
GWD-TYPE: SEC The Daonity Team
Category: RG HP Labs, China, Beijing, China
TC-RG Wuhan University, Wuhan, China
Version 0.1, Feb 12, 2006 Huazhong Univ. of Sci & Tech, Wuhan, China

Daonity Specifications
Part I - System Design

Status of This Document

This working draft document provides information to the Grid community the work of Daonity
Project which aims to strengthen Grid Security Infrastructure (GSI) using the Trusted Computing
(TC) technology of Trusted Computing Group (TCG). At this stage this document is for public
comment purpose and does not define any standards or technical recommendations. As a
working draft, revisions may be made at any time in the public commenting period which we
designate to be the time space between GGF16 to GGF17, until a finalization announcement
which we expect to be at GGF17. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2006). All Rights Reserved.

Abstract
This document describes part of the work conducted by the Daonity team. Daonity is an R&D
project in Trusted Computing Research Group (TC-RG), SEC Standard Area, Global Grid Forum,
with a mission to strengthen Grid Security Infrastructure (GSI) of Globus Toolkit (GT) by applying
the Trusted Computing (TC) technology of Trusted Computing Group (TCG). The part of the work
described in this document is a specification of the system design of the Daonity system.

Contents

Abstract ...
1. Introduction ..

1.1 Trusted Computing ..
1.2 Grid Security Infrastructure ...
1.3 Grid Security Requirements ..
1.4 Problem with the Current Grid Security Practice ..
1.5 Daonity’s Contribution ...

2. Daonity System Design – An Abstract View ...
2.1 Daonity Network Topology ...
2.2 Middleware System Architecture ...
2.3 Standard Approach to Applications of the TC Technology ..

3. GSI Innovation ...
3.1 Workflows ..
3.2 Architecture
3.3 Authentication ..

3.3.1 User Authentication ..
3.3.2 Platform Authentication ..

3.4 Authorization ...
3.4.1 Grid Map File ..
3.4.2 Community Authorization Service (CAS) ...

3.5 Credential Management ..
3.5.1 Certificate Authorities ...

TC-Grid@chinagrid.edu.cn 1

GWD-TYPE: SEC The Daonity Team
Category: RG HP Labs, China, Beijing, China
TC-RG Wuhan University, Wuhan, China
Version 0.1, Feb 12, 2006 Huazhong Univ. of Sci & Tech, Wuhan, China

3.5.2 Credentials ...
3.5.3 MyProxy Protocols ...
3.5.4 Authentication Center ...
3.5.5 Distributed Proxy Agent ..
3.5.6 Portal

3.6 Single Sign-On
3.6.1 Client Based ...
3.6.2 Server Based ..

4. GSI Context Manager ..
4.1 Context Relationship ...

4.1.1 Context Class ...
4.1.2 Policy Class ..
4.1.3 TPM Class ..
4.1.4 Key and Cryptography Service Class ..
4.1.5 PCR Composite and Hash Class ...

4.2 TSP Context ..
4.3 Memory Management and Context ...
4.4 TSS Core Service Management ...
4.5 Design attention of the TCSD ...

5. Key Management ...
5.1 Term Definitions ...
5.2 Overview ...
5.3 Model of Key Storage ..
5.4 The Hierarchy of the Key Storage ...
5.5 Key Management in TSS ..

5.5.1 Key Cache Manager ...
5.5.2 The Structure of Key Cache Manager ..
5.5.3 Persistent Storage in TSS ..
5.5.4 Cryptography Service in TSS ...

5.6 Key Cache Manager Functions for TPM’s Interface ...
5.7 TSS Load Key Flow Diagram ..
5.8 Key/Credential Migration ...

5.8.1 Background ..
5.8.2 Solution ...

6. File Protection Management ..
6.1 Background
6.2 PCR ...
6.3 Protect Critical Files by PCR ...
6.4 Intensive Solution ..

7. TPM Management ..
7.1 TPM class ..

7.1.1 Definition of Basic Structures ...
7.1.2 Management of TPM Object ..
7.1.3 TPM class Specific Methods in TSPI ...

7.2 TCS PBG Functions ..
7.2.1 TCS PBG working flow ...
7.2.2 TCS PBG Interface ...

7.3 TCG Device Driver Library (TDDL) ...
TDDL Interface ..

8. Session Authorization Management ..
8.1 Motivation ..
8.2 Solution ...

TC-Grid@chinagrid.edu.cn 2

GWD-TYPE: SEC The Daonity Team
Category: RG HP Labs, China, Beijing, China
TC-RG Wuhan University, Wuhan, China
Version 0.1, Feb 12, 2006 Huazhong Univ. of Sci & Tech, Wuhan, China
9. Security Considerations and Analysis ..
Author Information ..
Glossary ..
Intellectual Property Statement ...
Full Copyright Notice ..
References ...

TC-Grid@chinagrid.edu.cn 3

Daonity Specification The Daonity Team
Part I – System Design

1. Introduction

Grid security is a key component in Grid computing. The mainstream Grid security solution, Grid
Security Infrastructure (GSI) for Globus Toolkit (GT), offers comprehensive security services. This
is achieved by applying public-key cryptography, cryptographic protocols methodologies and the
necessary infrastructural supporting services in which public-key authentication framework (PKI)
is the main component. Although an important development from the provisions of security
services for distributed computing, it is considered that there is much room for further
strengthening GSI in the direction that Grid security can make a clear distinction from distributed
computing security. A desired distinction would be that security services for Grid security should
manifest and facilitate the Grid feature of advanced resource sharing. It is reasonable to expect
that to make such a distinction it requires to go beyond the conventions of distributed computing
security solutions.

A useful security service from the trusted computing technology (TC) of Trusted Computing
Group (TCG) is behavior conformation which can confine the users including the owner of a
computing platform to behavior desired by a remote user who may be participating in a
“gameplay” on the platform. This security service is practically achievable in the TC technology
because in TC every platform has a tamper protection hardware module called Trusted Platform
Module (TPM) to set the desired behavior for the software systems running on, and users using,
the platform. In May 2005, the SEC Standard Area of Global Grid Forum set forth an investigation
effort on how this feature of TC can make a positive impact on Grid security. This is the Trusted
Computing Research Group (TC-RG). As following TCG’s open specifications many computing
platform manufacturers have been developing and marketing TCG products, part of the TC-RG’s
work is designated to starting exploring available TCG technologies and developing their trials for
Grid security. This is the mission of Project Daonity.

An non-trivial result from the Daonity team’s investigation is that, a TPM, even sparsely deployed
in an early stage of the TCG technology deployment, can be a piece of shared security resource
to enable strong and advanced Grid security solutions. Therefore, with TPM as a piece of shared
resource, it is natural for the TCG technology to support the Grid feature of resource sharing even
in security’s own right. With this understanding and some insights gained in our investigation, the
Daonity team has been, following the stipulation of the TC-RG Charter and Milestones,
conducting a system development work to design and implement a TCG enabled GSI system.
This working draft document specifies the full system design of the Daonity system.

1.1 Trusted Computing

In recent years, increased reliance on computer security and the unfortunate fact of lack of it,
particularly in the open-architecture computing platforms, have motivated many efforts made by
the computing industry. Among these is the development of Trusted Computing (TC). In 1999 five
companies – (then Compaq), HP, IBM, Intel and Microsoft -- founded the Trusted Computing
Platform Alliance (TCPA). The motivation of TCPA was to add trust to open-architecture
computing platforms. In 2003 the TCPA achieved a membership of 190 plus companies, when it
was incorporated to the Trusted Computing Group (TCG). TCG is a vendor-neutral and not-for-
profit organization for designing, specifying and promoting industrial standards for the TC
technology. The TCG work has so far been developed to contain sufficient innovations and
become a standard methodology for adding trust and security to open-architecture computing
platforms.

The TCG's approach to adding trust is to integrate to a computer platform a hardware module
called Trusted Platform Module (TPM) with tamper-protection property and let it play the role of
an in-platform trusted third party agent. It is intended that such an agent can function to enforce a
conformed behavior for software systems running on the platform and the users using the

TC-Grid@chinagrid.edu.cn 4

Daonity Specification The Daonity Team
Part I – System Design

platform. Under the tamper-protection assumption which is practically achievable using various
cost-effective hardware design and implementation techniques, a software system or a user,
including one which is under the full control of the platform owner (such as a root user in Unix or
Administrator in Windows), cannot bypass security policy set by the TPM. This is the so-called
behavior conformation property of the TC technology. For a very simple example of behavior
conformation, the TPM can prevent the owner of a platform from accessing users’ confidential
data. It worths pointing out that this specific and simple case of behavior conformation will
constitute the major technical contribution from Daonity to improving the current Grid security
practice.

The following TCG documents which are relevant to the work of this document are available at
the “Downloads area” of TCG’s website <www.trustedcomputinggroup.org>:

1 TPM Main, Part 1, Design Principles, Speci_cation Version 1.2, Revision 85, 13
February 2005.

2 TPM Main, Part 2, TPM Structures, Speci_cation Version 1.2, Level 2 Revision 85, 13
February 2005.

3 TPM Main, Part 3, Commands, Speci_cation Version 1.2, Level 2 Revision 85, 13
February 2005.

4 TCG Speci_cation, Architecture Overview, Speci_cation Revision 1.2, 28 April 2004.

1.2 Grid Security Infrastructure

Similar to security services for distributed computing systems, important security services which
GSI requires are: entity authentication, user authorization, message confidentiality, data integrity,
and undeniability to a commitment. GSI achieves these services through innovative applications
of standard public-key cryptographic solutions which we overview below.

For entity authentication, message confidentiality and data integrity, GSI includes both resource-
and client-side mechanisms. In the resource side, GSI security mechanisms include X.509
credentials for identifying the resource. In the client side, these include facilities to create
temporary credentials, called a proxy, for performing single sign-on and delegation. The client
performs mutual authentication with the target resource using the above certificates and
establishes a secure, encrypted communication channel by applying the Transport Layer Security
(TLS) protocols. In GT4, GSI also supports message-level security which implements security
services from WS-Security and WS-Secure Conversation specifications. By using this, it is
possible to achieve security protection at per-message level for SOAP messages. In GT4,
transport-level security using TLS protocols is set as the default because of its performance
advantages. This setting will be deprecated as message-level security improves in performance,
but that is not envisioned to happen or likely to happen in any near future.

For authorization, the client can choose to delegate its credentials to the resource to enable
subsequent resource access without further intervention. This is done by the resource side
making use of the grid map file to associate a presented certificate with a local user account. It
can then spawn processes using the local user account's authorization privileges. Optionally, the
client can make use of tools such as Community Authorization Service (CAS) for fine-grained
authorization. Since GT4 messages are Simple Object Access Protocol (SOAP)-based, it is also
possible to turn on message-level security to provide protection for and to ensure integrity of
these messages.

GSI implements security services by applying standard security techniques from various standard
bodies and security specifications from the Web services community. In GT4 security is
composed of both Web-services-based and non-Web-services-based elements. GSI has been
traditionally based upon public-key cryptographic techniques for all its security functionalities. It
uses X.509 end-entity certificates (EECs) for establishing identities of persistent entities such as
users and resources. It also introduces the notion of X.509 proxy certificates to support the
delegation and establishment of temporary, often short-lived, entities. GSI treats both of these

TC-Grid@chinagrid.edu.cn 5

Daonity Specification The Daonity Team
Part I – System Design

types of certificates equivalently.
1.3 Grid Security Requirements

The primary requirements by Grid security are:

1) Need for secure communications for the Grid setting of virtual organizations (VOs). A VO
typically is composed of users and resource providers across conventional organizational
boundaries. Thus a centrally-managed security solution won’t suit GSI.

2) Ease of use by users. An important element in this requirement is the need for
provisioning “single sign-on” for users, including delegation of credentials for computations
that involve multiple resources and/or sites.

3) Applications of standard technologies. This not only facilitates fast and ready deployment
of the Grid technologies, but also helps to ensure correct applications of security
techniques.

1.4 Problem with the Current Grid Security Practice

GSI actually meets requirements (2) and (3) in Section 1.3 very well. In specific, these are
achieved via innovative applications of public-key certification infrastructure (PKI), proxy
certificates and MyProxy online servers. We shall omit describing these techniques here as they
should already be familiar to the expected reader of this document.

It is however our understanding that the current GSI practice does not make a noticeable impact
on meeting the requirement (1) in Section 1.3. Let us consider the most general setting for a VO
of users and resource providers. In order for the VO to be able to define flexible and may be ad
hoc security policies which need to be applicable to these entities in a uniformed manner, it is
desirable that each of these entities has strong security means which can enforce them in the
execution of the policy. For example, a VO policy may stipulate that a resource (or a file) can
become usable (accessible) by a user only after the user has conducted certain work to have
satisfied a collaboration or service policy. However, in the current GSI practice, security means
that a user has an exclusive entitlement to an action provided a cryptographic credential is
available. Indeed, in a non-TC environment, it is usually the case that a user has the full access
to, and unlimited usage of, an owned cryptographic credential, and this is a consequence of
missing a behavior conformation service. Without behavior conformation, it is very difficult for the
VO to apply fine granularity control on VO policies. To put the problem in another way, the current
GSI practice has coarse policy enforcement on VO entities: an entity is either an insider who then
can do everything, or an outsider otherwise.

Conventional applications of standard security technologies for distributed computing do not
permit the resultant Grid security practice of the current GSI to make a clear distinction from the
counterparts in distributed computing.

1.5 Daonity’s Contribution

Project Daonity attempts to solve the Grid security problem we discussed in Section 1.4 by
making use of the behavior conformation security service from the TCG technology. In the first
phase of the project we shall only consider to develop client side middleware systems to use
TPMs. This phase 1 confinement is because we consider that improving policy enforcement is
mostly needed in the client environment.

Although major computing platform vendors have been marketing TCG products for some time
and as a result TPMs have already reached a non-trivial extent of deployment, we recognize and
anticipate that TPMs as new hardware equipment to computing platforms cannot become
universally available within a short period of time. In fact, it is likely that many users will continue
using client platforms without TPM. We overcome this problem by allowing use of remote TPMs
as shared security resource. This can be achieved by a cryptographic protocol solution which

TC-Grid@chinagrid.edu.cn 6

Daonity Specification The Daonity Team
Part I – System Design

involves an extension to the functionality of the online services of the MyProxy server.

A high level description of this protocol solution to sharing of TPM can be as follows. Let Alice be
a VO user whose platform has no TPM.

1) Alice registers with MyProxy using a conventional credential, such as one based on a shared
password or a SecureID like mechanism (of course, the registration should go through out-
band communications between Alice and MyProxy);

2) To use a remote TPM, Alice obtains a public key of the target TPM (according to the most
basic property of behavior conformation, this implies that the matching private key is inside
the TPM and cannot be accessed or used, even by the TPM owner, for any purpose other
than a behavior conformation designation);

3) Alice then sends a request, with the public key of the target TPM, to MyProxy for creating a
public-key based cryptographic (proxy) credential for her to use the target TPM;

4) MyProxy can double encrypt the private key of Alice’s proxy credential, using the secret
shared with Alice and the public key of the target TPM.

Thus, provided the TPM owner permits Alice to use the target TPM as a shared resource (the
owner decides according to the rule of the gameplay), Alice can then enjoy strong and policy-
conforming security services which are offered from the TPM owner.

In this way, not only can Daonity provide a strong Grid security solution suiting VO environments,
but also the solution be provided without damaging GSI’s single sign-on property.

There are also other innovative offers from Daonity’s applications of the TC technologies. We
shall detail them in the remainder of this document.

2. Daonity System Design – An Abstract View

In this section we provide an abstract view of the Daonity system.

Grid CA
with

EK CA

Clents with
TPM

(Proxy Agent)

MyProxy
(Proxy Repository)

Domain
Manager

(Domain AA,
Privacy CA)

Client where user
logons Portal

Sign U
ser Credential

Sign EK Credential

Sign Attrib
ue Credential

Sign
 AIK C

red
en

tia
l

Delegate Proxy

Deleg
ate

 Prox
y

Request ID Credential for User

Show User Proxy

Show User Proxy

Inform
ation C

ertify

Information Certify

Submit jobs

Figure 2-1. Daonity Network Topology

TC-Grid@chinagrid.edu.cn 7

Daonity Specification The Daonity Team
Part I – System Design

2.1 Daonity Network Topology

Figure 2-1 depicts the network topology of the Daonity system. Grid CA, MyProxy, Portal and
User Client are components in the legacy GT. Grid CA certifies users and resources by issuing
credentials to them. MyProxy helps users to manage short-lived proxy credentials. Portal is the
gate of Grid services; many operations of a user can be performed on it. Daonity focuses on
enhancing security using the TC technology. Although we anticipate that most of these servers
and clients have TPMs, Daonity shall only require some of the client side platforms to be
equipped so. As illustrated in Figure 2-1, there are three new components that are not in the
original GSI. They are: (1) Endorsement-key (EK) CA and (2) Privacy CA which are the
components in the TCG specification, and (3) Proxy Agent which is our add-on for Daonity. We
will discuss these new modules and the workflow of Daonity in a moment.

2.2 Middleware System Architecture

TCG extended GSS-API

JCE (SPI)

JavaGSS

Java GSS-API C GSS-API

C GSS

SSL

OpenSSL Crypto API

TPM

TSS Device Driver Library

TCG Crypto Security

Hardware CSP Software CSP

Crypto APITCG Security Extension

GSS API

Grid middleware (Globus Toolkit, CGSP)

Legacy grid applications TCG enabled grid applications

HardwareSoftware Crypto Package

Original GSI

TSS Core Service

TSS Service Provider

Special Security Module for
Grid

TPM Device Driver

Figure 2-2. TC-enhanced Grid Security Infrastructure

Figure 2-2 depicts an architectural structure of a Grid security infrastructure which is enhanced by
the TC technology. The work of Daonity focuses on the gray components in the diagram. All the

TC-Grid@chinagrid.edu.cn 8

Daonity Specification The Daonity Team
Part I – System Design

work which is involved in Daonity is below the GSS API. Therefore, Grid applications in the
legacy system can run in Daonity without modification. The work of Daonity can be vertically
divided into two parts: GSI related and TSS (TCG Software Stack) related. TSS is a TCG
component providing the system developer a standard means to interact with the TPM hardware
and utilize the cryptographic function of the TPM. The work in the GSI related part is to enhance
the original GSI functions. The original GSI gets cryptographic services by calling standard Crypto
API (SPI in Java, OpenSSL Crypto API in C). Cryptographic service providers (CSP) are the code
implementations of crypto algorithms which can be in either software (running in the general
CPU) or hardware (running in, e.g., a smartcard or a USB token). With the same idea which TCG
adopts, CSPs can be implemented in the TPM (with Crypto API calling the TCG Crypto Security
Services). The “Special Security Module for Grid” includes certificate management, single sign
on, authorization, and authentication.

2.3 Standard Approach to Applications of the TC Technology

In Daonity, the applications of the TC technology follow the TCG standard software approach.
This is Trusted Software Stack (TSS for short).

Figure 2-2 illustrates the Daonity architecture, which is composed of the trusted hardware module
(TPM), trusted software stack (TSS) components and Grid security infrastructure. TSS
components provide fundamental resources to support the use of the TPM.

The primary design goals are:
� To supply a secure container for grid application
� To improve grid authorization and authentication
� To provide secure mobile grid access with key migration
� To manage TPM resources

Based on the TCG TSS specification, we classify our design into five Parts:
� Context Management (including TSP Context and TCS Context Management)
� Key Managements (including key tree hierarchy, key storage and key migration)
� File Protection Management
� TPM Management (including TPM Object Management, TPM Parameter Block Generator

and TCG Device Driver Library)
� Session Authorization Management

� Context Management

It plays an important role in our architecture, including TSS context manager, TCS context
manager and context communication. Through context, different modules and different layers can
share knowledge and TPM can control all modules and layers in secure ways.

From the viewpoint of a user, TCS and TSP layer context provide a container to access TPM. It
conceals different trusted hardware, different key management and different trusted attestation
solution from user.

From the viewpoint of system, TSP layer context provide a channel to communicate with working
objects, such as key management module, file protection module and etc. TCS layer context
handles requirements from TSP layer context, authenticates TSP layer context and management
special core service module such as KCM module, TPM PGB and etc.

� Key Management

There are several types keys in Daonity. All keys are protected by TCS PS (Persistent Storage)
or TSP PS and accessed by UUID (Unified Unique Identity), except of some important key, which
can’t be exposed outside TPM. UUID is a unique name of keys for application layer users.

TC-Grid@chinagrid.edu.cn 9

Daonity Specification The Daonity Team
Part I – System Design

In PS, parent key encrypts its children keys. When a user uses its key, he should have an
authorization from its parent key. In TPM parent key and parent and parent key are decrypted
and registered for decrypt its children key recursively. Once a user key is authorization, this user
will get a key handle in TPM but still don’t know the key’s plain text.

Key Cache Management is a cache for restricted TPM. Its responsibilities are to cache the key
handles that are used recently and schedule key handles when request comes.

When a key is migrated to another TPM platform, Key manager would wrap this key in special
way and securely register this key in remote TPM.

� File Protection

File Protection is our special offers for Grid platform. In grid application, the file named GridMap is
an urgent resource. In our protection solution, modifications in this file will be audited,
authenticated and protected.

� TPM Management

TPM is our trusted hardware. According to three layer of TSS, we give a TPM Object of user layer
provides high-level interface to TPM for application, a PBG of system layer for communication to
the TPM and a TDDL for device driver layer.

� Session Authorization Management

TPM shared mode arise authorization and authentication among TSP, TCS and TPM layer.
Session Authorization Management provides protection for session security. It communicates
with TPM through OSAP or OIAP protocol defined in TCG specification.

3. GSI Innovation

This section describes necessary modifications to the GSI system due to applications of the TC
technology.

3.1 Workflows

TC-Grid@chinagrid.edu.cn 10

Daonity Specification The Daonity Team
Part I – System Design

Grid CA

MyProxy Server Portal Server

Privacy CA Server

User’s System 1

Grid ServicesGatekeeper Server

1

0

2

2

3

2.1

4

1. 1

Figure 3-1. Workflow for Grid System

Grid CA

Portal Server

Privacy CA Server
User’s System 2

Grid ServicesGatekeeper Server

1

0

1.1

3

4

1.0

Figure 3-2. Workflow for Grid System

The whole Grid environment can be described as Figure 3-1. A user can submit his job to Grid
Job Management Service directly; he can also submit his job through the Grid Portal indirectly.
Before submitting his job, the user needs to acquire his identity certificate and proxy certificate.
When submitting a job, the user must provide his proxy certificate so that the Job Management
Server can deliver the job as the identity of the user. The user can apply for an identity certificate
from Grid CA. The user can then create a proxy certificate to by him using the credential in his
identity certificate. If a user does not have an identity certificate, he can also obtain a proxy
certificate from MyProxy server. Proxy certificate can be delegated further if the certificate policies
allow.

Because of the utilization of TCG technology, we use the Private CA Server, which can sign AIK
(randomly generated public/private key pair with the private staying in the TPM) certificates, both
for users’ platforms and for services’. A Private CA is as a branch of the System CA. Two
platforms that have AIK certificates and/or identity certificates can authenticate each other

TC-Grid@chinagrid.edu.cn 11

Daonity Specification The Daonity Team
Part I – System Design

through using these credentials. An AIK certificate can be used as a platform identity credential.
Its trust level is decided by the system’s policy.

Proxy Certificate depository (MyProxy server) is an online certificate management server, which
can manage users’ certificates and proxy certificates. MyProxy can also provide the proxy
certificate renewal service by negotiating with the Job Manager. As a security sensitive point in
the grid system, MyProxy server needs higher security protection. Moreover, the system requires
that users must use non-anonymous connection when they communicate with MyProxy server.
Internal Components

3.2 Architecture

The system structure is as Figure 3-3.

TPM

TDDL

TCS

TSP

TSP
CSP

TSP
PSM

Crypto
Infrastructure

GSI

PKI

Others components

Applications

Figure 3-3. Architecture of GSI in Daonity

The modules in Figure 3-3 are as follows:
� TPM (Trusted Platform Model): This is a TCG hardware module. It provides low-level

functions. These functions include input/output interface, Non-volatile storage, Attestation
Identity Key, Program Code, Random Number Generator, SHA-1 Engine, Key Generation,
RSA Engine, Opt-ln, Exec Engine, TPM Device Driver, and so on.

� TDDL (TCPA Device Driver Library): This module provides a uniform interface for TCS
module and hides possible differences of TPMs manufactured by different vendors.

� TCS (TCG Core Service): This module provides a series of services for all TCG service
providers.

� TSP (TCG Service Provider): This module provides TCG services for application programs
and mainly provides two functions: context management and cryptography services.

� TSP PSM (Persistent Storage Manager): This module provides storage protection service for
the high-level users through using the function of cryptographic services and TSP.

� TSP CSP (cryptography service provider): This module encapsulates the cryptographic
functions of the TPM and provides optional cryptographic services for Crypto API. It mainly

TC-Grid@chinagrid.edu.cn 12

Daonity Specification The Daonity Team
Part I – System Design

provides the functions of random key generation, RSA key generation, RSA encryption,
SHA-1 hash, and so on.

� Crypto Infrastructure: This module includes OpenSSL API and JCE SPI. It provides
encryption, decryption, signature, validation and authentication.

� GSI (Grid Security Infrastructure): This module provides the services of certificate
management, authorization and authentication, etc.

� PKI (Public Key Infrastructure): This module provides the services of signature and
management of identity certificates and proxy certificates.

� Other modules of Grid Platform: Other Grid Platform modules besides security modules.

3.3 Authentication

Any grid subject should be authenticated before participating in grid. User and Service, even
platform need be certificated. Daonity focuses on security based on trusted computing.
Authentication in Daonity includes two levels, a higher level which is for user authentication, and
a lower level which is for platform authentication. Administrator can configure them.

3.3.1 User Authentication

Users submit their jobs with identity certificates. Users should logon grid portal to act as a grid
user, where identity-based authentication is enforced.

3.3.2 Platform Authentication

Platform is a computer terminal through which user can access the grid service. Here platforms
must have one TPM hardware and corresponding software components. Platform authenticates
each other with Attestation Identity Certificates.

3.4 Authorization

Grid service that relates to sensitive resource must be managed correctly. Everyone should be
authorized before access to grid service. There are two different authorization models, one is
identity based and the other is attributes based. The authorization mechanism based on identity
certificate converts unique ID to local account according to grid map file. The authorization
mechanism based on attribute certificate (called CAS, community authorization service) converts
unique ID to some attribute of the community, and then convert the attribute to local account.

3.4.1 Grid Map File

The authorization management of Globus platform is controlled by the “root” user of system,
which satisfies the autonomous requirement of Grid system in some sense. On the other aspect,
the overlap of grid platform controller and super user brings heavy administration burden.
Moreover, because of the coarse-grain access privilege of “root” user, the authorization file (Grid
Map-file) may be modified unintentionally, and then the integrity of the file can’t be guaranteed. It
is necessary to provide fine-grain access restrict for Grid Map-file.
The Grid Map-file protection module utilizes the function provided by “File protection
management” module (Section 4.3) which is a special module designed for the protection of
critical files.
The function of Grid Map-file protection module is as follows:

1) Repeal the existing editing methods to Grid Map-file (the function is provided by the operation
system, “vi” etc.), and design a special application (Protection Agent) to manage Grid Map-file.
Only the modification by the special application is considered valid and permitted, and the actual
and mirror Grid Map-file can be modified synchronously. Any other modification to the mirror Grid
Map-file is considered invalid.

TC-Grid@chinagrid.edu.cn 13

Daonity Specification The Daonity Team
Part I – System Design

2) For any valid modification to Grid Map-file, create the log data and store it into PS, and put the
digest of it into a in-TPM storage called Platform Configuration Register (PCR). (We will further
detail the notion of PCR in Section 6.)

3) Related keys (encryption key, signature key …) are created by TPM and also stored in the PS
of TPM.

The components of the Gridmap protection module are detailed as below:

Gridmap
Protection

Agent

TPM

GridmapTSS

Sign
Unbind

Renew

Signature
of Gridmap

Signature
Verification

Key generation

Sign Key
Encrypt Key

Encrypted Gridmap

Pubkey for Sign

View of Gridmap Administrator

Gridmap
utilization

Agent

View of Gridmap Requestor

Figure 3-4. Architecture of Gridmap Protection Module

The user of Gridmap protection module is divided into two types: Gridmap Administrator and
Gridmap Requestor.

The responsibility of Gridmap administrator is Gridmap modification, log creation, and resume of
Gridmap file. The encryption and signature of data is achieved by TPM (call the TSS API).
The responsibility of Requestor is checking the validity of Gridmap file before making access
control decision according to the entries of Gridmap. If invalid, the Requestor notifies the Gridmap
Administrator to resume the file.

The two type responsibilities are respectively called “Protection Agent” and “Utilization Agent”.
The use case of Gridmap protection module is as Figure 3-5.

TC-Grid@chinagrid.edu.cn 14

Daonity Specification The Daonity Team
Part I – System Design

Gridmap Administrator

Gridmap Protection Agent
<<uses>>

Gridmap Renew

Gridmap Modify

Gridmap Requestor

Gridmap Utilization Agent
<<uses>>

Signature Verify

<<uses>>

Gridmap Protection Module

<<extends>>

<<extends>>

<<extends>>

Figure 3-5. Use case of Gridmap Protection Module

3.4.2 Community Authorization Service (CAS)

Domain Attribute Authority is based on the original Globus authorization mechanism, Community
Authorization Service. This service based on is an attribute based authorization model. A
community is treated as a whole; and resource servers in the community grant their privileges to
some attributes of the community rather than identity of a user. A user in community has two
certificates, identity certificate, and community attribute certificate which is assigned by the CAS
server and designated some attribute of the community. When the user access resources in the
community, access control decision is made according to the community attribute in his attribute
certificate.

User wishing to access a CAS-enabled resource first contact CAS server and request a CAS
attribute credential, then resource server verify the credential and give appropriate rights to user
which is the intersection of rights granted by the resource server to the community and the rights
granted by the community to the user based on the user community attribution.

3.5 Credential Management

Credential management in Daonity focuses on the combination of Grid CA and EK CA, proxy
certificates, MyProxy server and innovation of grid portal. The new notion of EK (endorsement-
key) CA will be provided in 3.5.1 (b).

3.5.1 Certificate Authorities

a) Grid CA
Grid CA is an entity that issues certificates.

b) Endorsement Key CA
The endorsement key (EK) is a TCG notion. The EK CA issues the Endorsement certificate at the
first use of TPM hardware after the verification of TPM hardware. An EK is a public/private key
pair which is created to a new TPM (created by the TPM manufacturer). In the time of a new TPM
being activated for the first time by the owner, the platform runs a EK protocol with the EK CA.
The successful run of the protocol outputs an EK certificate. In all subsequent uses of the TPM,
the EK certificate plays the role of the TPM’s identity informing the remote user that the

TC-Grid@chinagrid.edu.cn 15

Daonity Specification The Daonity Team
Part I – System Design

communication is with a genuine TPM, rather than a, e.g., software simulation.

We need to deploy the EK CA and the Grid CA together in a TC enhanced grid security
environment.

c) Privacy CA
The PCA is used for signing the Attestation certificate. Each platform can have an unlimited
number of attestation certificates. An attestation certificate is an alias for an EK counterpart. The
plurality of attestation certificates (keys) forms a pseudonymous way to serve a privacy need for
the TPM user.

3.5.2 Credentials

a) User Certificates
A user certificate binds user’s ID and the public part of an asymmetric key-pair. Grid CA will verify
a certificate request and issue the certificate when receives the request from user endpoint or the
grid portal. The user can select mechanisms for key pair generation. In the original GSI, the key
generation uses software CSP of OpenSSL. On a trusted platform, the asymmetric key-pair can
be generated by the key pair generator that is a hardware component inside the TPM. The private
key generated by the TPM module is protected by a storage root key (SRK). Each TPM owner
has a unique SRK to protect the confidential data and keys which are bound to the TPM and
hence the platform in which the TPM is integrated (i.e., the confidential data and the key cannot
be used by any other platforms). We will further detail the notion of SRK in Section 5.3.

When using portal to make the above operations, the user can even delegate the certificate
request to the portal or the MyProxy Server.

b) Proxy Certificates
Proxy certificate is user’s short-term certificate that is established while a user logons portal or
submits job directly. Proxy certificate and user certificate have the same certificate structure; they
are different in the certificate’s validity time and the capability of delegation. The short-term proxy
certificate replaces the long-term user certificate to complete certification and authorization to
perform the job. In proxy certificate establishment procedure, the TPM module of the user or the
MyProxy server can be used to establish proxy certificate safely. The proxy certificate is managed
by the daemon of platform on which the submitted job is running.

The user can also give the management work of the proxy certificate to proxy certificate
repository. Proxy certificate repository can complete the creating, storing and updating of proxy
certificate. When user and the proxy certificate repository interact, the protection password of the
proxy certificate is establish by the user. The server makes use of the persistent storage to
protect all proxy certificates.

c) EK Certificates
The EK certificate provides the basic platform endorsement. At the first time using the TPM, the
platform needs to obtain EK certificate from EK CA. The process of EK certificate acquisition is as
follows:

-Taking out public key of EK
-Packing certificate request
-Sending request to EK CA
-Taking back the certificate

The structure of EK certificates is as follows:

TC-Grid@chinagrid.edu.cn 16

Daonity Specification The Daonity Team
Part I – System Design

Public Part of Endorsement
Key

TPM Model

TPM Manufacturer

EK CA’s Signature

Endorsement Credential

Figure 3-6. EK credential’s structure

d) AIK Certificates
Attestation Identity Key (AIK) certificate is used to verify each other between trusted platforms.
The process of creating AIK certificate is as follows:

Endorsement Cert

Conformance Cert

Platform Cert

Endorsement
key

Attestation
Identity Key

1.AIK
Pubkey

Privacy CA

TPM

Platform

2.Create a AIK
Cert request

3.Send the request
to the PCA

4.PCA Verifies the
request, and sign it

5.PCA encrypts
the AIK Cert
with pubEK

6.Decrypt the
AIK with EK

Figure 3-7. Flow of AIK request

The structure of AIK certificate is as follows:

TC-Grid@chinagrid.edu.cn 17

Daonity Specification The Daonity Team
Part I – System Design

Identity Label

Identity Public Key

TPM Model

TPM Manufacturer

Platform Manufacturer

Reference to TPM
Conformance

Reference to Platform
Conformance

Trusted Third Party
(Privacy CA)

Platform Type

Privacy CA’s Signature

Attestation Identity Credential

Figure 3-8. AIK certificate’s structure

e) Authentication Token
Authentication token according to the trusted proxy certificate can be used to carry out the
certification and grants. Authentication token is a certificate encrypted by Authentication center’s
Public EK. (Probably in MyProxyServer) An authentication token shown to a logon endpoint
means that the user specified in the token has been certified by the authentication center, so the
endpoint can believe in the user if the authentication center is well-known.

3.5.3 MyProxy Protocols

Proxy certificate repository reserves the original function, providing the on-line proxy certificate
management. Proxy certificate repository uses the management machine protected by TPM to
protect the proxy certificates of the users. Each proxy certificate is protected by the TPM’s
authorization information for the user, while the server can't obtain the private key information.
User can select the mode of protection and retrieve when he puts proxy to the repository. The
protocol of proxy certificate repository based on trusted computing is as follows:

MyProxyInit <-> MyProxyServer protocol

The following illustrates a MyProxyInit process connecting to a MyProxyServer process and
storing a proxy for later retrieval.

1) MyProxyInit will make a connection to the MyProxyServer at the host and port as specified by
its configuration or the user.

Important: MyProxyServer could be configured to require a trusted connection from client. When
the client and the MyProxyServer have TPM component, it will be running in trusted model.

2) MyProxyInit will initiate the GSSAPI context setup loop, with MyProxyServer accepting.

3) MyProxyInit will then send a message to MyProxyServer containing the following strings:

 VERSION=MYPROXYv2
 COMMAND=1
 USERNAME=<username>

TC-Grid@chinagrid.edu.cn 18

Daonity Specification The Daonity Team
Part I – System Design

 PASSPHRASE=<pass phrase>
 LIFETIME=<lifetime>
 And optional strings
 RETRIEVER=<retriever_dn>
 RENEWER=<renewer_dn>
 CRED_NAME=<credential name>
 CRED_DESC=<credential description>
The intent of the VERSION string is to allow the server to know if it is dealing with an outdated or
newer client.<username> and <pass phrase> are the strings supplied by the user to be used for
retrieval by the portal. <lifetime> is the ASCII representation of the lifetime of the proxy to be
delegated to the portal, in seconds. <retriever_dn> and <renewer_dn> are strings specifying the
retriever and renewer policy regular expressions. <credential name> assigns a name to the
credential, allowing multiple credentials to be stored for a given username.

4) MyProxyServer will then respond with either an OK or an ERROR message.

5) Next, the server will perform delegation with the client. The MyProxyServer will generate a
public/private key pair and send the public key to the MyProxyInit client as a certificate request.
MyProxyInit client will sign the request with its proxy private key and send the new certificate and
the entire certificate chain back to the server.

6) MyProxyServer will read the individual certificates, chain them back up together into new
delegated credentials and store them. The server also stores the retriever and renewer DN
strings if they are specified.

7) MyProxyServer will then respond with either an OK message if it successfully stored the proxy
or an ERROR message if an error occurred. For example, an error might occur when the stored
proxy already exists for the same username but belongs to another user.

8) At this point, both sides should close the connection.

MyProxyGet <-> MyProxyServer protocol

The following illustrates a MyProxyGet process connecting to a MyProxyServer process and
retrieving a proxy for use.

1) MyProxyGet makes a connection to the MyProxyServer as indicated by its configuration or
arguments.

2) MyProxyGet will initiate the GSSAPI context setup loop, with MyProxyServer accepting.

3) MyProxyGet will then send a message to MyProxyServer containing the following strings:
 VERSION=MYPROXYv2
 COMMAND=0
 USERNAME=<username>
 PASSPHRASE=<pass phrase>
 LIFETIME=<requested lifetime>
The message can also contain an optional string:
 CRED_NAME=<credential name>
The intent of the VERSION string is to allow the server to know if it is dealing with an outdated or
newer client.<username> and <pass phrase> are the strings supplied by the user to the portal to
be used for retrieval by the portal.

4) MyProxyServer will then respond with an OK, ERROR, or AUTHORIZATION message.

5) Next, the server will delegate the user credential to the client. The MyProxyGet will generate a

TC-Grid@chinagrid.edu.cn 19

Daonity Specification The Daonity Team
Part I – System Design

public/private key pair and send the public key to the MyProxyServer as a certificate request.
MyProxyServer will sign the request with the private key of the stored user credential and send it
as a new certificate back to the client along with the rest of the certificate chain of the stored
credential.

6) MyProxyServer will then respond with either a OK message if it successfully completed
sending the certificates or an ERROR message if an error occurred.

7) At this point, both sides should close the connection.

MyProxyStoreCertificate <-> MyProxyServer protocol

The following illustrates a MyProxyStoreCertificate process connecting to a MyProxyServer
process and storing a proxy for later retrieval.

1) MyProxyStoreCertificate will make a connection to the MyProxyServer at the host and port as
specified by its configuration or the user.

2) MyProxyStoreCertificate will initiate the GSSAPI context setup loop, with MyProxyServer
accepting.

3) If MyProxyServer asks platform level authentication, GSSAPI context should be established
with AIK credential before mutual authentication between user and server.

4) MyProxyStoreCertificate will then send a message to MyProxyServer containing the following
strings:
 VERSION=MYPROXYv2
 COMMAND=5
 USERNAME=<username>
 LIFETIME=<lifetime>
and optional strings
 RETRIEVER=<retriever_dn>
 RENEWER=<renewer_dn>
 CRED_NAME=<credential name>
 CRED_DESC=<credential description>
 KEYRETRIEVER=<retriever_dn>
The intent of the VERSION string is to allow the server to know if it is dealing with an outdated or
newer client. <username> is the strings supplied by the user to be used for retrieval by the portal.
<lifetime> is the ASCII representation of the lifetime of the proxy to be delegated to the portal, in
seconds. <retriever_dn> and <renewer_dn> are strings specifying the retriever and renewer
policy regular expressions. <key retriever dns> is a string specifying the key retriever policy
regular expression. <credential name> assigns a name to the credential, allowing multiple
credentials to be stored for a given username. <credential description> can provide additional
descriptive text to be displayed in MyProxyInfo requests, for example.

MyProxyServer will then respond with either a OK or an ERROR message.

5) Next, the client will send the users end-entity credentials to the server.

6) MyProxyServer will read the individual certificates and store it. The server also stores the
retriever, renewer, or key retriever DN strings if they are specified.

7) MyProxyServer will then respond with either an OK message if it successfully stored the proxy
or an ERROR message if an error occurred. For example, an error might occur when the stored
proxy already exists for the same username but belongs to another user.

TC-Grid@chinagrid.edu.cn 20

Daonity Specification The Daonity Team
Part I – System Design

8) At this point, both sides should close the connection.

MyProxyRetrieve <-> MyProxyServer protocol

The following illustrates a MyProxyRetrieve process connecting to a MyProxyServer process and
retrieving the end-entity credentials.

1) MyProxyRetrieve makes a connection to the MyProxyServer as indicated by its configuration
or arguments.

2) MyProxyRetrieve will initiate the GSSAPI context setup loop, with MyProxyServer accepting.

3) If MyProxyServer asks platform level authentication, GSSAPI context should be established
with AIK credential before mutual authentication between user and server.

4) MyProxyRetrieve will then send a message to MyProxyServer containing the following strings:
 VERSION=MYPROXYv2
 COMMAND=6
 USERNAME=<username>
 PASSPHRASE=<pass phrase>
 LIFETIME=<requested lifetime>
The message can also contain an optional string:
 CRED_NAME=<credential name/credential UUID>
The intent of the VERSION string is to allow the server to know if it is dealing with an outdated or
newer client. <username> and <pass phrase> are the strings supplied by the user to the portal to
be used for retrieval by the portal.

5) MyProxyServer will then respond with an OK, ERROR, or AUTHORIZATION message.

6) If the credential is protected by TPM, MyProxyServer will send a response asking for migration
information.

7) Next, the server will retrieve the user migration credential and send it to the client.

8) At this point, both sides should close the connection.

Storage protection plays an important part in grid security. Protection mechanism based on
trusted computing theory can resolve the problem of secure storage well. We need to provide a
series of functions which encapsulate the low-level functions provided by TPM so that the
program developers can use them easily. The BIO package in OpenSSL provides a powerful
abstraction for handling input and output. Many different types of BIO objects are available for
programmer. Referring to the implementation of other BIO objects, we add BIO_PS object and
BIO_BLOB object to the BIO package. There are two models of storage protection in proxy
certificate repository, which are illustrated in Figure 3-9.

TC-Grid@chinagrid.edu.cn 21

Daonity Specification The Daonity Team
Part I – System Design

TDDL
TPM

TCG Core Service

TCG Service Provider

Other BIO
types BIO_PS BIO_BLOB

BIO

BIO_Read,BIO_Write

Figure 3-9. Storage protection

3.5.4 Authentication Center

For the SSO of the trusted computing, we strengthen the MyProxy server by providing functions
similar to the authentication center.
The authentication center provides the guarantee of the platform’s user identity information. User
use this authentication token to attest himself to the remote machine.

3.5.5 Distributed Proxy Agent

In grid computing environment, machines and the members in the same domain has higher
dependability. The trusted platform with a TPM becomes the distributed proxy agent, providing
the possibility to share the trusted computing resource. The proxy agents take the work of proxy
certificate repository largely, so all users in the domain can use the trusted computing platform to
work.

TC-Grid@chinagrid.edu.cn 22

Daonity Specification The Daonity Team
Part I – System Design

User

Endorsement
CA Admin Privacy CA

Domain AA

Grid Portal

TPM

Client B
With TPM

TCS

TSP

Proxy Agent

TSP

Grid CA

Client A
Without TPM

BrowserApplication

Client D
with TPM

Client C
without TPM

Key Migration

EK Cert AIK Cert

U
ser Cert

Logon

Verify & Attestation

Attribute C
ert

Out

Out

R
em

ote arrange

Remote arrange

Figure 3-10. Distribute Proxy Agent

In Figure 3-10, the domain has two kinds of machines. Client A and Client C has not TPM, client
B and D has TPM. When user Alice is performing on client A, she may select client B to act as a
proxy agent for her. The proxy agent in client B is a daemon process for anyone in the same
domain, which is upon the TCG software stack. The agent contacts with the Grid portal while user
Alice wants to submit a job from the Grid portal.
There are three new protocols in Daonity include Remote Arrange, Key Migration and Attestation.
Remote Arrange protocol is defined for clients different in TPM status. It works between local TSP
layer and remote TCS daemon.
Attestation protocol is not detailed here.

3.5.6 Portal

a) User Registration
User registration is done on grid portal; user need submit enough personal information. After the
approval of grid managers, a requestor becomes a legal grid user with an identity credential. The
registration policy (accept the user or not) is determined by grid policy. Using trusted platform or
not can be specified by administrator.
Important: Here we assume that the grid environment uses the portal as its only entrance and
anyone should be the user of portal website

b) Platform Registration
The legal platform of grid environment can request the platform EK credential from grid portal at
the beginning. And this operation needs platform administrator authorization – there is no
limitation that platform administrator must be a user of grid. The platform should provide proper
platform information and credential description while requesting credential.

3.6 Single Sign-On

There are two modes for single sign-on: a client based and a server based.

TC-Grid@chinagrid.edu.cn 23

Daonity Specification The Daonity Team
Part I – System Design

3.6.1 Client Based

MyProxy

Client A Client B
With TPM

Proxy
credential

Proxy
Credential

Protected by
PubEK of B

Role migration without password

Figure 3-11. Client Based Single Sign-On
The proxy certificate that its related private key is protected by TPM does not have the single sign
on function because the private key can’t be used without pass phrase any longer. Daonity
designs a new usage of certificate for SSO. As Figure 3-11 shows, the user on Client A can
access the MyProxyServer and delegate a proxy certificate. When delegating his proxy certificate
to the MyProxyServer, the user can specify which destination the proxy certificate will be used on.
The destination may be a common host, a certain organization or some host with special
attribute. Thus, MyProxyServer can encrypt that proxy certificate with the destination’s public key
which can be any public key binding to the destination platform. The proxy certificate includes the
user’s privacy information that is revealed to the destination. The destination will access MyProxy
server directly and obtain the legal proxy certificate according to the user information. The
destination decrypts the encrypted proxy credential, and if the identity in the decrypted proxy
certificate actually accords with logon user, the destination will consider that the user is the right
one. This mechanism realizes the single sign-on for the user.

3.6.2 Server Based

Server based model provides more security than client based model. User can restrict the usage
of proxy certificate binding to a destination. For further exploiting the TPM platform, we design
another SSO mechanism shown in Figure 3-12. This model needs some improvement in the
MyProxy server that an authenticate server is added. It also needs that the MyProxy server has a
TPM and corresponding certificates.

When user signs on the improved MyProxy server from client A, the server authenticate user’s
identity first, the authentication may base on user identity certificate. After this step, user can
delegate a proxy certificate to MyProxy server. The proxy certificate is encrypted by the platform
certificate private key of MyProxy server, and then returned to the user. As the Figure 3-12
described, the user will hold the encrypted proxy certificate that act as authentication token when
user access other terminals, e.g. Client B. The terminal can authenticate the user’s identity by
verifying the encrypted proxy certificate.

TC-Grid@chinagrid.edu.cn 24

Daonity Specification The Daonity Team
Part I – System Design

Proxy
Credential

Client A Client B
With TPM

Authentication
Token

Role migration without password

Authentication
Center

MyProxy with TPM

Authentication
Token

Transport

Protected by MyProxy PubEK

Verif ication

Figure 3-12. Server Based Single Sign-On
The assumption of this model is that users can hold his proxy certificate in security. User can
store the encrypted proxy certificate in secure USB equipment or personal hand-hold equipment
like PorKI. In sign-on port, the authentication to user identity is the authentication to MyProxy
server. In this way, server based model achieves SSO function.

4. GSI Context Manager

There are two kinds of context in the TSS architecture: TSP context and TCS context. The
context object in TSS environment is similar to the process context maintained by an operating
system. TSP context contains information about the application’s execution environment, such as
the identity of functional modules; secret shared among secure modules and communication
among remote TSS modules. Each object also relatively has its context handle to share
knowledge.
The relation between context and other modules is very important for understanding how the
context manager works. According to TSS specification, in TSP layer, each module is considered
as an object, so we describe this relationship in object-oriented like language.

4.1 Context Relationship

In TSP layer, several types modules are defined as the following objects; we simplified the
modules into five parts:

4.1.1 Context Class

This class contains information about the application’s execution environment, such as the
identity of the working object and the transaction/communication with other TSS-Software
modules (e.g. TSS-Core-Service)

4.1.2 Policy Class

This class is used to configure policy settings and behaviors for the different user applications.

4.1.3 TPM Class

One purpose of the TPM object is to represent the owner for a TCG subsystem (TPM). The
owner of a TPM is comparable with an administrator in the PC environment. For that reason there

TC-Grid@chinagrid.edu.cn 25

Daonity Specification The Daonity Team
Part I – System Design

exists only one instance of the TPM class per context. This object is automatically associated with
one policy object; which must be used to handle the owner authentication data.

4.1.4 Key and Cryptography Service Class

This class is used for encryption and decryption. And to join externally (e. g. user, application)
generated data to a TCG-aware system (bound to PCR or Platform).

4.1.5 PCR Composite and Hash Class

This class provides a comfortable way to deal with PCR values (e.g. select, read, write). An
object handle of such a class is used from all TSP functions that need PCR information in its
parameter list.Provides a cryptographically secure way to use these functions for digital signature
operations.

When current Application needs to use one class, its relative object will change to the working
object. We use handle (Such as Context handle, Key handle, TPM handle, and etc) to access
working object.

4.2 TSP Context

TSP Context realized the connection between application and TSS. Application creates context
by calling Context_Create function, and then, it can call functions related to working objects in
TSP, described in Figure 4-1.

Figure 4-1. Create working object through Context

In TSP, Context makes relation with working objects by context handle, which are described as
Figure 4-2:

Figure 4-2. Object Relationships in TSS

The relationship is described as follows:
� Application and Context
One application is corresponding to a context handle.

� Context and TPM

TC-Grid@chinagrid.edu.cn 26

Daonity Specification The Daonity Team
Part I – System Design

When context have been created, there is a TPM object is also created by using this context
handle. So, they are corresponding to another.

� Context and Working Objects
One context handle may be corresponding to any working Objects. If Working Objects does not
be created, there is no relation between Working Objects and context, which means Zero.

� Context and Policy
After creation of a context, a default policy is created and each new created object is
automatically assigned to this default policy. The default policy for each working object exists until
a new policy object is assigned to the working object.

� Policy and Working Objects
A new policy may be assigned to several objects like key objects, encrypted data objects or a
TPM object. Each of these objects will utilize its assigned policy object to authorize TPM
commands. TSP context object includes the secret mode (such as popup, callback and so on).
When secret is needed to set, it must find the current TSP context handle, and then get the secret
mode on which setting secret must base.

In every object, the TSP context handle is only corresponding to the TCS context handle. If one
object needs to work from TSP to TCS, it must verify the TCS context handle to see whether it
exists and whether it’s corresponding to the TSP context handle. If verified, the object can work in
TCS.

4.3 Memory Management and Context

Memory management in the TSP is based on a context object. Each allocated memory is
associated with the TCS that the current TSP context is associated with. This will enable easy
cleanup of memory allocated by a TCS for one or more TSP contexts that may close unexpected.

This rule can be applied to protect remote computing platform against memory overflow or
memory leakage. We can define a clear memory boundary before application running, verify
memory usage when resource is shared and release memory after task is over. It will lead to a
more trusted grid-computing environment.

4.4 TSS Core Service Management

TCSD is a management process of the TCG Core Service, its functions detailed as follows.
� Manage TCS Service and
� Deal with TSP requests and call related modules

The role TCSD plays in TSS structure and the interactions among the components of TSS are
described in Figure 4-3.

TC-Grid@chinagrid.edu.cn 27

Daonity Specification The Daonity Team
Part I – System Design

Figure 4-3. Relationship between TCSD and other TSS components

TCSD is divided into two parts: TCSD management component and TCSD RPC server
component. The main components of TCSD and the flow chart can be seen from the figure
Figure 4-4 below:

Figure 4-4. Workflow of TCSD

TC-Grid@chinagrid.edu.cn 28

Daonity Specification The Daonity Team
Part I – System Design

4.5 Design attention of the TCSD

TCSD acts as TCS service manager and maintains the resource related with TCS. In our design,
TSP finds the TCS service number, sets the request data in a packet and sends to TCSD uses
RPC way, and then it is blocked for result. TCSD receives the TSP request, gets the request
data, find the TCS service table using the TCS service number, and sends the request data to
related TCS services. After TCS service dealing with the request, TCSD gets the result from TCS
service, sets the data to a packet and sends it to TSP. The TCSD is multi-thread and it can deal
with multi request. User application thread which call TSP is waked up after receives the TCSD
packet.

We separate the TCSD design in two parts:

The first part is TCS service management. It contains three parts:

1. TCS service initialization. Including reading configure file, doing some initial work such
as PS region, cache and log.

2. TCS service maintains. Including managing related data and structure.

3. TCS service quit. Including releasing resource and save some data

The second part is TCSD RPC server. Including data exchange between TSP and TCSD, data
exchange between TCSD and TCS, TCS service description and thread mechanism. So we
design the packet format and other data structure.

The special attention should be paid for some factors that are listed below:
� Daemon process of system. TCSD is the daemon process of system, acts as a system

service. So it is important to design the TCSD from system service layer. The dependability
is the most important.

� Configuration of TCS. In order to dynamic change some parameters after TCSD has been
installed, the TCS service should be configurable. We use the configure file to set and get
some parameters.

� Security. The TCSD is a system service, it has to read and write the files, so it is important to
set the user right and group right correctly to protect the files and TCSD security, prevent
privacy data from revealing.

� Working mechanism. According to the TSS specification, TCS should be able to response
multi TSP requests and remote TSP requests. So we must consider RPC and multi-thread.
We use RPC method and multi-thread to design TCSD, in the application layer we will use
Web Service to describe and find TCS service in future.

� Resource management. When starting and stopping TCS service, related resource should
be allocated and released, log event should be written. Because of the multi-thread mode,
we also have to consider the mutually exclusive resource to prevent dead-lock.

� Authorization between TSP and TCSD. The TCSD and TSP communicate from RPC
method. Though some platforms have no TPM, it can use TCS service by using shared TPM
mode. So it is important to design a secure protocol to ensure application layer and transfer
layer communication security, described in Figure 4-5 as follows.

TC-Grid@chinagrid.edu.cn 29

Daonity Specification The Daonity Team
Part I – System Design

Figure 4-5. TPM-Shared Communication

5. Key Management

In this section we describe the design of the key management system.

5.1 Term Definitions

Name Description
Application key handle key handles used by application
key slot cache the cache is used to storage the key handle which pointed the

address in the TPM
Identity key it is non-migratable signing key that are exclusively used to sign

data originated by the TPM
UUID a sign for the key, it is a structure including timelow , timemid,

timehigh, bClockSeqHigh, bClockSeqlow
Opaque data the secret data such as the private key, the data which has not

been encrypted
Key type TCG defines 7 key types: Signing key, Storage key, Identity Key,

Endorsement Key, Bind key, Legacy Key, Authentication Key
KCM (Key Cache
Manage)

Handles key-caching whenever required. The Key cache manager
typically uses TPM_SaveKeyContext and TPM_LoadKeyContext
for the key caching

TCPA SK TCPA Specific Knowledge, it provide PBG with ordinal ,tag ,etc
KCMS (Key Cache Manage Storage)The storage of the KCM
PBG The Parameter Block Generator uses “TCG Specific Knowledge”

to concatenate its input parameters and other parameters to a
TPM Parameter Block command

TC-Grid@chinagrid.edu.cn 30

Daonity Specification The Daonity Team
Part I – System Design

BS KEY “Byte Stream” format structure of a TCG Key

5.2 Overview

The Key Manager Services allow definition of a persistent key hierarchy. The persistent key
hierarchy consists of storage keys that make up the base storage key structure that will exist
before any user may attempt to load a key. Additionally the persistent key hierarchy may contain
system specific leaf keys as for instance identity keys.

All keys, which should be internally managed by the Key Management Services of TSS, must be
registered in the storage spaces of TCS (system) Persistent Storage (PS) or TSP (User)
Persistent Storage. Each key registered in one of these PS will be referenced by its UUID (a sign
of the key for short) and called a persistent key in the view of TSS.
Keys once registered in PS will keep effective in PS unless they are unregistered or migrated.
Migration is another condition. When the key is loaded in the TPM, The PS will be valid all the
time.
When the TCS is not restarted or the key is not evicted from the Key Cache Manager Service,
Application key handles which got from a load key command are usually valid, and it will not stay
valid across boots.
Using the key Management supported by TSS will simplify the whole mechanism of loading a key
into the TPM from a calling context’s point of view. And it will enhance the security because the
TPM in computer protect the private information. Because the private information which is
encrypted by the user `s private key is shielded to the owner of the TPM.

5.3 Model of Key Storage

The Root of Trust for Storage (RTS) protects keys and data entrusted to the TPM .The RTS
manages a small amount of volatile memory where keys are held while performing signing and
decryption operations. Inactive keys may be encrypted and moved off-chip to make room for
other more active keys. Management of the key slot cache is performed external to the TPM by a
Key Cache Manager (KCM). The KCM interfaces with a storage device where inactive keys may
be stored indefinitely. The RTS doubles as a general purpose protected storage service allowing
opaque data also to be stored.

There are three key types that are not opaque to the TPM. They are AIK keys, Signing keys and
Storage keys. Key types will be discussed in more detail later. Two keys are embedded in the
TPM, see the below Figure 5-1, the Storage Root Key (SRK) and the Endorsement Key (EK),
which are embedded in the TPM. These keys cannot be removed from the TPM.

TC-Grid@chinagrid.edu.cn 31

Daonity Specification The Daonity Team
Part I – System Design

 Figure 5-1. Root of Trust for Storage (RTS) Architecture

TCG defines 7 key types. Each type carries with it a set of restrictions that limits its use. TCG
keys can be classified broadly as either signing or storage keys.
The 7 key types are listed as follows:
� Signing keys are asymmetric general purpose keys used to sign application data and

messages. Signing keys can be migratable or non-migratable. Migratable keys may be
exported / imported between TPM devices.

� Storage keys are asymmetric general purpose keys used to encrypt data or other keys.
Storage keys are used for wrapping keys and data managed externally

� Identity Keys (a.k.a. AIK keys) are non-migratable signing keys that are exclusively used to
sign data originated by the TPM (such as TPM capabilities and PCR register values).

� Endorsement Key (EK) is a non-migratable decryption key for the platform. It is used to
decrypt owner authorization data at the time a platform owner is established and to decrypt
messages associated with AIK creation. It is never used for encryption or signing.

� Bind keys may be used to encrypt small amounts of data (such as a symmetric key) on one
platform and decrypt it on another.

� Legacy Keys are keys created outside the TPM. They are imported to the TPM after which
may be used for signing and encryption operations. They are by definition migratable.

� Authentication Keys are symmetric keys used to protect transport sessions involving the
TPM.

5.4 The Hierarchy of the Key Storage

TC-Grid@chinagrid.edu.cn 32

Daonity Specification The Daonity Team
Part I – System Design

Storage Root
Key

Identity Key Platform Key

Storage Key Roaming Key

User1 Storage
key 1

User1 Storage
key 2

User1 Storage
key 3

User1 Leaf
key 2

User1 Leaf
key 1

User1 Leaf
key 3

User1 Leaf
key 4

TCS Persistent
Storage

TSP Persistent
Storage

Figure 5-2. Hierarchy of the key storage

The same color keys in the key hierarchy diagram above are mandatory storage keys and are
addressed by fixed UUID, they have the same attributes (e.g. migratable, auth) and are stored
either in the persistent storage of TCS or the persistent storage of TSP on all platforms. Keys
stored in the user specific persistent storage of TSP can be addressed by the same UUID for
each user but of course the UUID will still reference a different user storage key.

5.5 Key Management in TSS

We now describe the TSS key management techniques which follows the TCG specifications.

5.5.1 Key Cache Manager

The TCS Key Cache Manager Service (KCM) allows caching keys to manage the restricted
resources of a TPM. The KCM is responsible to manage the restricted resources of the TPM and
to hide these restrictions from the calling applications. An application can load a key in to the
TPM by utilizing the KCM functionality and can assume that this key is available for further use.
The KCM is responsible to ensure that a key, which has already been loaded by an application, is
available in the TPM, when the application requires that key for a certain command. If all TPM
resources are in use, the KCM has to free resources in order to load a key or to get the required
key back into the TPM.

5.5.2 The Structure of Key Cache Manager

TC-Grid@chinagrid.edu.cn 33

Daonity Specification The Daonity Team
Part I – System Design

TPM KCM

TCS-Peresistent

TSP-Peresistent TSP-Context

TCS-Context

Application

Figure 5-3. Key Management Architecture

An application must load a key into the TPM by utilizing the KCM. The KCM returns an
application key handle to the caller and manages a mapping mechanism between the returned
application key handle and the actual TPM key handle. The actual TPM key handle will change
whenever a key has to be unloaded from the TPM by the KCM in order to free resources since
another key has to be loaded and the KCM reloads the key into the TPM again. The application
key handle returned to the calling application remains constant as long as the key is not reloaded
by the application itself. The KCM may implement a model for indexing; storing and retrieving
Blobs contained on KCM managed storage devices. This may also include management of pass-
phrases necessary for using keys in the TPM. The structure of the map include the information of
the key storage such as UUID, cache flag, offset address in blob, public data size, blob size,
public key, UUID, TCS-handle, TPM-handle.

5.5.3 Persistent Storage in TSS

As defined in TCG specification, TPM can act as a portal to keep arbitrary amounts of data and
keys confidential. But the room in TPM is limited. So, we should offer Persistent Storage space as
a service to functions outside the TPM. The TCG Software Stack (TSS) enables such a service.

This enables applications to provide functions such as user association, key archive, and key
restoration, and enables the efficient migration of Subsystem (subsystem) information from one
platform to another within a heterogeneous PC environment. For a user application the persistent
storage looks like a data archive, therefore the main function set is associated to such function
sets.

There are two Persistent Storages in our design. The first is TCS Persistent Storage. The other is
TSP Persistent Storage. To be a criterion, we use the unify form to them. We define two files, the
index file and the content file. The index file stores indexes, which are convenient to search the
detailed information of the key. The index has three members: the first is the Nickname of the
user, the second is the UUID of the key, and the last is the address of the key in the Content file.
The Content file has the public information of the key, such as UUID, Parent UUID, Public Data,
Key size, Cache flag, Public Key, the offset address in the blob.

5.5.4 Cryptography Service in TSS

Original GSI fully depends on the cryptography service provided by OpenSSL. For improved
security requirements, we provide a design depending on the trusted hardware and OpenSSL.

TC-Grid@chinagrid.edu.cn 34

Daonity Specification The Daonity Team
Part I – System Design

There are two types crypto service in our design: asymmetric and symmetric crypto service, For
asymmetry key, we will use the encryption and decryption mechanism of RSA. TPM can provide
the RSA mechanism for the application. The private key stored in TPM cannot be seen out as
plaintext.

Considering TPM’s specification, symmetry crypto service still needs other modules out of TPM.
In our project, we choose OpenSSL. Since symmetric keys can be protected by some asymmetric
keys and asymmetric keys protected by TPM, symmetric crypto service is obviously more secure.

5.6 Key Cache Manager Functions for TPM’s Interface

Key Manage

TCS/TSP_CreatWrapKey

TCS/TSP_GetRegisterKeyByUUID

TCS_RegisterKey

TCS_LoadKeyByBlob

Key Register

Creat
Wrapkey

Loading Key

Key
Hierarchy

Get Pubkey TCS/TSP_GetPubKey

Figure 5-4. Key Cache Management

5.7 TSS Load Key Flow Diagram

Load key Flow Description as described the following diagram

Case 1: TSP_LoadKeyByUUID, Key registered in TSP Persistent Storage (TSP PS), parent key
authorization is not required. Key registered in TSP PS means it is a user key, it should search in
the TSP PS to find its information (uuid, cache flag, blob address and so on) and wrapping key,
we do not concern the auth. So, if get its wrap key (a system key), then we should know it is
loaded in the TPM or not, this information can be found in the KCM by the function
TCS_LoadkeyByblob, If not, we will fail to load it or loading the wrapping key first. It just like a
tree, you should look for his parent node from the leaf node. When the wrapping key has been
testified in the KCM .It selects the key and its wrapping key information to the PBG.PBG put them
to TPM in the form of string at the command TPM_Loadkeycontext. Then this key can be loaded
in the TPM.

Case 2: TSP_LoadKeyByUUID, Key registered in TCS Persistent Storage (TCS PS), parent key
authorization is not required, the progress is similar to the Case 1, the difference is the key is a
system key, it storages in the TCS PS. So it need not to research it in the TSP PS, it only look
into the PS in TCS to find its information (uuid, cache flag, blob address and so on) and wrapping
key by the function TCS_LoadkeyByUUID , we do not concern the auth, and the later is the same
to Case 1.

Case 3: TSP_LoadKeyByUUID, Key registered in TSP Persistent Storage (TSP PS), parent key
authorization is required. We can find the abstract information about parent key, and some
parameters, then the Black Box operate them to export auth data, and it can call the
TCS_LoadkeyByblob to visit KCM. Then the later is the same to Case1.

TC-Grid@chinagrid.edu.cn 35

Daonity Specification The Daonity Team
Part I – System Design

TCSP_loadKeyByUUID TCSP_loadKeyByBlob

TSP_LoadKeyByUUID

2
3.1

 TSP

User PS Black Box

 Auth Parameters

Parameters

uuid

AuthData

12 3

 TCS

System
PS KCM KCMS

PBG

NO Auth

No auth

UUID

TPM

TCPA
SK

TPM_LoadKey()
TPM_EvictKey()

TPM_LoadKeyContext()
TPM_SaveKeyContext()

uuid
Case1

Case2

Case3

Figure 5-5. Load Key Flow

5.8 Key/Credential Migration

We now describe the necessary services of key/certificate migration.

5.8.1 Background

In grid system, user’s keys/credentials can be transmitted from one platform to another. For
example, if a grid user wants to log into a grid system in different sites, he should input his
credential into the application system at according site for the authentication. This kind of
operation is supported by TPM that is used to improve the security of grid. We call this
mechanism enable by TPM the Key/Credential Migration.

Grid is a large-scale dynamic distributed system. Users and resource change dynamically.
Because users may want to log in grid from different sites, the authentication for a user should be
processed on different sites. In order to improve the security in grid, we design to use TPM to
enable the grid system. So, the authentication of user can be processed in different sites with
TPM. Since the credential validation is necessary for authentication, the user’s credentials should
be able to migrate from one site to another both with TPM. In our design, even though user
sometimes wants to log in grid from a site without TPM, the user can process the authentication
by accessing another site with TPM and using the TPM in that site for the credential validation.
Then the migration is also needed in this condition.

TC-Grid@chinagrid.edu.cn 36

Daonity Specification The Daonity Team
Part I – System Design

5.8.2 Solution

In order to improve the security in grid system, we design some security mechanisms by using
TPM in grid. Considering the Key/Credential Migration, we also manage to use the TPM enabled
implementation.

Firstly, we describe the key migration in the following. The TCG specification defines some
mechanism for the key migration. Migratable keys may be exchanged between TPM devices.
This enables the key pair to follow the grid user around regardless of the device he uses.
Messages exchanged between entities remain accessible even though the computing platform
changes in grid environment. Storing data outside the TPM has the additional advantages of
enabling easier migration of confidential data from one platform to another and enabling recovery
of confidential data in the event of platform failure. These capabilities also are designed to avoid
the need for the TPM to manage the confidential data that is stored outside the TPM.

In the key hierarchy in PS, the migration tree is directly below a “migration root” key that is directly
below the SRK. The key hierarchy in PS is described in the section of Key Management. Each
node in a tree provides confidentiality for the nodes immediately below it. Obviously, all
intermediate nodes in the trees must be encryption keys. Any migratable key can be migrated by
anyone that owns any of its migratable ancestors. As a result, in order to be sure that a
migratable key cannot be migrated by anyone but the owner of that key, the owner can always
create the migratable key and store it with a non-migratable storage key, thus guaranteeing the
user has unique authority to authorize migration of that key.

An encryption (storage) key or a signing key, which is migratable, can be stored in PS. If a key is
for encryption, it must not be used for signing, and visa versa. Encryption keys are used only to
provide confidentiality for blobs. Signature keys are used for signing arbitrary data submitted by
the entity authorized to use that key. Migratory data may be copied to an arbitrary number of
platforms.

Figure 5-6. The Key/Credential Migration in Grid Environment

Secondly, we describe the Credential Migration in Grid as in Figure 5-6. Sometimes, if a grid user
wants to log into grid from different site, his credential should be input into the application system
on the site where he log in grid. In our design, we use the TPM to improve the security in grid.
The client system is designed to work in a platform enabled with TPM. So, when a user (User 1 in
Figure 5-6) hopes transmitter his credential to another platform, he could use the transmission

TC-Grid@chinagrid.edu.cn 37

Daonity Specification The Daonity Team
Part I – System Design

mechanism enabled with TPM to process this operation. As described above, the TPM enable the
key migration. Then the credential migration is also can be done with this mechanism. User1
firstly migrate his credential from client A to client B. Then he roams to client B and log in grid
from client B. In the TSS layer of our design, we provide software module to interact with TPM to
fulfill the key/credential migration. In some other condition, people hope to log in grid at a site
without TPM. The user (User 2 in Figure 5-6) can firstly migrate his credential to a site with TPM
(Client D in Figure 5-6). Later, user2 could access remotely client D from client C and fulfill the
credential validation by using the TPM in client D. Then he logs in grid from client C without TPM.
The TSS provides a TSP context in client to support these operations.

6. File Protection Management

In this section we detail the security service for file protection management.

6.1 Background

Grid is an open dynamic large-scale distributed system. There are many dynamic resources and
users that may interact with other entities. In this kind of environment, some critical files of grid
system may be destroyed or leaked by illegal user or cracker. Then the confidentiality, integrity
and reality may be breached, and the grid system will be not an available system for users. For
example, if the GridMap file in grid is leaked to cracker, they may know the important authority
information and even alert them to obtain illegal usage for the grid resource. So, the protection for
critical files should be provided in any grid system. The confidentiality and integrity of them is the
basic factors to be considered.

The function of file protection is to protect the critical files in grid systems. In our design, these
files to be protected are stored in specific protected storage (PS), such as persistent storage
spaces in hard disk. These protected files are managed by particular program modules enabled
with TPM in the grid system.

6.2 PCR

Clearly, our systems must be prevented from tampering. It will promote system’s security that we
protect our systems building on hardware. As we know, trust in a platform is built bottom-up,
starting at the base with Trusted Platform Module (TPM) hardware bound to the platform’s
motherboard. So we can use TPM’s secure characteristic to store important messages.

Thus, for system’s integrity, we can use TPM’s PCRs to store platform integrity measurements in
a way that prevents misrepresentation.

PCR values can play important role in: auditing operations, verifying integrity of logs, resuming of
protecting files.

We can hash some audit events’ data using SHA-1, regard it as measured data, and calculate it
using the formula: PCR[new] = SHA-1 (PCR[old] + measured data), and then TPM can securely
store the new PCR value in PCR within the TPM. When we need to use the external audit events’
data, for verify measurement events, we can hash it and compare it’s hash value with PCR value,
the external audit events’ data cannot be used unless a PCR value is the same as it’s hash value.
If the external data had been tampered, its hash value will different from PCR value and it will not
be adopted, because the PCR value, which stores in TPM, is secure. So we can verify external
data’s integrity using PCR.

The TPM contains a set of registers, called Platform Configuration Registers (PCR) containing
measurement digests. These registers are big enough to contain a Hash (currently only SHA-1).

TC-Grid@chinagrid.edu.cn 38

Daonity Specification The Daonity Team
Part I – System Design

6.3 Protect Critical Files by PCR

The TCG defined some protected storage mechanisms rooted in hardware. Those mechanisms
can then be used to protect keys, secrets and hash values. In order to protect those critical files in
grid environment, we manage to use the function of TPM, such as the encryption, signature and
verification of integrity. The TCG defined some protected storage mechanisms rooted in
hardware. Those mechanisms can then be used to protect keys, secrets and hash values. We
design some software modules to implement these functions for file protection. The functions of
data encryption and integrity verification are provided by TPM. These functions are fulfilled mainly
in file protection modules in the TSS layer, which interacts with TPM. The file to be protected is
taken as data stream and sent down to TPM by TSS. The data is encrypted in TPM and sent
back to TSS. Then these encrypted files are stored in PS and can only be accessed by
authorized entity. This process provides the confidentiality protection for critical files. In order to
fulfill the integrity protection, we use the PCR in TPM. The PCR is a group of registers, called
Platform Configuration Registers (PCR) containing measurement digests. The actual GridMap file
is stored in PS. User can operate on the mirror of GridMap file directly. The sequence of
operations is logged and processed by PCR. The final operation for actual GridMap file will be
compared with the PCR value. Then correctness of the operation can be judged and the integrity
of the actual GridMap file will be achieved. The detail descript of PCR’s functions for file
protection is described in the later section of PCR.

6.4 Intensive Solution

In order to explain the function of PCR, we can give an example of its usage for
protecting files.

Figure 6-1. The Function of PCR for Protecting Files

For example, when the authorized users/application want to modify the GridMap file, the
operation is did on the mirror of GridMap file. The mirror file is plain text that can be read and
operated by users directly. The actual GridMap file is stored securely in PS. The file protection
module will record a user’s operation sequence for the mirror of GridMap file, and modify the
actual GridMap file in PS in the end. As in Figure 6-1, when the Gridmap file needs to be
changed, we should use a special application to handle the operation (e.g. add, delete). These
metrics are stored in logs (Stored Measurement Logs), and digests (hashes) of them are put into

TC-Grid@chinagrid.edu.cn 39

Daonity Specification The Daonity Team
Part I – System Design

PCRs. When an operation is to be done on the mirror of GridMap file, a log that records the
operation will be created. We store the logs in PS (Persistent Storage), synchronously, hash it
and then store its hash value in PCR. When next log comes into being, we calculate a new PCR
value using PCR [new] = SHA-1 (PCR [old] + new log data), and replace the old PCR value
using the new one. The PCR is in TPM and can’t be tampered by illegal user or Hacker. Only
operations authorized legally are recorded by PCR. The application system will record all the
operations, including potential illegal operations, on the mirror of GridMap file. Later, as in Figure
6-2, when the operations for GridMap file in PS are to be done finally, we can compare the final
operation sequence, which have been recorded by application system, with the values in PCR. If
they are same, then the operations to be done is legal, otherwise there are illegal operations in
the operation sequence. So, we can know whether the final operations on actual GridMap file in
PS is right. If they are right, we can use them affirmatively. Thus it can be seen, PCR-related
have two hash properties:
• Order is important - not commutative => (A || B) != (B || A)
• One way only – it’s infeasible to determine input from a resulting digest

Figure 6-2. The compare between PCR values and operations recorded in application system.

TC-Grid@chinagrid.edu.cn 40

Daonity Specification The Daonity Team
Part I – System Design

7. TPM Management

To implement the management of TPM from top to bottom, we need TPM object as the
representatives of applications which use TPM functions, TCS Parameter Block Generator (TCS
PBG) to interpret TCS functions used by TSP interface into available form for TPM, and TCG
Device Driver Library (TDDL) as a user mode interface between the TCS and TPM Device Driver
(TDD).

7.1 TPM class

The TSP Interface defines the following seven classes:
• Context class
• Policy class
• TPM class
• Key class
• Encrypted Data class (sealed or bound data)
• PCR Composite class
• Hash class

TPM class is mainly used to act on behalf of the owner of a TCG subsystem (TPM), which just
likes the administrator in a PC environment.

As the owner of a TPM would be the only one to take charge of the TCG subsystem and
execution of owner-privileged operations, TPM class should automatically be set with a default
policy to deal with owner verification, provide only one instance per context and basic
control/reporting functionality accordingly.

There are three aspects that need to be clarified: the owner, identity and credentials of a TPM.

The owner of TPM can execute some privilege commands such as taking ownership of the TPM,
which need shared secret and use the authorization protocols (Object Specific Authorization
Protocol or Object Independent Authorization Protocol) to prove knowledge of that secret.

One TPM can have many different identities (i.e., an identity used by TSS), and a Privacy CA or
several Privacy CAs must attest each of them separately for validation.

The procedure of establishing a TSS identity can be set for three phrases: creating of a new
identity, contacting the Privacy CA, and activating the new identity. Endorsement credential,
platform credential, conformance credential, as well as the public key of the Privacy CA are
required in the meantime.

TC-Grid@chinagrid.edu.cn 41

Daonity Specification The Daonity Team
Part I – System Design

7.1.1 Definition of Basic Structures

Figure 7-1. How a TPM Object interacts with others

TPM Object

TPM object is a data structure containing all the necessary resources to act on behalf of the TPM
owner. TPM object needs a default policy to describe the TPM user’s authorization state, as well
as the callback function pointers to deliver the TPM identity information to calling applications or
interact with the Privacy CA which would issue the proper identity certificates to the trusted
platform. The following diagram illustrates how a TPM object interacts with other resources.

TPM List

TPM List is a one-way list data structure which contains all TPM objects used in TSS architecture.
The following picture

Figure 7-2. TPM List

7.1.2 Management of TPM Object

The management of TPM objects can be classified as the following seven situations:
� Adding a TPM Object
� Judging a TPM Object Handle
� Assigning an existing policy to a TPM object
� Getting the assigned policy to a TPM object
� Getting the corresponding tcsContext for a TPM Object
� Getting the corresponding tspContext for a TPM Object
� Searching a specific TPM Object from TPM Object List

7.1.3 TPM class Specific Methods in TSPI

TPM class specific methods in TSPI consist of two kinds of methods. One is common method
(see also Design of Context), which set or get TPM object’s attributes, while the other is TPM
object related method, which interacts with a TPM object.

TC-Grid@chinagrid.edu.cn 42

Daonity Specification The Daonity Team
Part I – System Design

Figure 7-3. Classification on TPM class Specific Methods in TSPI

7.2 TCS PBG Functions

TCS consists of TCS PBG and other function modules. PBG is the only direct access to TPM
device, and builds byte streams to input to the TPM. Besides, it is used to serialize, synchronize,
and process TPM commands.

7.2.1 TCS PBG working flow

TCS PBG’s working can be divided into three parts. The first part verify TCS context with TCS
context manager, then PBG can deal with authorization. It may wrap the inputs before commands
got to TPM and unwrap the outputs back to calling functions.

TC-Grid@chinagrid.edu.cn 43

Daonity Specification The Daonity Team
Part I – System Design

Figure 7-4. TCS PBG working flow chart

7.2.2 TCS PBG Interface

Since TCS PBG controls the only access to TPM, it has to interact with many TSP layer
resources, such as TPM object, policy object, data object and so forth. TCS PBG can be divided
into twelve sets according to the function, which are demonstrated in the following diagram.

Figure 7-5. TCS PBG Functions and its Interaction with other Components

7.3 TCG Device Driver Library (TDDL)

The TCG Device Driver Library (TDDL) resides in the user mode, and provide the only connection
to the TCS.

TDDL Interface
TDDL Interface contains three most important functions which are Tddli_Open, Tddli_Close,

TC-Grid@chinagrid.edu.cn 44

Daonity Specification The Daonity Team
Part I – System Design

Tddli_TransmitData. These functions can be mapped into open, close and read/write functions in
TPM Device Driver under Linux kernel mode.

Figure 7-6. How TDDL interact with TPM Hardware

8. Session Authorization Management

In this section we detail the security services for session authorization management.

8.1 Motivation

As we known, our privacy or reveal platform secrets must be authorized. Authorization means the
caller must supply a secret as part of command invocation.

For preventing attackers form using our privacy data, we should have authorized operation when
we use some important private information. For example, some TPM commands require
authorization; and owner-related commands normally require authorization based on knowledge
of the owner authorization 160-bit secret. Similarly, the use of keys may require authorization
based on the key's authorization secret. Normally, this is done in the form of a hash of password,
or PIN, applied to the key when it is created.

The TPM supports two protocols for this authorization: Object Independent Authorization Protocol
(OIAP) and Object Specific Authorization Protocol (OSAP). The two protocols authorize the use
of entities without revealing the authorization data on the network or the connection to the TPM.
In both cases, the protocol exchanges nonce-data so that both sides of the transaction can
compute a hash using shared secrets and nonce-data. Each side generates the hash value and
can compare to the value transmitted. Network listeners cannot directly infer the authorization
data from the hashed objects sent over the network.

The OIAP allows the exchange of nonce-data with a specific TPM. Once an OI-AP session is
established, its nonces can be used to authorize the use any entity managed by the TPM. The
session can live indefinitely until either party request the session termination.
The OSAP allows establishment of an authentication session for a single entity. The session
creates nonces that can authorize multiple commands without additional session-establishment
overhead, but is bound to a specific entity. In a word, OIAP is used to create long-term sessions
and can be used across multiple objects within a session. OSAP is used to create sessions that
only deal with a single object.

8.2 Solution

There is no requirement for the application to initialize any OIAP or OSAP authorization session.
The application is simply needed to offer its operational objects to the TSP. So the TSP hides the
management of TCG related authorization sessions from the calling application.

TC-Grid@chinagrid.edu.cn 45

Daonity Specification The Daonity Team
Part I – System Design

The TSP initializes a required authorization session, based on objects which application has
offered, and handles all internal data of that session. In detail, for authorization session (OIAP or
OSAP), the TSP must obtain some necessary information from related objects’ policy settings,
which contain specialized secrets handling for the authorization. And then, the TSP transmits the
information to the TCS. The TCS will add TPM command (TPM_OIAP or TPM_OSAP) to the
information, and then transmit the information in the form of data-stream to TPM. When TPM
receives the data from TCS, it will start authorization sessions via the TPM command. Concrete
flow is described as follows (An example of TCS connecting TPM with OIAP session):

TCS TPM

TPM_OIAP • Create and associate the session and authHandle
• Generate authLastNonceEven
• Save authLastonceEven with authHandle

authHandle ,
authLastNonceEven

Send TPM_OIAP

• Generate nonceOdd
• Compute inAuth
• Save nonceOdd with authHandle

Send TPM_Example

tag, paramSize , ordinal ,
inArgOne , inArgTwo,

authHandle , nonceOdd,
continueAuthSession , inAuth

• TPM retrieves key.usageAuth
• Verify authHandle points to a valid session
• Retrieve authLastNonceEven from internal session storage
• Compute HM1
• Compare HM1 to inAuth.
• Execute TPM_Example and create returnCode
• Generate nonceEven to replace authLastNonceEven
• Compute resAuth

• Return output parameters
• If continueAuthSession is FALSE then destroy session

tag, paramSize , returnCode ,
outArgOne , nonceEven ,

continueAuthSession , resAuth
• Save nonceEven
• Compute HM2
• Compare HM to resAuth

Figure 8-1. TCS connects TPM with OIAP Session

In the above flow, we need to use the following formulas:
inAuth = HMAC (key.usageAuth, inParamDigest, inAuthSetupParams)
resAuth = HMAC(key.usageAuth, outParamDigest, outAuthSetupParams)
HM1 = HMAC (key.usageAuth, inParamDigest, inAuthSetupParams)
HM2 = HMAC(key.usageAuth, outParamDigest, outAuthSetupParams)

Above description is about authorization between the TCS and TPM. Similarly, we can solve the
secure problem of communication between the TSP and TCS using some protocols like OIAP
and OSAP.

When a remote TSP calls a local TCS, we can exchange nonce-data between them. They both
generate the hash value. Via comparing the value transmitted, system judge whether the
communication is secure. Attackers cannot directly infer the authentication data from the hashed
objects sent over the network. Communication between TSP and TCS is described in TCSD part.

9. Security Considerations and Analysis

This is a REQUIRED section (to be added in a near future).

TC-Grid@chinagrid.edu.cn 46

Daonity Specification The Daonity Team
Part I – System Design

Author Information

The Daonity Team:
HP Labs China, Beijing 100022, China
Wuhan University, Wuhan, China
Huazhong University of Science and Technology, Wuhan, China

Contact Author: Wenbo Mao, Principal Engineer, Hewlett-Packard Laboratories, China, HP
Building, 112 JianGuo Road, Beijing 100022, China.
wenbo.mao@hp.com
TC-Grid@chinagrid.edu.cn

Glossary

(To be added in the final version).

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

TC-Grid@chinagrid.edu.cn 47

mailto:TC-Grid@chinagrid.edu.cn
mailto:wenbo.mao@hp.com

Daonity Specification The Daonity Team
Part I – System Design

References

(To be added in the final version).

TC-Grid@chinagrid.edu.cn 48

	Abstract
	1.Introduction
	1.1Trusted Computing
	1.2Grid Security Infrastructure
	1.3Grid Security Requirements
	1.4Problem with the Current Grid Security Practice
	1.5Daonity’s Contribution

	2.Daonity System Design – An Abstract View
	2.1Daonity Network Topology
	2.2Middleware System Architecture
	2.3Standard Approach to Applications of the TC Technology

	3.GSI Innovation
	3.1Workflows
	3.2Architecture
	3.3Authentication
	3.3.1User Authentication
	3.3.2Platform Authentication

	3.4Authorization
	3.4.1Grid Map File
	3.4.2Community Authorization Service (CAS)

	3.5Credential Management
	3.5.1Certificate Authorities
	3.5.2Credentials
	3.5.3MyProxy Protocols
	3.5.4Authentication Center
	3.5.5Distributed Proxy Agent
	3.5.6Portal

	3.6Single Sign-On
	3.6.1Client Based
	3.6.2Server Based

	4.GSI Context Manager
	4.1Context Relationship
	4.1.1Context Class
	4.1.2Policy Class
	4.1.3TPM Class
	4.1.4Key and Cryptography Service Class
	4.1.5PCR Composite and Hash Class

	4.2TSP Context
	4.3Memory Management and Context
	4.4TSS Core Service Management
	4.5Design attention of the TCSD

	5.Key Management
	5.1Term Definitions
	5.2Overview
	5.3Model of Key Storage
	5.4The Hierarchy of the Key Storage
	5.5Key Management in TSS
	5.5.1Key Cache Manager
	5.5.2The Structure of Key Cache Manager
	5.5.3Persistent Storage in TSS
	5.5.4Cryptography Service in TSS

	5.6Key Cache Manager Functions for TPM’s Interface
	5.7TSS Load Key Flow Diagram
	5.8Key/Credential Migration
	5.8.1Background
	5.8.2Solution

	6.File Protection Management
	6.1Background
	6.2PCR
	6.3Protect Critical Files by PCR
	6.4Intensive Solution

	7.TPM Management
	7.1TPM class
	7.1.1Definition of Basic Structures
	7.1.2Management of TPM Object
	7.1.3TPM class Specific Methods in TSPI

	7.2TCS PBG Functions
	7.2.1TCS PBG working flow
	7.2.2TCS PBG Interface

	7.3TCG Device Driver Library (TDDL)
	TDDL Interface

	8.Session Authorization Management
	8.1Motivation
	8.2Solution

	9.Security Considerations and Analysis
	Author Information
	Glossary
	Intellectual Property Statement
	Full Copyright Notice
	References

