returned in "exit_code'; note that this status is
i npl enent ati on dependent.

PROPCSAL: Change nane to drnma_get_exit_status

Edi tor just made the change...

PROPCOSAL: Del ete drnaa_get_exit_status (drnma_getpid_status), since

this is redundant. Use drnaa_wait.
Approved by consensus
DONE
drmaa_control (job_id, action, synchronous)
INjob_id /* job identifier (string) */
I'N action /* control action (const) */

I N synchronous /* block until action conpletes (bool ean) */

Start, stop, restart, or kill the job identified by '"job_id".
If '"job_id is DRVMAA JOB ID ALL, then this routine

acts on all jobs *subm tted* during this DRVAA sessi on.

The | egal values for 'action' and their neanings are:

DRMAA CONTROL_SUSPEND: stop the job,

DRMAA CONTROL_RESUMVE: (re)start the job,

DRMAA CONTROL_HOLD: put the job on-hold,

DRMAA CONTROL_RELEASE: rel ease the hold on the job, and

DRVAA CONTROL_TERM NATE: kill the job.
If "action' is DRMAA CONTROL_RESUME and ' synchronous' is TRUE,
this routine will not return until the requested action has been
conpl eted (or an error occurs); otherw se, 'synchronous' has
no effect.
PROPCSAL: renpve synchronous
APPROVED by consensus
PROPOSAL: This routine returns once the action has been acknow edged by
the DRM system but does not necessarily wait until the action
has been conpl et ed.
Approved by consensus.
NEW | SSUE: You can now do an action for which there is no correspondi ng
way to wait (or tell) if it conpletes in a nice way.
We will revisit this later.

drmaa_synchroni ze(j ob_i ds)
IN job_ids /* job identifiers (array of strings) */
Wait until all jobs specified by 'job_ids' have finished

execution. If '"job_ids' is DRVAA JOB IDS ALL, then this routine
waits for all jobs *submtted* during this DRVAA Sessi on.

drmea_wai t(job_id, exit_code, options, rusage)

IN job_id /* job identifier (string) */
OQUT exit_code /* exit code of job (integer) */
IN options /* options (integer) */

QUT rusage /* resource usage (???) */

Wait for the job identified by "job_id to exit. The exit status
of the job is returned in "exit_code'; note that this status is
machi ne dependent. Legal values for 'options', and their

DRMAA Working Group 6/30/02

17

DRMAA Proposal Doc Version 1.6

neani ngs are:
?2?72.
The resource usage of the job is returned in
this value is al so machi ne dependent.
PROPCSAL: renane 'options' to 'synchronous', and add text from
el sewhere for synchronous.
Approved by consensus
PROPCSAL: Make this a standard set of exit codes... at a m ni num
we shoul d have a standard SUCCESS code.
Andreas has offered to create a real proposal (it is below)

rusage'; note that

PROPCSAL: Change 'synchronous' to 'tineout' with defined val ues
for "wait forever” and "don't wait at all"
STRAW VOTE: 4/ 1/3 (yes/ no/ abst ai n)

I SSUE 1. What about "reaping"” the job_id (so DRVMAA JOB | DS_ALL)
doesn't include "exited" jobs... If we need this, we
shoul d add a separate DRVAA routine to reap.

If someone wants this, they should nmake a proposal.

I SSUE 2: How to reconcile |lack of mechani sms on Wn32 for getting nore
i nfornati on about job term nation when it fails.

The required conpromse with this Wn32/PGCsl X conflict should be to

all ow for providing nore information about job termnation if available
but not demand it as necessary in our interface spec. Wth the nodified
semanti cs specification bel ow of drmaa_wi fexited() this is possible. Also
t he mi sl eadi ng upper-case function nanes remnding to nacros are changed
to | ower-case nanes:

In the 1.5 version the 'exit_code' OUT paraneter of drmaa_wait ()
is described as a nmachi ne dependent value. To prevent m sunderstandings
about the nmeaning of this OUT paraneter it should be renaned to 'stat’
in the next version and DRVAA standard shoul d cover a set of functions
accepting the 'stat' OUT paraneter and providing nore detail ed

i nfornmation
about job termination if avail able. An anal ogous set of macros is defined
in PCSIX for analyzing wait3(2) QUT paraneter 'stat'.

drmaa_wi fexi ted(QUT exited, IN stat)
Can optionally evaluate into "exited' a zero value if status was
returned for a job that termnated not normally. A non-zero 'exited
val ue indicates nore detailed diagnosis can be provided by neans of
drmaa_wi fsignal ed(), drmaa_wternsi g() and drnmaa_wcor edunp().

dr maa_wexi tstatus(QUT exit_code, IN stat)
If the OUT paraneter 'exited' of drrmaa_wi fexited() is non-zero,
this function evaluates into 'exit_code' the exit code that the
job passed to _exit() (see exit(2)) or exit(3C, or the val ue that
the child process returned from nain.

dr maa_wi f si gnal ed(QUT si gnal ed, IN stat)
Eval uates into 'signaled" a non-zero value if status was returned
for a job that term nated due to the receipt of a signal.

dr maa_wt er msi g(OUT signal, IN stat)
If the OUT paraneter 'signaled of drnaa_w fsignaled(stat) is
non-zero, this function evaluates into signal the nunber of the
signal that caused the termination of the job.

dr maa_wcor edunp(QUT core_dunped, | N stat)
If the OUT paraneter 'signaled of drnaa_w fsignaled(stat) is
non-zero, this macro evaluates into 'core_dunped a non-zero val ue
if a core image of the term nated job was creat ed.

DRMAA Working Group 6/30/02

18

DRMAA Proposal Doc Version 1.6

drmea_j ob_ps(char *job_id, int *remote_ps);
IN job_id /* job identifier (string) */
OUT renpte_ps /* program status (constant) */

Get the programstatus of the job identified by '"job_id".

The possi ble values returned in 'renmpbte_ps' and their neanings are:
DRMAA PS UNDETERM NED: process status cannot be determ ned,
DRMAA PS QUEUED: job is queued,

DRMAA PS SYSTEM SUSPENDED: job is system suspended,
DRMAA PS USER_SUSPENDED: job is user suspended,

DRMAA _PS RUNNI NG job is running,
DRMAA PS DONE: job finished normally, and
DRMAA PS FAI LED: job finished, but failed.

General Notes: The users could use joblDs fromold DRVAA sessions to query jobs.
The i nplenentation could be able to resolve the requests only if the original
DRM server is connected to in both sessions. Nothing is guaranteed. The

queried joblDs, even if able to resolve, will not become part of the current
sessi on.
A Auxiliary Routines ---------- */

PROPOSAL: Post pone di scussions of error handling and tracing until
we get everything else in better shape.

NOTE 1:

In C, we would probably want to return 0 on success and an errno
on failure (this is different fromlibc and open to debate),
except when we're returning a structure pointer (when

we can't return an errno). O course, in C++, we mght want to
use real exception handling...

NOTE 2: Fromlibc docs:
The external variable errno is used to hold inpl enentation-defined error

codes fromlibrary routines. All errno's are positive. Library routines
shoul d never clear errno.

drrmea_set _trace_fil e(file_nane)
IN file_name /* File name (string) */

Specify a file for tracing. By default, all tracing information
is witten to stderr.
drmea_trace_t ext (text)
IN text /* Message to be logged in trace file (string) */
Wite "text' into the trace file.
drmaa_perror(char *text);

IN text /* Error nessage to be logged in trace file (string) */

Record the error nmessage 'text' in the trace file.

char *drmma_strerror (int error);

DRMAA Working Group 6/30/02 19

DRMAA Proposal Doc Version 1.6

INerrno /* Error nunber (integer) */
RETURNS /* Readabl e text version of error (constant string) */

Get the error message text associated for the error nunber*/
contact drmaa_get_contact();
QUT cont act /* default contact information for DRM system
(string) */

NOTE 3: Is this function needed if detailed error reporting is in place that
provi des this infornmation?

APPENDIX B DRMAA pre-GGF5 Status Presentation

Slide 1

-Working Group Session -
DRMAA: Distributed Resource
Management Application API

WG co-chairs:
John Tollefsrud [j.t@sun.com], Sun Microsystems
Hrabri Rajic [hrabri.rajic@intel.com], Intel

www.mcs.anl.gov/~jms/ggf-sched

Slide 2 DRMAA WG at GGF5

Working Session 07/22/02 13:00-14:30
The outstanding issues will addressed and discussed in
detail. Come prepared.

Presentation Session 07/23/02 16:30-18:00
This slot is likely to be used for further discussion of
the outstanding issues.

Location: Harris 1

DRMAA Working Group 6/30/02 20

DRMAA Proposal Doc Version 1.6

Slide 3 st DRMAA Activity

DRMAA BOF

- GGF3

Bi-weekly con calls

— Toll Free: (877)288-4427 Code: 691169 (Please email to
jt@sun.com)

WG status granted by GGF Steering Committee
Three sessions at GGF4

Working document sched-drmaa-1.6

One two site two day working videoconference

GoFS Iy 2124 2002 DRMAAWG 3

« Adoption of distributed computing solutions in

industry is both widespread and ‘early adopter’

- C i ications by i software vendors
(Isvs)

- C ial distri resource (DRM) systems

— Scripted command-line integration by end users
— Verylittle direct interfacing of ISV apps to DRM systems

« Adoption is self-limiting to industries where gain
exceeds the pain

+ Fundamental shift in the adoption pattern
requires shifting the DRM integration to the ISV

GOFS Iy 2120 2002 oRMAAWG B

Slide 5 Distributed Resource Management (DRM)
Systems

Batch/job

management systems \A
« Local Job schedulers =,
. All are DRM Systems
* Queuing systems -
« Workload &

management systems

GoFS Iy 2124, 2002 oRMAAWG

DRMAA Working Group 6/30/02 21

DRMAA Proposal

Slide 6

Slide 7

Slide 8

DRMAA Working Group

Motivation for DRMAA

There are many DRM solutions available to end users
and things keep changing

Independent | Open Source OEM
Suppliers | /University | Proprietary | FeeT“toPeer
Platform Veridian 1BM TurboLinux
Computing OpenPBS | LoadLeveler | Enfuzion
LSF
Veridian | Univ of Wisc Sun Entropia
PBS Pro Condor Sun Grid United
Engine Devices
Condor Inc. Sun Parabon

Condor Grid Engine

Doc Version 1.6

GoFS Iy 2124 2002 DRMAAWG

Resource Management Systems Differ

Application
Task definition

oo | scesuer]

Task Analysis

« Core services are fundamentally the same
- especially from the users perspective

+ DRM programming interfaces differ
- ISVs are disinclined to use

GOFS Iy 2120 2002 DRMAAWG

DRMAA Charter

+ Develop an API specification for the submission and
control of jobs to one or more Distributed Resource
Management (DRM) systems.

The scope of this specification is all the high level

which is y for an i to
consign a job to a DRM system including common
i on jobs like termination or i

The objective is to facilitate the direct interfacing of
applications to today's DRM systems by application's
builders, portal builders, and Independent Software
Vendors (ISVs).

GoFS Iy 2124, 2002 DRMAAWG

6/30/02

22

DRMAA Proposal
Slide 9

racterizing DRMAA

High level attributes

— Application centric

— Ease of use for end users

— Focused on programming model

Benefits

— Faster distributed application deployment

— Opportunity for new applications

— Increased end user confidence

— Impr in Systems
— Distributed application portability

GoFS Iy 2124 2002 oRMAAWG s

Doc Version 1.6

Slide 10 Scope: Run a Job API

(Steps from: Ten Actions when SuperScheduing’, GG SchedWD 8.5, 4. Schopf, July 2001)

Phase 1: Resource Discovery

~ Step 1 Authorization Filtering

~ Step 2 Application requirement definition

~ Step 3 Minimal requirement filtering
Phase 2 System Selection

~ Step 4 Gathering information (query)

~ Step 5 Select the system(s) to run on
Phase 3 Run job

~ Step 6 (optional) Make an advance reservation

- Step 7 Submit job to resources e
~ Step 8 Preparation Tasks

- Step 9 Monitor progress (maybe go back to 4)
- Step 10 Find out Job is done

~ Step 11 Completion tasks

GOFS Iy 2120 2002 DRMAAWG

Slide 11

DRMAA Guidelines

It should lead to straightforward programming model.

The API calling sequences should be simple and the API set
small.

The routine names should convey the semantic of the routine.
Avoid duplicated functionality,

interface overloading.

All jobs manipulation per process is available without explicit job
iterating.
The servers names are hidden, the DRMS is a black box.
Consistent API structure

— Em retum parameter, internal errors via global errno parameter
Data structures not exposed

GoFS Iy 2124, 2002 DRMAAWG

DRMAA Working Group 6/30/02

23

DRMAA Proposal
Slide 12

« Language bindings « Libraries
— CIC++
— Perl, Python
— Fortran, Java

— Serial / thread safe
— Tracing / diagnosis

« General features Advanced features

— DRMAA sessions — Debugging support

— Asynchronous job — Data streaming
monitoring — Security

— Protocol based — Categories

— Scalability

— Wide characters

GoFS Iy 2124 2002 oRMAAWG

Doc Version 1.6

Slide 13 Implementati cteristics

« C-API library interface - no protocol
— Simplifies utilization by ISV's
« Shared library binding
— Prerequisite to allow end user to select DRM
technology of their choice
« Library supports only one DRM system per
implementation

— Simultaneous support of different DRM systems is
beyond the scope of our project

GOFS Iy 2120 2002 oRMAAWG

« Init/exit
« Job template interfaces
— Allocate/delete
— Setter/getter job template routines
« Job submit
— Individual jobs
—One time
—Multiple times — templates?
— Bulk jobs, implicit parameterization
« Job monitoring and control
« Auxiliary or system routines
— trace file specification
— error message routines

GOFS Iy 2120, 2002 oRMAAWG

DRMAA Working Group 6/30/02

24

DRMAA Proposal

Functions to create/delete job template
— job_template *drmaa_allocate_job_template (void)
— void drmaa_delete_job_template (job_template *jt)
Setter/getter job template routines
— int drmaa_set_attribute(job_template *jt, char *name,
char *value);
— int drmaa_set_vector_attribute(job_template *jt, char
*name, char **values);

Doc Version 1.6

— char* drmaa_get_attribute(job_template *jt, char
*name);

— char** drmaa_get_vector_attribute(job_template *jt,
char *name);

GoFS Iy 2124 2002 DRMAAWG

Jobs submitted to the DRM system are

identified via a job identifier

For flexibility reasons a job identifier should be

of type char *

Single job identifiers are returned by

— int drmaa_run_job(job_template *jt, char *job_id)

Bulk job submissions return multiple job

identifiers

— int drmaa_run_bulk_job(char **job_ids,
job_template *jt, int start, int end, int incr)

GOFS Iy 2120 2002 DRMAAWG

Slide 17 tive DRMS Options

+ The end user interacts with the DRMS via
native_resource_options parameter.
— Simple solution
— DRMAA implementation ignores the DRMAA DRMS
implicitly used and disallowed options
— Dist. Appls. Developers and DRMS vendors are not involved
in the local environment spec.
— The burden is on the end users to define the execution
environment
—Need to know DRMS
—Need to know the remote application installation

GoFS Iy 2124, 2002 DRMAAWG

DRMAA Working Group 6/30/02 25

DRMAA Proposal Doc Version 1.6
Slide 18

Job Monitoring, Control, and Status

« Monitoring/Control functions
— int drmaa_control(char *job_id, int action);
— int drmaa_synchronize(char **job_ids);
— intdrmaa_job_ps(char *job_id, int *remote_ps);
« Blocking and non-blocking waiting for one or
more jobs to finish (like wait4(2))

— char *drmaa_wait(char *jobid, int *status, int
options, char **rusage);

— Use Posix functions drmaa_wifexited, etc. to get
more information about failed jobs.

GoFS Iy 2124 2002 oRMAAWG

Slide 19

Auxiliary Routines (proposal stage)

« Error/logging interfaces
— int drmaa_set_trace_file(char *file_name);
— int drmaa_trace_text(char *text);
— int drmaa_perror(char *text);
— char *drmaa_strerror (int error);
« Informational interfaces
— int drmaa_version(int *major, int *minor);
— char *drmaa_get DRM_engine();
— char *contact drmaa_get_contact();

GOFS Iy 2120 2002 oRMAAWG

DRMAA Working Group 6/30/02 26

