GEC22 OGF Meeting 2015

A Federated Approach for Authentication and Authorization in the Network Services Framework

Carlos E. Rubio-Medrano and Gail-Joon Ahn

Outline

Requirements for Authentication and Authorization (A&A)

• Our Approach: a dedicated attribute-based NSI Service

Revisiting A&A Requirements and Sample Policies

Selected NSI A&A Requirements

	ESnet	GEÁNT	NORDUnet
No end-to-end commercial traffic	1	1	1
Commercial traffic allowed for research	✓		
Resource access based on trusted identities	✓	1	✓
NSI operators with overriding capabilities	1		
Net admins may override/deny access to sites	✓	1	
Traffic allowed only between certain ends	✓	1	√
Traffic to US only for certain ends			1
Resource access based on projects/groups	✓		1
Integration with protocol-specific policy formats	1	1	1

Summary of NSI A&A Requirements

- Policy Management
 - Incorporate evaluation with service-specific functionality
 - Real-time data collection for policy evaluation
 - Evaluate/enforce both local and inter-organizational policies
- Authentication and Access Control
 - Support different models: identity-based, project/groupbased and request-based
- Infrastructure
 - Leverage existing infrastructure
 - Scalability
 - Platform-independent

Our Approach: Attributes

- Observable security-relevant properties attached to A&A entities (users, resources, etc.) either natively, e.g. innate characteristic, or artificially, e.g. username
- May be defined as 3-tuple: <name, type, value>*
- Examples: <username, String, "Carlos">, <port, Integer, 8080>, <bandwidth, Integer, 10>, etc.

^{*}Rubio-Medrano, Carlos, Clinton D'Souza, and Gail-Joon Ahn. "Supporting secure collaborations with attribute-based access control." *IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom)*. Austin, TX, USA: IEEE, 2013. 525-530

Security Attributes

- A special case of non-modifiable, fully-trusted and possibly custom-defined attributes
- Provide a representation of abstract concepts such as
 - group memberships: <userGroup, Group, "CERN">,
 - security states: <currentState, MachineState, "Safe">,
 - roles: <userRole, Role, "Administrator">,
 - access tokens: <token, AccessToken, "Link AX">,
 - PKI identities: <userKey, PublicKey, "CarlosKey">
 - Etc.
- May be derived from other attributes, either regular or security ones

Our Approach: NSI Service

- We propose a federation for A&A based on attributes
- Dedicated NSI Service¹, implemented by NSAs² on top of each network, connected to other services through adaptations
- Manages definition, conflict resolution and distributed evaluation of A&A policies as well as the definition and provisioning of local and federated attributes

¹ Network Services Interface. Roberts, Guy, et al. Network Services Framework 2.0. Grid Forum Document (GFD), 2014

² Network Service Agent. MacAuley, John. Network Service Agent Description Document. Grid Working Document (GWD), 2014

NSI A&A Service Adaptations

Policy Management:

Attributes: Identify security-relevant properties from local resources or users that may serve as attributes

Mapping: Map local attributes to federated attributes

Policies: Allow for the specification and discovery of federated attributes for policy construction

Admin: Allow for the administration (creation, update, removal) of both local and federated policies

Conflict: Detect and help resolve policy conflicts, e.g., contradictory rules

Policy Evaluation:

Retrieve: Identify relevant local policies upon a given A&A request

Provision: Collect local and federated attributes as specified in relevant local policies

Dispatch: Dispatch evaluation requests for relevant federated policies

Aggregate: Combine evaluation decisions for both local/federated policies

Communicate: Send a response with the final A&A decision to the requesting service

- 1. Identify policy-relevant properties from local resources or users that may serve as attributes
- 2. Map local attributes to federated ones
 - Provide a framework for specifying and publishing both local and federated attributes

3/25/15

- 3. Allow for the specification and discovery of federated attributes for policy construction
 - Provide a distributed service that allows for the efficient discovery of federated attributes and policies within federated peers

- 4. Allow for the administration (creation, update, removal) of both local and federated policies
 - Implement an A&A administration model based on attributes, allowing for certain users to create, update and remove attributes and policies only if they hold certain attributes, e.g. network administrators

- 5. Detect and help resolve policy conflicts, e.g., rule shadowing, generalization, correlation and redundancy.
 - Develop new techniques that leverage existing approaches for conflict detection/resolution, e.g. authorization spaces*, to work on a distributed multi-organizational setting

^{*}Hu, Hongxin, Gail-Joon Ahn, and Ketan Kulkarni. "Detecting and Resolving Firewall Policy Anomalies." *IEEE Transactions on Dependable and Secure Computing* (IEEE) 9, no. 3 (May/June 2012): 318-331.

Policy Evaluation

- 1. Retrieve relevant local policies upon a given A&A request
 - Develop policy indexing techniques to allow for relevant local policies to be efficiently located for evaluation

Policy Evaluation

- 2. Provision local/federated attributes as specified in relevant local policies
 - Provide a framework for provisioning: processing, digitally signing and collecting both local and federated attributes that are relevant to a given policy

Policy Evaluation

- 4. Dispatch policy evaluation requests for relevant federated policies
- 5. Aggregate policy evaluation decisions for both local/federated policies
- 6. Communicate final A&A decision to requesting service
 - Identify relevant A&A-NSAs using discovery service. Dispatch policy evaluation requests and aggregate results

Policy Samples: Link Ownership

Exchange Network X cannot make a connection on port X.A without the approval of Network A, and similarly, cannot make a connection on port X.B without approval of Network B.

Policy Samples: Resource Restrictive Transit

An example of a resource based transit policy is Exchange X allowing a maximum bandwidth between Network A and Network C independent of the path.

Maximum bandwidth Link C1 + Link B for src Network C == 10 Gb/s

Policy Samples: Resource Allocation

In the example below, Link C1 is tagged for use by user group 1 only, while all other links are tagged for cooperative sharing. Only users that are members of group 1 may use link C1 in reservation requests.

Addressing NSI A&A Requirements

- Policy Management
 - Incorporate evaluation with service-specific functionality
 - Real-time data collection for policy evaluation
 - Evaluate/enforce both local and inter-organizational policies
- Authentication and Access Control
 - Support different models: identity-based, project/groupbased and request-based
- Infrastructure
 - Leverage existing infrastructure
 - Scalability
 - Platform-independent

Questions?

- SEFCOM:
 - Website: http://sefcom.asu.edu
- Carlos Rubio-Medrano:
 - crubiome@asu.edu
 - http://www.public.asu.edu/~crubiome
- Gail-Joon Ahn:
 - gahn@asu.edu
 - http://www.public.asu.edu/~gahn1

