

Enabling Grids for E-sciencE

EGEE

A multi-national, multi-science Grid infrastructure

Erwin Laure EGEE Technical Director, erwin.laure@cern.ch

OGF20 Workshop: campus and community Grids 7 May 2007

Enabling Grids for E-sciencE

- Infrastructure operation
 - Currently includes >200 sites across 40 countries providing ~40K CPUs
 - Continuous monitoring of grid services & automated site configuration/management
 - Used by >200 VOs running ~100.000 jobs/day GEANT2

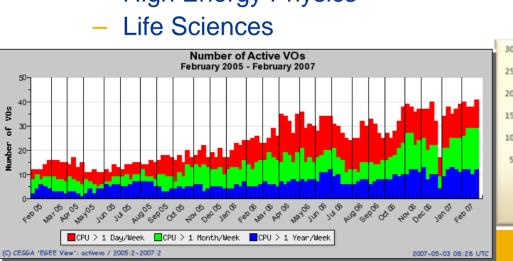
- Production quality middleware distributed under business friendly open source licence
- User Support Managed process from first contact through to production usage
 - Training
 - Expertise in grid-enabling applications
 - Online helpdesk
 - Networking events (User Forum, Conferences etc.)

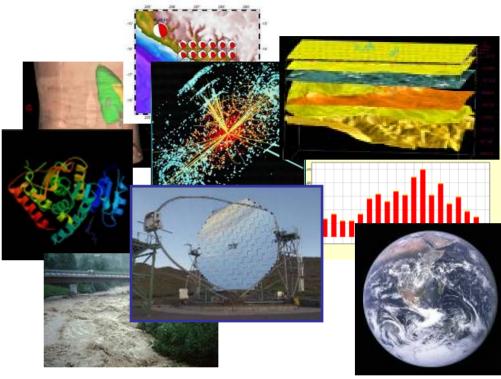
Expanding geographical reach and interoperability with collaborating e-infrastructures

European Commission co-funded projects

Projects with other funding

EELA




EGEE Applications

Enabling Grids for E-sciencE

>200 VOs from several scientific domains

- Astronomy & Astrophysics
- Civil Protection
- Computational Chemistry
- Comp. Fluid Dynamics
- Computer Science/Tools
- Condensed Matter Physics
- Earth Sciences
- Fusion
- High Energy Physics

International Collaborations

Enabling Grids for E-sciencE

erics

Grid Interoperability

Enabling Grids for E-sciencE

- We currently see different flavors of Grids deployed worldwide
 - Because of application needs, legacy constraints, funding, etc.
 - Diversity is positive! Competition to find the best solutions
- Many applications need to operate on more than one Grid infrastructure
 - Pragmatic approach to interoperability is key
 - Applications need interoperable Grid infrastructures now
 - A production infrastructure cannot be an early adopter of quickly changing standards
 - Changing the infrastructure takes time and must not be disruptive
 - For instance: following the OGSI WSRF move would have had serious effects on EGEE's operation

Worldwide Grids

APAC
DEISA
EGEE
Naregi
NDGF
NGS
OSG
Pragma
Teragrid

Integrating Community Grids

Enabling Grids for E-sciencE

Applications

Higher-Level Grid Services

Workload Management

Replica Management

Visualization

Workflow

Grid Economies

Foundation Grid Middleware

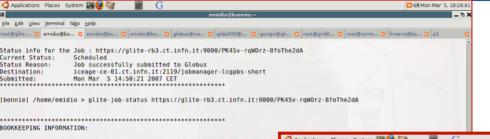
Security model and infrastructure
Computing (CE) and Storage Elements (SE)
Accounting
Information and Monitoring

Applications have access both to Higher-level Grid Services and to Foundation Grid Middleware

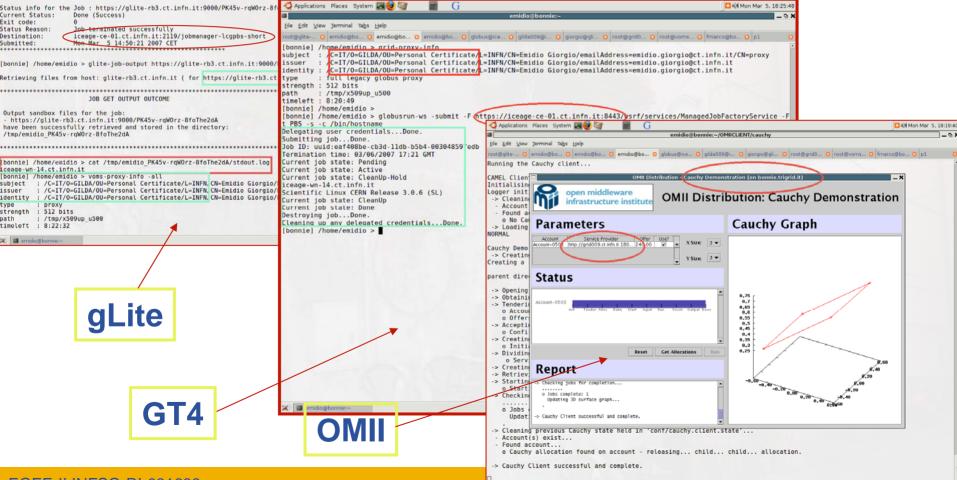
Higher-Level Grid Services are supposed to help the users building their computing infrastructure but should not be mandatory

Foundation Grid Middleware will be deployed on the EGEE infrastructure

- Must be complete and robust
- Should allow interoperation with other major grid infrastructures
- Should not assume the use of Higher-Level Grid Services



Co-existence



Web Mail Shell Desk

Enabling Grids for E-sciencE

- Allow same resources to be accessed via different WM systems
- Prototype by ICEAGE on GILDA training infrastructure

(: ■ emidio⊗bonnie:~/OMICUENT/c... □ OMII Distribution - Cauchy Dem.

Connecting to EGEE

Enabling Grids for E-sciencE

As resource provider

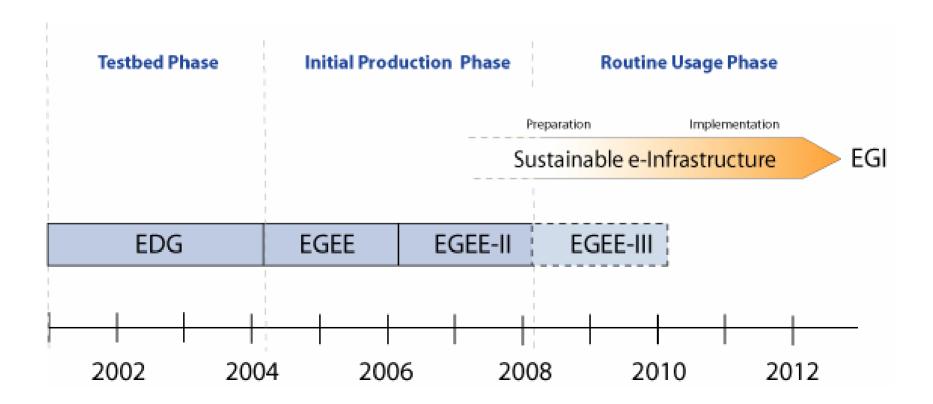
- Distributed operations organized via Regional Operations Centers - ROCs (~10)
 - Support new sites in installing gLite foundation services etc.
 - Operation guides: http://cern.ch/egee-sa1/joining.html
 - Standardized tests run regularly to check service status

As community

- Application support activity provides documentation and help
- http://egeena4.lal.in2p3.fr/index.php
- Essential first steps:
 - Set up of a Virtual Organization and a VO mgmt service (VOMS)
 - Identification of requirements
 - Resource usage
 - Software and services
- Most successful if supported via local EGEE sites and ROCs

Campus Grids

- Co-location limited
 - gLite platform support
- Interoperation and standardization at infancy levels
 - Seamless interoperation between EGEE and OSG achieved
 - Similar middleware stack
 - Work through OGF essential to move forward


Community Grids

- Customized, non-interoperable foundation services; sometimes difficult to interface with
 - Common interfaces and semantics key
- Hosting of application level services
 - VM technology could help
- Resource allocation mechanisms at infancy levels
 - Need to scale to ~500 VOs and sites

Sustainability

Need to prepare permanent Common Grid infrastructure

- High quality of service for all user communities
- Independent of short project funding cycles
- Managed in collaboration with National Grid Initiatives (NGIs)

