GWD-I Martin Westhead, EPCC, University of Edinburgh
Category: INFORMATIONAL et. al....
GGF Data Format Description Language Working Group

10™ September 2003

Data Format Description Language — XML representati on

Status of This Memo

This memo provides information to the Grid community regarding the specification of a Data
Format Description Language. The specification is currently an early draft which does not
represent a consensus within the group. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2002). All Rights Reserved.

Abstract

XML provides an essential mechanism for transferring data between services in an application
and platform neutral format. However it is not well suited to large datasets with repetitive
structures, such as large arrays or tables. Furthermore, many legacy systems and valuable data
sets exist that do not use the XML format. The aim of this working group is to define an XML-
based language, the Data Format Description Language (DFDL), for describing the structure of
binary and character encoded (ASCIl/Unicode) files and data streams so that their format,
structure, and metadata can be exposed. This effort specifically does not aim to create a generic
data representation language. Rather, DFDL endeavors to describe existing formats in an
actionable manner that makes the data in its current format accessible through generic
mechanisms.

This document defines the XML representation and associated API for the DFDL structural
description language. The semantics for this structural representation are given in the associated
document “Data Format Description Language — structural description”.

Contents
Y 4 1] 1 - o PSP 1
1. a1 (oo 11 o3 1o o 1P 3
2. XML Schema representation CONVENLIONSuuuuruiiieieeeeieeeeiiii e e e e e e e eee e eeae e 3
3. COre rEPIESENTALIONceeiiieiiee ittt e et e e e e e e e e e e e e s e e e et 3
3.1 Representation Of TYPESiiiiriiiiiiiiiiiei ittt e e e 3
I N3] To [o 4= | P 4
T T S 1 To [0 1] (o= T PP SPPTPSUPPTT 4
S =T o =Y 1 o T 5
1 TR T - = 1 0 1= (=T P 5
G 7 T 1 o1 6
I A B T | = B 2 (=1 (=T €= o= 6
G S T ©o 3 o 11110 - 1 6
G I T O o F- U= Tod £ =T =Y £ 7
3.10 01 =T £ 8
3.11 TraNSTOrMALIONS ... e e e e e e e e e e e e e et e e e e 8
4. Structural desCription AOCUMENT...........uuiriiiiiiiii ittt e e e e 8
5. XML view oOf deSCrbed data...........uuuuiiiiii e e 8
6. o 01T . 8
200 R == 11T 1T o 9
6.2 NAVIGALION ...ttt e e et e e e e e et a et e e ae s 9
L0 T o 10011 AV Vo o 1T 9
L N ¢ 7=\ VA= (o o1 U 10

M.Westhead@epcc.ed.ac.uk 1

GWD-I Martin Westhead, EPCC, University of Edinburgh
Category: INFORMATIONAL et. al....
GGF Data Format Description Language Working Group

10™ September 2003

7. SECUNtY CONSIAEIALIONSvuuiiiiieeee et e et e e e e e e e e e e e et e e e e e e e eeeaeeeannns 10
APPENTIX 1 — XML SCREBIMA ...ttt e e e e e e e e a e 11
F U 11 o] gl [a1 7o 2= 11T] o TR 14
(1017 VS 14
Intellectual Property SALEMENT.uue it e e e e e 14
V1| @foT o) Y74 o | 01 01N] Tt 14
S (=T =] o [od =L U 15

M.Westhead@epcc.ed.ac.uk 2

GWD-I 10™ September 2003

1. Introduction

DFDL aims to provide the following:
e away to describe the structure of a binary sequence (e.g. file or bit stream)
e away to attach semantic labels to features of that structure
e one or more ontologies of such semantic labels.

This document will define the realisation of the DFDL structural description language (described
in the document “DFDL structural description”) in XML and APlIs.

Pieces to this document:

1. XML Schema conventions

2. Core representation of structural description language — representing the various
operators in XML

3. Structural description document — arrangement of a description document itself with
examples

4. XML view of described data

5. XML Schema — schema for the description document

6. Access API

Note: this core language does not contain any primitive types other than “bit”. However, some of
the types defined in the Primitive Types Ontology are used to help motivate some of the
examples.

Need to make sure its clear which bits are SDL and which are imported from the basic
ontologies.

2. XML Schema representation conventions

+ Type name as element name

* Element and attribute names follow W3C capitalization convention
« Initial letter is lower case
» Upper case is used to separate words e.g. fooBar

« All metadata representations in attributes

3. Core representation

There follows a discussion of the various elements in the language and their correspondence to
the operators in the SDL formal spec.

3.1 Representation of Types

The schema defines an element:

<type name="foo” varName="bar/>

Since many things in dfdl are equivalent to a type, for example all of the operators in the SDL
return a type. Thus, the XML Schema is based heavily on the use of substation groups. All the

different operations are included in a substitution group with the <type/> tag. Plus, additional
types added in ontologies can be added to the substitution group to get transparent extensibility.

M.Westhead@epcc.ed.ac.uk 3

GWD-I 10™ September 2003

This means that here are currently two different styles representing types (structured binary
sequence sets) in DFDL.
1. the type name as the element name
<foo byteOrder="bigEndian" varName="temperature”>
2. we have a generic element name with a compulsory attribute name:
<type name="foo” varName="temperature”>

This second form has two variants:

<newType name="fo0"/>
This is used to define a new type and

<paramType name="typeName"/>

when “typeName” is a formal parameter that must be substituted for a real type using
<setParameter>.

The reason for having so many different forms is to make it easier to introduce identity constraints
within the XML schema for matching the names. There is probably more work to do in this area
and we may decide to simplify the picture with a little use experience.

Within this schema we introduce one concrete type <hit> which is the basis for constructing all
the others.

3.2 Assignment

This takes two forms for the different styles. Firstly assuming our new type foo has been defined
as an element in an included schema definition we can use:

foo:=bah

<define>
<foo/>
<toBe>
<bar/>
</toBe>
</define>

Alternatively if foo is not defined as an element we can provide a definition inline:

foo:=bah

<define>
<newType name="foo"/>
<toBe>
<bar/>
</toBe>
</define>

3.3 Sequence

[a; b;]

<sequence>

M.Westhead@epcc.ed.ac.uk 4

GWD-I

10" September 2003

<al>

<c/>
</sequence>

Concatenation

A:B

<concatenate>
<A/>

</concatenate>

3.4 Repetition

* Fixed
. *
e +
o ?

char.5

<repeat number="5">
<char/>
</repeat>

char.*

<repeat number="unbounded”>
<char/>
</repeat>

char.+

<repeat number="oneOrMore”">
<char/>
</repeat>

char.?

<repeat number="zeroOrOne”>
<char/>
</repeat>

3.5 Parameters

array(type, size) :=type.size

<define>
<array>
<parameter name="type"/>
<parameter name="size"/>
</array>
<is/>
<repeat number="$size">
<dfdIType name="$type"/>
</repeat>
</define>

array(float, 10)

M.Westhead@epcc.ed.ac.uk

GWD-I 10™ September 2003

<array>
<setParameter name="type” value="float"/>
<setParameter name="size” value="10"/>
</array>

NB for this to work we are assuming that <type name="foo"/> is exactly equivalent to <foo/>.

3.6 Labels
Labels are just attributes:

myType<varName="pressure”, units="Pa">
<myType varName="pressure” units="Pa">

<dfdIType name="myType” varName="pressure” units="P a"™>

3.7 Data References

A data reference is an XPath reference over the XML view of the data (see section on XML
views). We use the # character to warn the implementation that there is a data reference coming.
For example:

variableArray(t ype) := [int<varName="size";
array(type, B("../size[@varName='size]"))]

<define>
<variableArray”>
<parameter name="type"/>
<variableArray”/>
<toBe/>
<sequence>
<integer varName="size"/>
<array>
<parameter name="type” value="type”"/>
<parameter name="size” value="../size[@ varName='size']" />
</array>
</sequence>
</toBe>
</define>

3.8 Conditionals

By reference

myUnion := [int; (“.\int”, a(0):float, a(1):complex)]

<define>
<myUnion/>
<toBe>
<sequence>
<int/>
<switch value="#../int">
<case value="0">
<float/>
</case>
<case value="1">
<complex/>
</case>
</switch>
<sequence/>

M.Westhead@epcc.ed.ac.uk 6

GWD-I

10" September 2003

</toBe>
</define>

By Pattern

(‘&' |'b"); X]

<sequence>
<either>
<char>a</char>
<char>b</char>
</either>
</sequence>

3.9 Character sets

In the SDL document we used set builder notation to define sets and ranges of values. We need

to be able to express the same properties in XML. Fro this we need:
e inclusion — build a set from specific elements
» exclusion — exclude specific elements from a set
* ranges — define a range of elements to be included or excluded

Simple inclusion:

<define>
<comma/>
<toBe>
<char>,</char>
</toBe>
</define>

More complex inclusion

<define>
<digit/>
<toBe>
<either>
<char>0</char>
<char>1</char>
<char>2</char>
<char>3</char>
<char>4</char>
<char>5</char>
<char>6</char>
<char>7</char>
<char>8</char>
<char>9</char>
</either>
</toBe>
</define>

Ranges:

<define>
<lowerCase/>
<toBe>
<range>
<char>a</char>
<char>z</char>
</range>
</toBe>
</define>

Exclusion

M.Westhead@epcc.ed.ac.uk

GWD-I

10" September 2003

<define>
<lowerCaseConsonants/>
<toBe>
<exclude>
<either>
<char>a</char>
<char>e</char>
<char>i</char>
<char>o</char>
<char>u</char>
</either>
<from>
<lowerCase/>
</from>
</exclude>
</toBe>
</define>

3.10 Pointers
3.11 Transformations

4. Structural description document

Proposed document form

<dfdl>

<definitions>
<l-- definitions of new composed types -->
</definitions>

<description>
<l-- description of the digital entity in quest
</description>

</dfdI>

ion -->

So the document has a root element <dfdl> which has two children <definitions> in which any
supplemental composite definitions are placed and <description> which contains the description

of the digital entity that we are actually describing.

Question: do we really need to separate these two?

5. XML view of described data

The basic principle here will follow BFD and DataBinX in placing the data inside the

corresponding dfdl elements:

<float>3.142</float>

However some thought needs to go in to the representation of more complex structures. In
particular we need to have sequence indexes arranged so that we can reference the data with

respect to them.
6. Access API

M.Westhead@epcc.ed.ac.uk

GWD-I 10™ September 2003

The proposal is that any DFDL structure would be represented by an object. All objects would
inherit methods from a common root object with a set of common methods. The behaviour of the
methods would depend on the actual class of the object.

The common methods would be split into the following categories:
1. Reflection
2. Navigation
3. Primitive access
4. Array access

6.1 Reflection
The reflection methods would allow discovery of the object’s dfdl type, plus possibly other
information about it.

String type ();

6.2 Navigation
This would include methods for navigating through the tree representation of the data it would
include methods for navigating the tree and stepping along an individual sequence for example

dfdlObject childAt (int index);
dfdlObject parent ();

dfdlObject nextSibling ();
dfdlObject previousSibling ();
int numberOfChildren ();

6.3 Primitive access

This set of methods is for accessing the data as primitives. Any new type will need to have a
definition within the ontology of the behaviour of each of these methods when called on an object
corresponding to that type. It may, of course, return an error.

byte getAsByte ();
short getAsShort ();
int getAsint ();

long getAsLong ();
char getAsChar ();
float getAsFloat ();
double getAsDouble ();
boolean getAsBoolean ();
String getAsString ();

There would also be corresponding methods for setting the value of the object

void set (byte value);
void set (short value);
void set (int value);

void set (long value);
void set (char value);
void set (float value);
void set (double value);
void set (boolean value);
void set (String value);

Note the getAsString (); and the set(String value); are particularly relevant

M.Westhead@epcc.ed.ac.uk 9

GWD-I 10™ September 2003

6.4 Array access

This set of methods corresponds to the previous set except that they are accessing to and from
arrays of primitive values.

byte[] getAsByteArray ();
short[] getAsShortArray ();
int[] getAsinArrayt ();

long]] getAsLongArray ();
charf] getAsCharArray ();
float[] getAsFloatArray ();
doublel] getAsDoubleArray ();
boolean([] getAsBooleanArray ();

String([] getAsStringArray ();
There would also be corresponding methods for setting the value of the object

void set (byte[] value);
void set (short[] value);
void set (int[] value);

void set (long[] value);
void set (char] value);
void set (float[] value);
void set (double[] value);
void set (boolean[] value);
void set (String value);

Note the getAsString (); and the set(String value); are particularly important since these
represent the alpha and beta functions in the formal SDL.

7. Security Considerations

There are no security considerations that we are aware of at this time.

M.Westhead@epcc.ed.ac.uk 10

GWD-I

Appendix 1 — XML Schema

10" September 2003

Discussion of structure of schema...

<?xml version="1.0" encoding="UTF-8"?>
<l-- edited with XML Spy v4.4 U (http://www.xmlspy.com)
(EPCC) -->
<l-- W3C Schema generated by XML Spy v4.4 U (http://www.
<xs:schema targetNamespace =" http://www.dfdl.org/2003/dfdI
xmins:xs =" http://www.w3.0rg/2001/XMLSchema "
xmins =" http://www.dfdl.org/2003/dfdI " elementFormDefault
<xs:element name ="type ">
<xs:complexType >
<xs:complexContent >
<xs:extension base ="typeOfType ">
<xs:attribute name =" name" type ="xs:string
</ xs:extension >
</ xs:complexContent >
</ xs:complexType >
</ xs:element >
<xs:element name ="repeat " substitutionGroup
<xs:complexType >
<xs:sequence >
<xs:element
</ xs:sequence >
<xs:attribute name =" number" use ="required ">
<xs:simpleType >
<xs:restriction
</ xs:simpleType >
</ xs:attribute >
</ xs:complexType >
</ xs:element >
<xs:element name =" sequence
<xs:complexType >
<xs:sequence >
<xs:element
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element name =" switch
<xs:complexType >
<xs:sequence >
<xs:element
<xs:complexType >
<xs:sequence >
<xs:element
</ xs:sequence >
<xs:attribute name =" value
</ xs:complexType >
</ xs:element >
</ xs:sequence >
<xs:attribute name =" value " type ="xs:string
</ xs:complexType >
</ xs:element >
<xs:element name =" concatenate
<xs:complexType >
<xs:sequence >
<xs:element
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element name =" either
<xs:complexType >
<xs:sequence >

ref ="type "/>

base ="xs:string "/>

" substitutionGroup

ref

" substitutionGroup

ref ="type "/>

n

substitutionGroup

ref minOccurs

="type

" substitutionGroup

M.Westhead@epcc.ed.ac.uk 11

=" type ">

=" type ">

type =" xs:string

" use ="required

=" type ">

by Martin Westhead

xmispy.com) -->

=" qualified ">

use ="required "/>

=" type ">

="type " maxOccurs ="unbounded "/>

name =" case " maxOccurs ="unbounded ">

use ="required "/>

"

="type ">

=" 2" maxOccurs ="unbounded "/>

GWD-I

<xs:element ref ="type " maxOccurs ="unbounded "/>
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element name =" define ">
<xs:complexType >
<xs:sequence >
<xs:element ref ="type "/>
<xs:element name ="toBe ">
<xs:complexType >
<xs:sequence >
<xs:element ref ="type "/>
</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:sequence >
</ xs:complexType >
<xs:key name =" defineParamKey ">

<xs:selector xpath =".//[parameter "/>
<xs:field xpath =" @nam#>
</ xs:kkey >

<xs:keyref = name =" defineParamTypeRef " refer ="defineParamKey
<xs:selector xpath ="./[paramType "/>
<xs:field xpath =" @namg/>
</ xs:keyref >
</ xs:element >
<xs:element name ="dfdl ">
<xs:complexType >
<xs:sequence >
<xs:element name =" definitions
<xs:complexType >
<xs:sequence >
<xs:element ref ="define
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element name =" description
<xs:complexType >
<xs:sequence >
<xs:element ref ="type "/>
</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:sequence >
</ xs:complexType >
<xs:key name ="typeNameKey ">

n

minOccurs ="0">

n

minOccurs ="0">

<xs:selector xpath =".//newType "/>
<xs:field xpath =" @nam#&>
</ xs:kkey >
<xs:keyref name ="typeNameRef " refer ="typeNameKey ">

<xs:selector xpath ="./ltype "/>
<xs:field xpath =" @namg/>
</ xs:keyref >
</ xs:element >
<xs:element name ="range " substitutionGroup =" type ">
<xs:complexType >
<xs:sequence >
<xs:element ref ="type
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element name ="exclude " substitutionGroup ="type ">
<xs:complexType >

n

minOccurs ="2" maxOccurs ="2"/>

M.Westhead@epcc.ed.ac.uk 12

10" September 2003

ns

" maxOccurs ="unbounded "/>

GWD-I 10™ September 2003

<xs:sequence >
<xs:element ref ="type "/>
<xs:element name =" from ">
<xs:complexType >
<xs:sequence >
<xs:element ref ="type "/>
</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:element name ="newType" substitutionGroup ="type ">
<xs:annotation >
<xs:documentation >Used to define a new type on the
fly </ xs:documentation >
</ xs:annotation >
<xs:complexType mixed ="true ">
<xs:sequence >
<xs:element name =" parameter " minOccurs ="0" maxOccurs ="unbounded ">
<xs:complexType >
<xs:attribute name =" name" type ="xs:string
</ xs:complexType >
</ xs:element >
</ xs:sequence >
<xs:attribute name =" name" type ="xs:string use ="required "/>
<xs:attribute name =" varName" type ="xs:string "/>
</ xs:complexType >
</ xs:element >
<xs:element name =" paramType " substitutionGroup =" type ">
<xs:annotation >
<xs:documentation = >Used to allow parameterisation of types (but allow
matching constraints) </ xs:documentation >
</ xs:annotation >
<xs:complexType >
<xs:sequence >
<xs:element name =" parameter
<xs:complexType >
<xs:attribute name =" name" type ="xs:string
</ xs:complexType >
</ xs:element >
</ xs:sequence >
<xs:attribute name =" name" type ="xs:string "/>
</ xs:complexType >
</ xs:element >
<xs:element name ="Dhit " type ="typeOfType " substitutionGroup ="type "/>
<xs:complexType name ="typeOfType " mixed ="true ">
<xs:choice >

use ="required "/>

n

n

minOccurs ="0" maxOccurs ="unbounded ">

use ="required "/>

<xs:element name =" setParameter " minOccurs ="0" maxOccurs ="unbounded ">
<xs:complexType >
<xs:attribute name =" name" type ="xs:string " use ="required "/>

n n

<xs:attribute name =" value
</ xs:complexType >
</ xs:element >
<xs:element name =" parameter
<xs:complexType >
<xs:attribute name =" name" type ="xs:string />
</ xs:complexType >
</ xs:element >
</ xs:choice >
<xs:attribute name =" varName" type ="xs:string "/>
</ xs:complexType >
</ xs:schema >

type =" xs:string use ="required "/>

minOccurs ="0" maxOccurs ="unbounded ">

M.Westhead@epcc.ed.ac.uk 13

GWD-I 10™ September 2003

Author Information

Martin Westhead, M.Westhead@epcc.ed.ac.uk, EPCC, University of Edinburgh. James Clerk
Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK.

Glossary

DFDL — Data Format Description Language

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
SUCCEeSSOors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

M.Westhead@epcc.ed.ac.uk 14

GWD-I 10™ September 2003

References

BinX http://www.epcc.ed.ac.uk/gridserve/WP5/Binx/

HDF http://hdf.ncsa.uiuc.edu/HDF5

BDF/SAM http://collaboratory.emsl.pnl.gov/docs/collab/sam
XDR http://lwww.fags.org/rfcs/rfc1014.html

DFDL web pages http://forge.gridforum.org/projects/dfdl-wg/

M.Westhead@epcc.ed.ac.uk 15

