
Extension to the XACML AuthZ Interoperability Profile

Brian Bockelman∗1, Dave Dykstra†2, David Groep‡3, and Mischa Sallé§3

1University of Lincoln-Nebraska,
2Fermilab, Batavia, IL, USA

3FOM-Nikhef, Amsterdam, The Netherlands

November 12, 2014

Abstract

This document describes additions and clarifications to the XACML Grid Authorization
Interoperability profile[2]. It is not intended as a replacement of the old profile, but as addition
to it.

1 Introduction

The XACML Authorization Interoperability profile[2] was developed a number of years ago
in a collaborative effort of OSG, EGEE and Globus, in order to agree on a common set of
obligations and attributes to be used in the Grid authorisation infrastructure. It is currently
used both by OSG and partly by EGI (as successor of EGEE) and has resulted among other
things in the use of the same client software on both sites of the Atlantic.

Now that it has been successfully used for a number of years, a few shortcomings have
come to light, which warrant extensions and adaptations. These changes will be described in
the different subsections of Section 3. In Section 4 we will give their respective motivations.

A further motivation for adapting the profile could come from the Argus framework,
the authorisation framework used by the majority of the European sites. Due to similar
considerations as those expressed here, in particular the lack of certain obligations, the Argus
collaboration has introduced a different profile[3]. By extending the interoperability profile
to cover such obligations, we open the way to at some point unify the two profiles.

2 Notational conventions

The namespace of the profile is unchanged:

• Obligations have full ID
http://authz-interop.org/xacml/obligation/�ObligationID�

• Attributes have full ID
http://authz-interop.org/xacml/attribute/�AttributeID�

We will mostly use only the shortened IDs in this document. Further definitions:

∗bbockelm@cse.unl.edu
†dwd@fnal.gov
‡davidg@nikhef.nl
§msalle@nikhef.nl

1



UID: User Identity
GID: Group Identity
pGID: Primary Group Identity
sGID: Secondary Group Identity
DN: Distinguished Name
EEC: End Entity Certificate
VOMS: Virtual Organisation Membership Service
AC: Attribute Certificate
FQAN: Fully Qualified Attribute Name
FQDN: Fully Qualified Domain Name

3 Extensions and adaptations

This section describes the different changes with respect to the previous interoperability pro-
file. The rationale for the different changes is described in corresponding subsections of
Section 4.

3.1 Full specification of username obligation

The specification of the obligation username (paragraph 7.5, reference [2]) only describes that
it should set the username as given by the attribute username. The profile should be amended
to read that the client sets the full account, according to getpwent() information [4] for the
given username, i.e. UID, pGID and optionally sGIDs.

3.2 New account obligation

An obligation is required that can explicitly set primary or secondary groupnames, i.e. based
on groupname instead of GID. To provide this, the profile should be extended with a new
obligation account with attributes username, primary-groupname and secondary-groupnames.
Each attribute is optional. The server may send the obligation without any attributes, in
which case the client must verify that it has support for the obligation and fail if it has not.
See also Section 3.5

ID: account

Full Obligation ID: http://authz-interop.org/xacml/obligation/account

Attributes:

ID : username

Description: username of the resulting account.

Full Attribute ID: http://authz-interop.org/xacml/attribute/username

Type: string

Multiplicity: 0 . . . 1

ID : primary-groupname

Description: primary groupname of the resulting account.

Full Attribute ID: http://authz-interop.org/xacml/attribute/primary-groupname

Type: string

Multiplicity: 0 . . . 1

ID : secondary-groupname

Description: secondary groupname of the resulting account.

Full Attribute ID: http://authz-interop.org/xacml/attribute/secondary-groupname

Type: string

Multiplicity: 0 . . . N

2



3.3 Behaviour multiple primary group (and username) attributes

The profile should be extended to enforce the same behaviour for primary GIDs as it prescribes
for multiple UIDs (paragraphs 7.3 and 7.5, reference [2]):

1. Each obligation can contain at most one pGID setting attribute

2. If multiple obligations set a primary GID, either directly or indirectly, all resulting
pGIDs should be identical.

3.4 Dependencies of the secondary-gids obligation

The old specification of the secondary-gids obligation stated this obligation needs the uidgid
obligation. This requirement is removed: the server may send back a response containing an
incomplete mapping (or no mapping at all). It is up to the client to determine whether this
is a failure or not, and the client may obtain the actual mapping via other means.

Additionally, the server may also send back a combination of the secondary-gids together
with another obligation than the uidgid obligation to produce a complete mapping.

3.5 Obligation attributes and their multiplicities

The multiplicity of the attributes for the different obligations shall be the following:

ObligationID: username1

AttributeID: username

Multiplicity: 0 . . . 1

ObligationID: uidgid2

AttributeID: posix-uid

Multiplicity: 0 . . . 1

AttributeID: posix-gid

Multiplicity: 0 . . . 1

ObligationID: secondary-gids3

AttributeID: posix-gid

Multiplicity: 0 . . . N

ObligationID: account

AttributeID: username

Multiplicity: 0 . . . 1

AttributeID: primary-groupname

Multiplicity: 0 . . . 1

AttributeID: secondary-groupname

Multiplicity: 0 . . . N

Each obligation may be send by the server without any attributes, in which case the client
must verify that it has support for that obligation and fail if it has not.

3.6 Verification of subject attributes on client side

By optionally setting an issuer element in a subject attribute in the request (see paragraph
6.7 in reference [1]), the client can inform the server about the reliability of the corresponding
attribute. We distinguish the following cases:

1. the client has no knowledge about the reliability of the attribute, i.e. it may or it may
not be verified. In this case the client must not specify an issuer element.

2. the client can reliably state that the attribute is not verified. In this case the client should
provide the issuer element with the special value http://authz-interop.org/xacml/issuer/none.

1§7.5, ref. [2]
2§7.3, ref. [2]
3§7.4, ref. [2]

3



3. the client can reliably state that the attribute is verified. In this case the client should
provide the issuer element with a value depending on the type of attribute:

(a) for appropriate non-VOMS attributes extracted from the proxy certificate, the value
must be set to the issuer-DN of the EEC of the proxy chain, i.e. to the subject-
x509-issuer subject attribute, see paragraph 6.1.4 in reference [2].

(b) for appropriate VOMS attributes extracted from the VOMS AC inside the proxy
certificate, the value must be set to the DN of the VOMS service that signed the
corresponding AC, i.e. to the voms-signing-subject subject attribute, see para-
graph 6.1.6 in reference [2].

The full list of subject attributes with their respective issuers is given in the following
table:
Attribute Issuer element

subject-x509-id subject-x509-issuer
subject-x509-issuer issuer-DN of CA certificate
validity-not-before subject-x509-issuer
validity-not-after subject-x509-issuer
certificate-serial-number subject-x509-issuer
ca-serial-number issuer-DN of CA certificate
ca-policy-oid subject-x509-issuer
cert-chain subject-x509-issuer

vo voms-signing-subject
voms-signing-subject voms-signing-issuer
voms-signing-issuer issuer-DN of VOMS signing CA
voms-fqan voms-signing-subject
voms-primary-fqan voms-signing-subject
voms-dns-port voms-signing-subject

subject-condor-canonical-name-id FQDN or host certificate subject-DN of
the service

3.7 Extra requirement for backwards compatibility

The interoperability profile explicitly gives a list of best practise recommendations in para-
graph 4.2. Although implied it does not mention explicitly what behaviour is expected from
a client if it receives a known obligation with unknown attributes. The behaviour should be
that the client fails. Hence it must be strongly discouraged to add extra attributes to existing
obligations. Instead, when existing obligations cannot fulfil a use case, new obligations must
be created.

4 Rationale

This section describes the rationale for the different changes described in Section 3. The
different subsections in this section correspond to the changes described there.

4.1 Rationale: Full specification of username obligation

Both LCMAPS plugins (lcmaps-plugins-scas-client and lcmaps-plugins-c-pep) use an imple-
mentation that sets a complete account belonging to the username, according to getpwent()

information [4]. Changing this behaviour would change the effect of the obligation in a back-
wards incompatible way. Note that the profile only supports passing supported obligationIDs
to the server, not the corresponding attributeIDs, while clients typically fail on unrecognised
attributes.

The new behaviour is also in line with ’classic’ Globus behaviour, the Globus callout
mechanism typically returns a single username, which is used to determine the complete
account.

4



4.2 Rationale: New account obligation

The rationale for introducing a new obligation is motivated by the requirement to keep the
username obligation implementation backwards compatible, see Subsection 4.1. Hence we
cannot add additional primary and secondary groupname attributes to the username obliga-
tion.

Alternatively, introducing separate new obligations for the primary and secondary group-
names, analogously to the GID obligations, would have let to an asymmetry with respect to
the username obligation: the username obligation would set the whole account, the groupname
obligations only one or more groups.

The choice for a single new obligation with optional attributes leads to the greatest flexibil-
ity and the least amount of needed client code, since it can be handled with a single new obli-
gation handler. Furthermore, it is very similar to the http://glite.org/xacml/obligation/local-
environment-map/posix obligation in the Argus worker node profile (paragraph 3.5.1, ref. [3]).

4.3 Rationale: Behaviour multiple primary group attributes

The profile only described the behaviour in case multiple obligations set a UID, in which case
either all of them must be identical, or the client should fail. The profile did not mention
similar behaviour in case of multiple pGIDs, since it only contained a single obligation being
capable of that, the uidgid obligation (even though in practise also the username obligation
sets one). Since obligations are unordered in the XACML2 standard, there is a need to
determine the behaviour. The new behaviour is the same as that for the UID.

4.4 Rationale: Dependencies of the secondary-gids obligation

For greater flexibility, any combination of credential mapping obligations is allowed as long
as they are not conflicting.

4.5 Rationale: Obligation attributes and their multiplicities

It was unclear whether obligations were allowed to have no attributes, except for the secondary-
gids, for which it was stated explicitly that the list of GIDs may be empty. Hence we formalise
the full set of multiplicities. Changing the multiplicity for the attribute of the secondary-gids
obligation would break current SCAS implementations, hence we keep the existing behaviour.

4.6 Rationale: Verification of subject attributes on client side

In the OSG scenario, the VOMS credentials are passed from the client to the server unverified.
The user effectively passes a list of requested FQANs to the server (GUMS), and it is the task
of the server to verify whether the user is allowed them.

In the European scenario, the client (gLExec) verifies the proxy, including its VOMS part.
Hence the entire proxy chain is fully verified on client side, and the server (SCAS) can rely
on the validity of the received credentials.

It is useful to have the ability to pass to the server who is responsible for the verification.
This could speed-up GUMS performance (it does not need to verify them again if they are
already verified) and provide feedback to the SCAS in case of a misconfiguration that would
lead to reliance on unverified credentials.

A further motivation for adding issuer elements to the attributes comes from proxies
containing multiple VOMS ACs. In those cases, having the issuer is the only way of telling
which attributes belong to which VO.

4.6.1 Format and name-space

Although using RFC2253 [5] formatted x500name notation for DNs in the issuer elements
would seem a more logical choice, this would constitute an incompatible change from the
existing profile. Furthermore, obtaining RFC2253 formatted DNs from the current VOMS
implementation is rather involved and would require changes in multiple libraries.

Concerning the name-space of the special none issuer, we have a preference to stay with
the same name-space as the rest of the profile, i.e. http://authz-interop.org/xacml.

5



4.7 Rationale: Extra requirement for backwards compatibility

Since the profile provides all the necessary means to stay backwards compatible and still
exchange sufficient information about understood obligations, via the pep-oblig-supported en-
vironment attribute (paragraph 6.5.2, ref. [2]), we do not need to provide a separate environ-
ment attribute providing the profile version, such as is used by the Argus worker node profile
(paragraph 3.1.1, ref. [3]). The use of the supported obligations attribute is more flexible: it
provides fully namespaced obligation IDs, allowing even for mixing different profiles.

5 Acknowledgements

Need ac-
knowledge-
ments

This work is supported by SURFnet and . . .

probably
need more
references,
e.g. for
GUMS,
SCAS etc.,
RFC2253

References

[1] Moses, T. (editor),
eXtensible Access Control Markup Language (XACML) Version 2.0, 2005,
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf

[2] Ananthakrishnan, R. et al.,
An XACML Attribute and Obligation Profile for Authorization Interoperability in Grids,
2013 https://www.ogf.org/documents/GFD.205.pdf

2011 http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952

[3] La Joie, C. and Tschopp, V.,
XACML Grid Worker NodeProfile, Version 1.0, 2010,
https://edms.cern.ch/document/1058175

[4] The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2013 Edition,
endpwent, getpwent, setpwent - user database functions,
http://pubs.opengroup.org/onlinepubs/9699919799/functions/endpwent.html

[5] Wahl, M. et al.,
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished
Names, 1997
http://tools.ietf.org/html/rfc2253

6

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
https://www.ogf.org/documents/GFD.205.pdf
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952
https://edms.cern.ch/document/1058175
http://pubs.opengroup.org/onlinepubs/9699919799/functions/endpwent.html
http://tools.ietf.org/html/rfc2253

	Introduction
	Notational conventions
	Extensions and adaptations
	Full specification of username obligation
	New account obligation
	Behaviour multiple primary group (and username) attributes
	Dependencies of the secondary-gids obligation
	blue Obligation attributes and their multiplicities
	Verification of subject attributes on client side
	Extra requirement for backwards compatibility

	Rationale
	Rationale: Full specification of username obligation
	Rationale: New account obligation
	Rationale: Behaviour multiple primary group attributes
	Rationale: Dependencies of the secondary-gids obligation
	Rationale: blue Obligation attributes and their multiplicities
	Rationale: Verification of subject attributes on client side
	Format and name-space

	Rationale: Extra requirement for backwards compatibility

	Acknowledgements

