DMTF Application Modeling
and Extensions for Behavior

Karl Schopmeyer
k.schopmeyer@opengroup.org

Presentation for GGF12 CIM GS sessions

V 1.1, 22 Sept 2004

Subjects

e Overview of DMTF / Open Group work in
Applications Management

e New Work, Modeling Behavior and State
Management in DMTF

CIM’'s Coverage

Applications and Services

Application Server

Systems, Devices/Storage, ...

Physical

v

Application Management Modeling
Overview

e Characteristics of an Application Management Model
— Lifecycle management
e Definition, Deployment, Installation, Configuration, Execution Control
— Runtime management

e Performance management, Service Level (QOS) management
Problem Management, fault analysis, etc.

e Inventory Management
e ...
e Contributing Management Information to the next Higher layer
— Business Process Management
— Service Level Management

Goals
«_ 00000077

e Management of wide range of applications
— Distributed
- Dynamic
- Multicomponent
- Large-scale

e Active management of applications as
services

~ Not just Monitoring
- Active, adaptive management

Model Components that Come
Together for Application
Management

e Managing The Application
— Lifecycle (Deployment, Installation, Configuration, Execute)

-~ Runtime (modeling the runtime structure, managing performance,
Service Levels, fault determinations, ...)

e Measuring Application Traffic Flow
- Metrics, Unit of Work (UOW), ARM API
e Automation

— From monitoring to management
- From management to adaptive management (service optimization)

e Policy
e Service Levels, Quality of Service (F > Control

Analysis
& |Resourcesj

Decision

i i Monitor

The Applicable DMTF Groups
S

e Application Work Group
- Runtime Model
- Lifecycle Model
- J2EE JSR 77 Model
— Metrics
— Unit of Work

e Database Work Group
- Database model

e Policy and SLA Work Group

— Policies

Application Management

e Lifecycle Model
e Runtime Model

app

status deployable|installable [executable running initial,

sub |transport | | | lifecycle

model “—~{[sewp | |
installation

runtime

Lifecycle Model Overview

Execution Service

~——

Unit of Acquisition

**

Collect Features
into Business
System

Unit of Component Management

Unit of Deployment |

Application Life Cycle
S

e Critical states in process of transition from
development to operational

e Applies to lowest-level component
- Software Elements

e States
A Ay A

Refining Software Element

Deployable Installable Executable

Number
eConditions
e Actions

Deployabl
State

In-State

Next State

A 4

Installable

€

/

N

State

In-State

Next State

W

/

E

N

xecutabl
State

In-State

Next State

Software Element Conditions

w

€

/

N

Running
State

In-State

Next State

AN

/

ext-State Conditions are characteristics that need to be true in the target
nvironment for the next state of a software element.

onditions are situations that are expect to exist or not exist in an environment

-State Conditions are characteristics of an environment that contains an element

Software Element Conditions

Condition

In-State Interpretation

Next-State Interpretation

Memory
Requirements

Minimum Amount of memory
required to transition into the
current state.

Minimum amount of memory required to
transition into the next state

required to transition into the
current state.

Disk Space Minimum amount of disk space Minimum amount of disk space required to
required to transition into the transition into the next state.
current state.

Swap Space Minimum amount of swap space Minimum amount of swap space required

to transition into the next state.

Software Element Conditions

Condition In-State Interpretation Next-State Interpretation

Architecture | The architecture required by a The architecture required by the software
software element in the current element to transition into the next state.
state.

Files A file that is expect to exist or not | A file this is expect to exist or not exist
exist when a software element is in | before a software element transitions into
the current state. the next state.

Directories A directory that is expect to exist or | A directory this is expect to exist or not
not exist when a software element exist before a software element transitions
IS in the current state. into the next state.

OS Version The version or ranges of versions a | The version or ranges of versions a
software element requires in its software element elements requires before
current state. it transitions into the next state.

Software A software element that is expect to | A software element that is expect to exist

Elements exist or not exist when a software or not exist before a software element
element is in the current state. transitions into the next state.

Software Element Actions

A —

Deployable Installable Executable Running
State State State State
Actions Actions Actions Actions
Next State Next State Next State Next State
Uninstall Uninstall Uninstall Uninstall

\

Y Y

Actions are a sequence of operations

Next State Actions create a software element in a particular state.

Uninstall Actions properly remove a software element

Software Element Actions

Running

Installable Executable

Deployable

| | | |

Actions Description

Directory An action to create or remove a directory.

File An action to create or remove a file.

Re-boot An action the signals the need to reboot the computer
system.

Execute An action that execute a program. This can be the install

Program script or program (e.g., setup.exe) when a software element
in the installable state transitions to the executable state.

Application Management and
SLAS

e The Business issue is providing services, not just the
applications.

e SLAs are the contractual/agreement model for
service level

e SLOs(service Level Objectives) are the service
goals required to satisfy SLAs.

e Both the systems and the applications are part of
the service level determination

Application Management and
SLAS

e Typical runtime service level parameters

— User perspective on performance

e Interactive responsiveness
— Transaction Response time / Time to accomplish

— Throughput / How many simultaneous users or how many things
can be done in a defined time

e Batch turnaround
e Critical deadlines (e.g. end-of-month processing)

— Availability
e Percentage of time service is available
e Maximum limits on service-down times

e Other non-runtime SLA issues
- Recoverability
- Data Integrity
— Problem responsiveness
- Affordability

Goals of Application Measurement
-

e Provide Monitors for

- Service Level management

e Need information and controls so that analysis can be done and
decisions made and implemented

- Business and Business Process management

e Provide Application Controls for
— Fault Determination
— Performance characteristic attribution

— Application monitor, management and manipulation in terms of
application components, aggregation into whole to support SLOs

OR
<

e Monitor to provide information for SLA
reporting

e Provide controls for SLA tuning

e Provide means to find why not meeting SLAS

It is not enough to know you have a problem if you do not know why or how to solve the
problem.

It is even more worthless to have a means for defining SLAsAnd SLOs and no means to
measure them on the system.

What are Applications?
-

e Complex collections of software components

e Multilayered functionally
- E.qg. Presentation, application, database, etc.

e Dynamically assembled

e GOALS of DMTF Runtime Management

- Model the components as viewed in runtime
Including the interactions

- Aggregate the information into the whole

- Disaggregate information from whole into the
components

Application Runtime Manageability
Requirements

e Define logical runtime structure of complex
applications

Define Application components/layers
Support distributed and dynamic applications

e Relate physical structures and logical runtime
structures

e Model usage of system resources as viewed by the
application

Model dataflow between components and
applications and between applications

Relate Unit of Work information to runtime structure
Allow monitor and control of application state
Support fault management

Aggregate information from components to the whole

Modeling FCAPS
-

e Fault
- Indications
- Error and status properties (counter, information)
- Log-entries, traces, etc.

e Performance
- Base metrics (10, timebound metrics, etc.)
- UoWw
— Metric properties
— Statistics

e Configuration
— Persistent configuration information: configuration, settings
— Control: methods
- Current configuration: object properties, support classes,
associations

App Runtime Model Concepts
(Simplified)

ApplicationSystem SyStem
<<System>> Sub-Model
Parameter, Status, InnerError, o
InnerTimeBound, — -
InnerAmountBound, IOError. DistributedAppSystem LocalAppSystem
IOTimeBound, IOAmountBound <<System>> <<System>>
|
Hosted— Hosted
po— M. Service Function Sub-Model
NamedCommunication LogicalStorage
tl (SAP)
. . | |
Configuration ApplicationService Dependency +
<<Softw areService>>
Input/Output Resource
Logs s. document / <<Resource>>
Hierarchy s. document Hierarchy
Data Flow
— Implements
——— Performs ———
Hierarchy
Structure <L\|go”£%%0r$%%r;?;s> N UnitOfWork DataFlow Data
Sub-Model <<Action>> Sub-Model
S. document S. document

Application Model Hierarchy

Application Management Model

\ In development today

Application Application oApp|icati0n System
Runtime Model Deployment Model
submodel (CIM 2.8)
Components of Function
Syst
Sub-Model pata submodel (CIM 2.9
Sub-Model .
prelim)
Structure
Sub-Model External Systems » Data submodel,
Sub-Model
. structure submodel
Function
Sub-Model planned for future CIM

verisons (2.10, etc.)

Measuring Traffic Service
-

e Goals

- Identify and measure traffic characteristics (response time,
metric information associated with the traffic, etc.)

e DMTF - Unit of Work(UOW)

- Model dedicated to the concept of modeling time intervals

e Open Group - ARM

- API dedicated to instrumenting for measurement of time
Intervals.

Measure a time interval
Identify the transaction

Identlfy the appllcatlon ‘ APPLICATION APPL

Provides information for correlatlon of multiple
measurements

Provides information to understand component
UofWork (parent/child units of work)

Provides metric information places for resource,
etc. information

Marry with the instrumentation technology - ARM

Unit of Work
«]

e Defines a type of work

e Represents a UOW that has started and may have
completed executing

e Associated to a UOW definition

e Provides information such as:
- Response or elapsed time

—- Status
e Active, Suspended, Completed (with status), Aborted

— Metric Information about the UOW

e Examples
- Update account balance
- Execute batch
-~ Query Data server
- Execute subroutine

Status

«
e UOW model

— Model Developed by DMTF Application Work
Group

- Corresponds today to ARM 1, 2, 3
- Working on ARM 4 equivalent model

e ARM

- ARM API for C and Java today (Open Group
Standard

-~ Version 4 extend model to more useful metrics,
correlation.

Metrics Model
« /'

e Capture dynamic metric information
e Provide means to do predefine structuring
and organization of the data

- Time series
-~ Computation such as summing, averaging, etc.

Metrics and UOW model

B N — .

Logical Element Logical Element

UOW Definition performs UOW
.................................. Sub UOW i
UOW Metric Definition i

Definition

Other DMTF Work
« "/ /7

e Service Level Agreements and Service Level
Objectives

e Policy

Modeling Behavior

« /'
e Behavior and State, Extending CIM
to Behavioral Control

CIM includes Behavior Today
-

e The model includes methods which
represent behavior(ex. Start(), Stop())

e Some specific classes (ex. application
model) have been able to model specific
behaviorial characteristics (Deployment
states and checks and actions classes.

BUT
<

e Cannot define behavioral interactions
between classes

- Change to instance of class A causes creation of
Instance of Class b and an association to be
estabished between A and B.

e Cannot impose behavioral control on

Instances

- EX. Accept this method only when this property
set.

- Model cannot define when a Start() method
<hniild he allowed

Modeling Behavior and State
-

e The Issues
- Today CIM is an Information model

— CIM Information plus model behavior =
manageability model

e Objectives
— Allow states and state control on CIM Classes
- Define inter-object Actions
— Define state transitions that that invoke actions

Growth of the Information model to a
Management model

naged Services
m Information model

iInformation and behavior
el

Manageability
Model

\

Requirements for Behavioral Control

o]
e Define state for CIM Objects

e Define state transitions so that object owners
can control state changes

e Define inputs that can control states

e Define Actions that affect other parts of the
model

e Provide concepts for hiearchial aggregation
and disaggregation of state

A Very Simple Example

o]
A Light Switch Example

*TWO States

*One flip switch for control

e Transition Diagram

e State Table

Switch flipped

Switch flipped

State/ |Down |Up

Input

Flip Switch | Up/Do Light | Down/Do
on Light off

Example (Cont)

light
{

String instancelD;

[valuemap(“0”, “1™),
values(“on”, “off")]
Uint16 state = O;

Uint32 flip();

TODAY

*Not clear what is a state
variable

*Model does not define
relation between method
and state property.

State Transition Matris

light

{ State/ | Down | Up

String instancelD; Input

VFIip Up/Do Down/Do
. i Light on Light off
[State(pointer); Switch . 2

valuemap(“0”, “1"),
values(“on”, “off")]
Uintl6 state = O;

Uint32 flip();

}
With Behavior Control

«State clearly defined as state property and
associated with a particular transition matrix
*Clear behavior relation between method
and state property

Example (cont)

BB M oo ol

*Query state of
light instances

«Controls light
with “flip”
method

*Set light to “initial state”

*Accept “flip” method and
control Light resource in
accord with input.

*Respond to flip with
“good” response if state
changed or “error” if it did
not.

*Respond to instance
requests

Objectives of the Working Group
-

e Today CIM is an information model

e It does not allow managing behavior
- Of objects
- Between objects

e Objective

- Define mechanisms that would allow behavior
CIM objects and between objects to be defined.

Characteristics of a State Model

o]
e Based on OMG UML StateDiagrams

e Able to generate CIM state definitions directly
from UML tools

UML State Diagrams
S

e Hierarchical State Model
- Hierarchical States (substate model)
- State Transitions

e Based on event processing architecture

e [Features
- Guards
—- Entry and exit actions

- Orthogonal Regions - orthogonal regions detect
the same events and respond to them
“simultaneously”

Alternate definitions for State
Transitions

e Language based Definition

e Extending the CIM MetaModel to include
State, Transitions, Actions concepts
- UML has an existing meta-model as a starting
point
e Model State as instances of newly defined
classes

QOvel

ghal
no

Class <MOName>{ _ .~

State
Description

5 types of
event
possible

Definition of
the access
right

5 types of

transition
event

possible

Pseudo -state
description

<

~

— - List of method that
can be used

\

-

actions (« methomg’noredl », o]

Import a Package

import (a Package.aPackageX.*;)===—===—7""7"1

properties (« propl » « prop2 »,..) - ——=—=———=~-
set ({« propl », « paraml »}, {« objl.propl »,« paraml »},
{« classel:assol:propl »,« paFaﬁTlv»}-,....,_)_;

—

~
~

List of properties for witch
the access right can be changed

Declaration of

~
state <StateName> { R
ignore (« methodignoredl »,..);
on enter { do: an action; } ;

List of method
to ignored

the parameters

on exit { do: an action; } ;

_ Action or Condition

on pre_invoke (« amethodld ») {do: an action; }; - - description
on postinvoke (« a methodld ») { do: an action; } ; , -
on exception (« a methodld » , « an exception ») { do: an action; }; P Condition or
access (« prop » TYPE_ACCESS); -~ Synchronisation
- -~ 7
" - /7
transition (« state Y »){ P

on at_event («a method » ,«jj/mm/aaaa hh :mm:ss»)

on time_ event ([«method »,] « durée») [, synchro

}
} // fin de state

rState_synchro <StateName> (« tostateY ») {
loop (laptime) ;
condition ({java code returning a boolean}) ;
// then idem a normal state

\} /l fin de state_synchro

transition (« fromstateX », « tostateY ») {condition

7/
[, condition (.....)] {d6: an action; } ;

on call_event (« a method ») [, condition («java code returning a b oféan »)] {do: an action; } ;
on change_ event (« Exp Bool enjava ») [, condition (...)]{dgean action;} ;
on signal_ event (« a Event_Type » [, « propX=valuel »,...]) [«tondition (...)]{do:an action;} ;

do: an action; ;
1 ction; }
/

Action or 4
Condition
description

(« acondition »)} /lcompatibilité ascendante

V

Questions?

—,—h

