
DMTF Application Modeling
and Extensions for Behavior

Karl Schopmeyer
k.schopmeyer@opengroup.org

V 1.1, 22 Sept 2004

Presentation for GGF12 CIM GS sessions

Subjects

Overview of DMTF / Open Group work in
Applications Management
New Work, Modeling Behavior and State
Management in DMTF

CIM’s Coverage

Database

Application Server

Applications and Services

Operating System

Systems, Devices/Storage, …

Network

U
se

rs
 a

nd
 S

ec
ur

ity

Po
lic

y

Su
pp

or
t

M
gm

t I
nf

ra
st

ru
ct

ur
e

/ E
ve

nt
s

CIM

Ph
ys

ic
al

Application Management Modeling
Overview

Characteristics of an Application Management Model
– Lifecycle management

Definition, Deployment, Installation, Configuration, Execution Control
– Runtime management

Performance management, Service Level (QOS) management
Problem Management, fault analysis, etc.
Inventory Management
…

Contributing Management Information to the next Higher layer
– Business Process Management
– Service Level Management

Goals

Management of wide range of applications
– Distributed
– Dynamic
– Multicomponent
– Large-scale

Active management of applications as
services
– Not just Monitoring
– Active, adaptive management

Model Components that Come
Together for Application
Management

Managing The Application
– Lifecycle (Deployment, Installation, Configuration, Execute)
– Runtime (modeling the runtime structure, managing performance,

Service Levels, fault determinations, …)
Measuring Application Traffic Flow

– Metrics, Unit of Work (UOW), ARM API
Automation

– From monitoring to management
– From management to adaptive management (service optimization)

Policy
Service Levels, Quality of Service

Analysis
&

Decision
Resources

Control

Monitor

The Applicable DMTF Groups

Application Work Group
– Runtime Model
– Lifecycle Model
– J2EE JSR 77 Model
– Metrics
– Unit of Work

Database Work Group
– Database model

Policy and SLA Work Group
– Policies

Application Management

Lifecycle Model
Runtime Model

initial
life cycle

deployable installable executable running
app
status
sub
-model

transport
setup

installation

runtime

Lifecycle Model Overview

Software
Feature

Application
System

Core
Model

Application Model

ProductSoftwareFeature ApplicationSystemSoftwareFeature

SoftwareFeatureSoftwareElements

Software
Element

Product Service

Unit of Component Management

Unit of Acquisition

Unit of Deployment

Execution Service

Collect Features
into Business

System

Application Life Cycle

Critical states in process of transition from
development to operational
Applies to lowest-level component
– Software Elements

States

Deployable Executable RunningInstallable

Refining Software Element

Software
Element States Deployable Installable Executable Running

Platform

Windows

Linux 32

Solaris

HPUX
...

Details

•Number
•Conditions
•Actions

Deployable
State

Installable
State

Executable
State

Running
State

Software Element Conditions

Conditions are situations that are expect to exist or not exist in an environment

Conditions Conditions Conditions Conditions

In-State Conditions are characteristics of an environment that contains an element

In-State In-State In-State In-State

Next-State Conditions are characteristics that need to be true in the target
environment for the next state of a software element.

Next State Next State Next State Next State

Condition In-State Interpretation Next-State Interpretation

Memory
Requirements

Minimum Amount of memory
required to transition into the
current state.

Minimum amount of memory required to
transition into the next state

Disk Space Minimum amount of disk space
required to transition into the
current state.

Minimum amount of disk space required to
transition into the next state.

Swap Space Minimum amount of swap space
required to transition into the
current state.

Minimum amount of swap space required
to transition into the next state.

Software Element Conditions

Condition In-State Interpretation Next-State Interpretation

Architecture The architecture required by a
software element in the current
state.

The architecture required by the software
element to transition into the next state.

Files A file that is expect to exist or not
exist when a software element is in
the current state.

A file this is expect to exist or not exist
before a software element transitions into
the next state.

Directories A directory that is expect to exist or
not exist when a software element
is in the current state.

A directory this is expect to exist or not
exist before a software element transitions
into the next state.

OS Version The version or ranges of versions a
software element requires in its
current state.

The version or ranges of versions a
software element elements requires before
it transitions into the next state.

Software
Elements

A software element that is expect to
exist or not exist when a software
element is in the current state.

A software element that is expect to exist
or not exist before a software element
transitions into the next state.

Software Element Conditions

Deployable
State

Installable
State

Executable
State

Running
State

Software Element Actions

Actions are a sequence of operations

Actions Actions Actions Actions

Next State Actions create a software element in a particular state.

Next State Next State Next State Next State

Uninstall Actions properly remove a software element

Uninstall Uninstall Uninstall Uninstall

Actions Description

Directory An action to create or remove a directory.

File An action to create or remove a file.

Re-boot An action the signals the need to reboot the computer
system.

Execute
Program

An action that execute a program. This can be the install
script or program (e.g., setup.exe) when a software element
in the installable state transitions to the executable state.

Deployable Installable Executable Running

Software Element Actions

Application Management and
SLAs

The Business issue is providing services, not just the
applications.
SLAs are the contractual/agreement model for
service level
SLOs(service Level Objectives) are the service
goals required to satisfy SLAs.

Both the systems and the applications are part of
the service level determination

Application Management and
SLAs

Typical runtime service level parameters
– User perspective on performance

Interactive responsiveness
– Transaction Response time / Time to accomplish
– Throughput / How many simultaneous users or how many things

can be done in a defined time
Batch turnaround
Critical deadlines (e.g. end-of-month processing)

– Availability
Percentage of time service is available
Maximum limits on service-down times

Other non-runtime SLA issues
– Recoverability
– Data Integrity
– Problem responsiveness
– Affordability

Goals of Application Measurement

Provide Monitors for
– Service Level management

Need information and controls so that analysis can be done and
decisions made and implemented

– Business and Business Process management
Provide Application Controls for

– Fault Determination
– Performance characteristic attribution
– Application monitor, management and manipulation in terms of

application components, aggregation into whole to support SLOs

OR

Monitor to provide information for SLA
reporting
Provide controls for SLA tuning
Provide means to find why not meeting SLAs

It is not enough to know you have a problem if you do not know why or how to solve the
problem.
It is even more worthless to have a means for defining SLAsAnd SLOs and no means to
measure them on the system.

What are Applications?

Complex collections of software components
Multilayered functionally
– E.g. Presentation, application, database, etc.

Dynamically assembled
GOALS of DMTF Runtime Management
– Model the components as viewed in runtime

including the interactions
– Aggregate the information into the whole
– Disaggregate information from whole into the

components

Application Runtime Manageability
Requirements

Define logical runtime structure of complex
applications
Define Application components/layers
Support distributed and dynamic applications
Relate physical structures and logical runtime
structures
Model usage of system resources as viewed by the
application
Model dataflow between components and
applications and between applications
Relate Unit of Work information to runtime structure
Allow monitor and control of application state
Support fault management
Aggregate information from components to the whole

Modeling FCAPS

Fault
– Indications
– Error and status properties (counter, information)
– Log-entries, traces, etc.

Performance
– Base metrics (IO, timebound metrics, etc.)
– UoW
– Metric properties
– Statistics

Configuration
– Persistent configuration information: configuration, settings
– Control: methods
– Current configuration: object properties, support classes,

associations

Structure
Sub-Model

Data
Sub-Model

Function Sub-Model

System
Sub-Model

Parameter, Status, InnerError,
InnerTimeBound,
InnerAmountBound, IOError.
IOTimeBound, IOAmountBound

ApplicationSystem
<<System>>

Hosted

DistributedAppSystem
<<System>>

LocalAppSystem
<<System>>

s. document

ApplicationService
<<Softw areService>>

CIM_ServiceStatistics

Hosted

Dependency

Logs

s. document

NamedComponents
<<CodeComponents>>

Implements

Input/Output

s. document

Resource
<<Resource>>

LogicalStorageNamedCommunication
(SAP)

Performs

s. document

UnitOfWork
<<Action>>

Implicit:
Data Flow

DataFlow
Hierarchy

Hierarchy

Configuration

Hierarchy

App Runtime Model Concepts
(Simplified)

Application Model Hierarchy

Application
Runtime Model

System
Sub-Model Data

Sub-Model

Function
Sub-Model

External Systems
Sub-Model

Structure
Sub-Model

Application Management Model

Application
Deployment Model ...

•In development today
•Application System
submodel (CIM 2.8)
•Components of Function
submodel (CIM 2.9
prelim)
• Data submodel,
structure submodel
planned for future CIM
verisons (2.10, etc.)

Measuring Traffic Service

Goals
– Identify and measure traffic characteristics (response time,

metric information associated with the traffic, etc.)

DMTF - Unit of Work(UOW)
– Model dedicated to the concept of modeling time intervals

Open Group - ARM
– API dedicated to instrumenting for measurement of time

intervals.

Modeling The Transaction - UOW

Measure a time interval
Identify the transaction
Identify the application
Provides information for correlation of multiple
measurements
Provides information to understand component
UofWork (parent/child units of work)
Provides metric information places for resource,
etc. information
Marry with the instrumentation technology - ARM

Unit of Work

Defines a type of work
Represents a UOW that has started and may have
completed executing
Associated to a UOW definition
Provides information such as:

– Response or elapsed time
– Status

Active, Suspended, Completed (with status), Aborted
– Metric Information about the UOW

Examples
– Update account balance
– Execute batch
– Query Data server
– Execute subroutine

Status

UOW model
– Model Developed by DMTF Application Work

Group
– Corresponds today to ARM 1, 2, 3
– Working on ARM 4 equivalent model

ARM
– ARM API for C and Java today (Open Group

Standard
– Version 4 extend model to more useful metrics,

correlation.

Metrics Model

Capture dynamic metric information
Provide means to do predefine structuring
and organization of the data
– Time series
– Computation such as summing, averaging, etc.

Metrics and UOW model

CIM_
Logical
Element

UOWMetric
Definition

UOW
Definition

Logical Element
UOW Definition

UOW Metric
Definition

Logical Element
performs UOW

Sub UOW
Definition

Sub
UOW

UOW Metric

w
Started UOW

Metric
Value

Managed
Element

Other DMTF Work

Service Level Agreements and Service Level
Objectives
Policy

Modeling Behavior

Behavior and State, Extending CIM
to Behavioral Control

CIM includes Behavior Today

The model includes methods which
represent behavior(ex. Start(), Stop())
Some specific classes (ex. application
model) have been able to model specific
behaviorial characteristics (Deployment
states and checks and actions classes.

BUT

Cannot define behavioral interactions
between classes
– Change to instance of class A causes creation of

instance of Class b and an association to be
estabished between A and B.

Cannot impose behavioral control on
instances
– Ex. Accept this method only when this property

set.
– Model cannot define when a Start() method

should be allowed

Modeling Behavior and State

The Issues
– Today CIM is an Information model
– CIM Information plus model behavior =

manageability model
Objectives
– Allow states and state control on CIM Classes
– Define inter-object Actions
– Define state transitions that that invoke actions

Growth of the Information model to a
Management model

Manageability Objects
(Today)

Managed Services
From Information model
To information and behavior
model

Managed Services Model
(tomorrow)

Manageability
Model

Managed
Services
Model

Management Services

Requirements for Behavioral Control

Define state for CIM Objects
Define state transitions so that object owners
can control state changes
Define inputs that can control states
Define Actions that affect other parts of the
model
Provide concepts for hiearchial aggregation
and disaggregation of state

A Very Simple Example

Transition Diagram

State Table

Down/Do
Light off

Up/Do Light
on

Flip Switch

UpDownState /
Input

A Light Switch Example
•Two states
•One flip switch for control

Example (Cont)

light
{

String instanceID;

[valuemap(“0”, “1”),
values(“on”, “off”)]
Uint16 state = 0;

Uint32 flip();
}

TODAY With Behavior Control

light
{

String instanceID;

[State(pointer),
valuemap(“0”, “1”),
values(“on”, “off”)]
Uint16 state = 0;

Uint32 flip();
}

Down/Do
Light off

Up/Do
Light on

Flip
Switch

UpDownState /
Input

State Transition Matris

•Not clear what is a state
variable
•Model does not define
relation between method
and state property.

•State clearly defined as state property and
associated with a particular transition matrix
•Clear behavior relation between method
and state property

Example (cont)

CIM
Server

Light ProviderCIM
Client

•Query state of
light instances

•Controls light
with “flip”
method

Light
Resource

•Set light to “initial state”

•Accept “flip” method and
control Light resource in
accord with input.

•Respond to flip with
“good” response if state
changed or “error” if it did
not.

•Respond to instance
requests

Objectives of the Working Group

Today CIM is an information model
It does not allow managing behavior
– Of objects
– Between objects

Objective
– Define mechanisms that would allow behavior

CIM objects and between objects to be defined.

Characteristics of a State Model

Based on OMG UML StateDiagrams
Able to generate CIM state definitions directly
from UML tools

UML State Diagrams

Hierarchical State Model
– Hierarchical States (substate model)
– State Transitions

Based on event processing architecture
Features
– Guards
– Entry and exit actions
– Orthogonal Regions - orthogonal regions detect

the same events and respond to them
“simultaneously”

Alternate definitions for State
Transitions

Language based Definition
Extending the CIM MetaModel to include
State, Transitions, Actions concepts
– UML has an existing meta-model as a starting

point
Model State as instances of newly defined
classes

Overview of
the

chameleon
notation

Conclusion
Class <MOName> {
actions (« methodIgnored1 », ...)
import (a Package.aPackageX.* ;)
properties (« prop1 », « prop 2 », …)
set ({« prop1 » , « param1 »} , {« obj1.prop1 » , « param1 »} ,

{« classe1:asso1:prop1 » , « param1 »} , …..) ;

state <StateName> {
ignore (« methodIgnored1 », ..) ;
on enter { do: an action; } ;
on exit { do: an action; } ;
on pre_invoke (« a methodId ») { do: an action; } ;
on post invoke (« a methodId ») { do: an action; } ;
on exception (« a methodId » , « an exception ») { do: an action; } ;
access (« prop »,TYPE_ACCESS) ;

transition (« state Y ») {
on at_event («a method » ,« jj/mm/ aaaa hh :mm: ss») [, condition (…..)] { do: an action; } ;
on call_event (« a method ») [, condition («java code returning a boolean »)] { do: an action; } ;
on change_ event (« Exp Bool en java ») [, condition (…)] { do: an action; } ;
on signal_ event (« a Event_Type » [, « propX =value1 »,…]) [, condition (…)] { do: an action; } ;
on time_ event ([«method »,] « durée») [, synchro (« synchro StateName »)] { do: an action; } ;

}
} // fin de state

state_synchro <StateName> (« tostateY ») {
loop (laptime) ;
condition ({ java code returning a boolean}) ;
// then idem a normal state

} // fin de state_synchro

transition (« fromstateX », « tostateY ») {condition (« a condition ») } //compatibilité ascendante

List of method that
can be used

Import a Package

List of properties for witch
the access right can be changed

State
Description

List of method
to ignored

5 types of
event

possible

Action or Condition
description

5 types of
transition

event
possible

Condition or
Synchronisation

Action or
Condition
description

Declaration of
the parameters

Definition of
the access
right

Pseudo -state
description

Questions?

