Transactional Processes in OSIRIS

Can Türker, Christoph Schuler, Klaus Haller

ETH Zurich Institute of Information Systems Database Research Group

tuerker@inf.ethz.ch

Global Grid Forum "Grid Transactions BoF", 11.03.2004

Exploiting Different Computing Paradigms

- Database Technology
 - ACID Transactions
 - Query Optimization
 - Indexing

- Peer-to-Peer Computing
 - Direct communication
 - Scalability
 - Large scale communities

Process Management

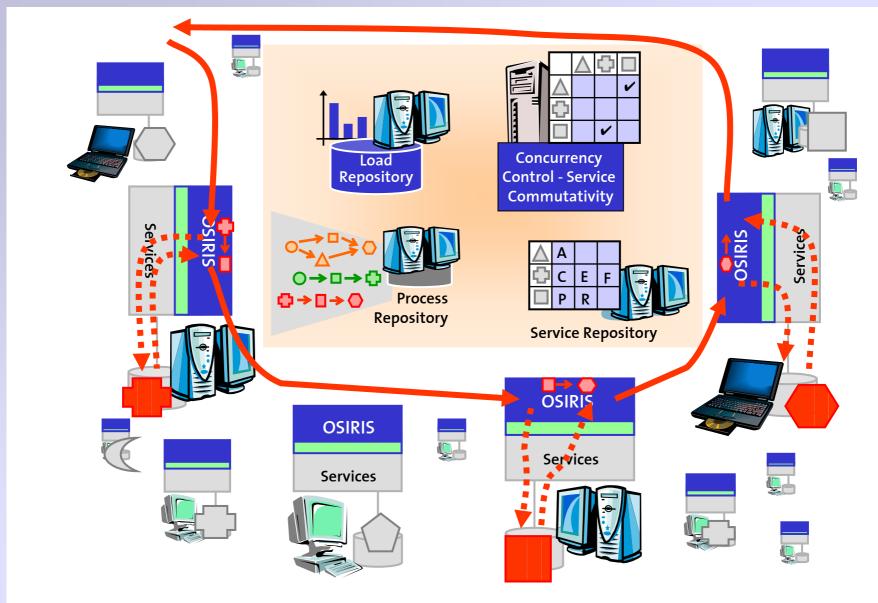
- Programming in the Large
- Visual Programming
- Reuse of existing services
- Composite Services

- GRID Computing
 - Resource Management
 - On demand computing
 - Self adaptation
 - Load Balancing

Exploiting Different Computing Paradigms

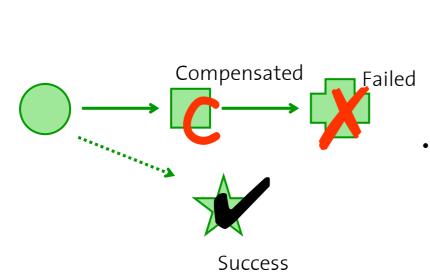
Transactional guarantees for composite processes

Peer-to-peer execution of processes


<u>Open Service</u> Infrastructure for <u>R</u>eliable and Process <u>S</u>upport

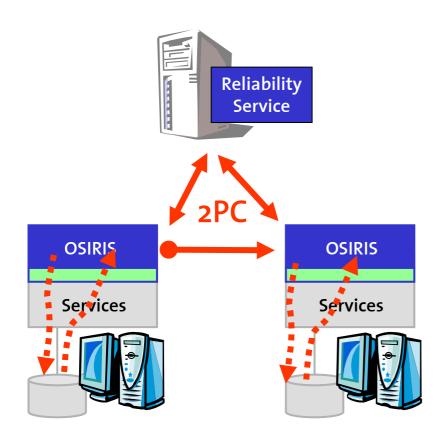
Processes to combine services

Dynamic routing of services

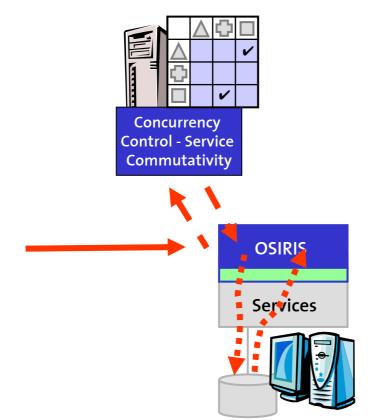

 $\bigcirc \rightarrow \Box \rightarrow \bigcirc$

OSIRIS Architecture

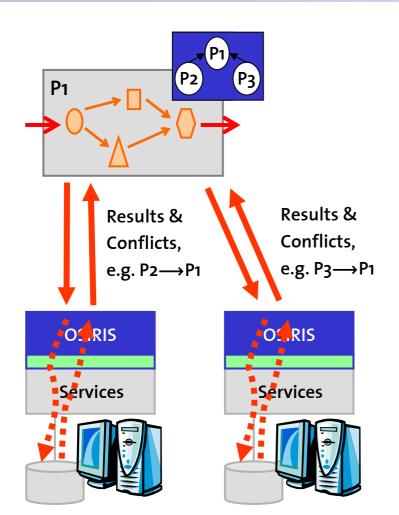
4


Providing "Database like" Guarantees

- Transactional Processes
 - Guaranteed Termination
 - Compensation and alternative execution paths
- Persistent process routing
 - \rightarrow 2PC Protocol from Peer to Peer
 - → Reliability Service
- Concurrency Control on Service level
 - → Intercepting Service Call
 - → Global Concurrency Control Service


5

Providing "Database like" Guarantees


- Transactional Processes
 - Guaranteed Termination
 - Compensation and alternative execution paths
- Persistent process routing
 - → 2PC Protocol from Peer to Peer
 - → Reliability Service
 - Concurrency Control on Service level
 - → Intercepting Service Call
 - → Global Concurrency Control Service

Providing "Database like" Guarantees

- Transactional Processes
 - Guaranteed Termination
 - Compensation and alternative execution paths
- Persistent process routing
 - → 2PC Protocol from Peer to Peer
 - → Reliability Service
 - **Concurrency Control on Service level**
 - → Intercepting Service Call
 - → Global Concurrency Control Service

Completely Distributed Concurrency Control

- No global concurrency control service!
- OSIRIS layer extended
 - service commutativity matrix
 - local serialization graph
- Transactional Ad-Hoc Processes
 - local serialization graph
 - P1 may commit if there is no active process P2 such that $P2 \rightarrow P1$
- Global deadlocks guessed by timeouts

Conclusions

- OSIRIS has a high potential to **scale** w.r.t. increasing **number of service providers** as well as to increasing **number of processes**
- Grid transactions
 - composite processes (higher order transactions)
 - semantic concurrency control (service commutativity)
 - guaranteed termination (service compensation and retriable alternatives)
 - scaleable, peer-to-peer execution (replication of metadata)
 - dynamic routing / late binding of services