
CIM Overview

Andrea Westerinen

Agenda – Monday, Sept 20th

9-9:15am, Introductions (Tom Roney)
9:15-10:15am, DMTF Executive Overview (Troy Biegger)
10:30am-Noon, CIM Overview and Grid Service Example
(Andrea Westerinen)
1-1:45pm, Application Management and Behavior and
State (Karl Schopmeyer)
1:45-3pm, WBEM Architecture and XML Renderings (Jim
Davis)
3:15-3:45pm, WBEM Open Source Overview (Jim Davis)
3:45-4:30pm, Pegasus and WBEM Services Overviews
(Karl Schopmeyer and Jim Davis)
4:30-5pm, Q&A

Agenda – Wednesday, Sept 22nd

CGS Sessions

11am-12:30pm, Introductions (Tom Roney) + DMTF
Executive Overview (Troy Biegger) + CIM
Introduction (Andrea Westerinen)
3:30-5pm, CIM Overview and Grid Service Example
(Andrea Westerinen) + Application Management and
Behavior and State (Karl Schopmeyer)
7:30-9pm, WBEM Architecture, Open Source and
XML Renderings (Jim Davis and Karl Schopmeyer)

Differing Aspects of a Model

Two very different aspects of a model exist –
Semantics and rendering
– Each has their own requirements and restrictions

Semantics -> Rendering
– The model (CIM) dictates content and concepts /

Ideally have one model
– Language constructs and rules dictate the

rendering / Multiple renderings are possible (from
abstract UML to specific XML Schema)

Modeling Considerations

Scope and coverage
Modeling concepts and principles
Using the model (And an example)

Scope – The Environment AND the
Element

CIM’s scope addresses the "big picture“, but
implementation can be limited to a single element

– Allows dive down into specific components when necessary
– Example: 20 second access to critical data - Is the problem

in the server, the network, the storage or all three?
– To answer, need element details, and information on the

interactions between the elements and business priorities
Configurations span many elements, to accomplish
business goal

– Desirable for all the elements to understand the "larger"
business goals and how they fit into accomplishing these
goals

– Ideally, equipment understands the same config commands
– Example: Failing over from LA to Chicago

CIM’s Coverage (1)

Configuration and/or general management data (what is
and what is desired)

– For example, supporting root cause analysis

Relationships
– Usage, component, …
– General abstractions but specific implementations

Design for evolution and extension (std + proprietary)
Not only about data, also about operations

– Domain-specific operations with parameters (ex:
CreateOrModifyStoragePool)

Fits all the pieces together in a single conceptual model

CIM’s Coverage (2)

Database

Application Server

Applications and Services

Operating System

Systems, Devices/Storage, …

Network

U
se

rs
 a

nd
 S

ec
ur

ity

Po
lic

y

Su
pp

or
t

M
gm

t I
nf

ra
st

ru
ct

ur
e

/ E
ve

nt
s

CIM

Ph
ys

ic
al

Modeling Goals

Predictability
– Once the model is learned, the location of specific

data is maintained and therefore "predictable"
“Stable” semantics that can be specialized
and extended
Reuse of the model versus redefinition

OO Concepts

Abstraction (Determination of “essential”
characteristics that distinguish and define an
object’s conceptual boundaries)
Modularity (Decomposition of concepts into
discrete units)
Encapsulation (Compartmentalization of
structure and behavior; Separation of
abstraction and implementation)
Hierarchy (Ordering of abstractions)

CIM’s Elements

Classes – Collection of definitions of state, behavior,
and identity

– Properties
– Methods

Objects – Instances of a class
Class hierarchy – Subclassing
Associations - Relationships

– Dependency
– Identity
– Aggregation
– Composition
– And others

Method

Property

Class name

1
1

1
*

1
0..1

CIM’s UML

AGGREGATION
(A kind of association)

INHERITANCE

LogicalElement

*

*ManagedSystemElement

*

PhysicalElement

Component
*

Product

ProductPhysicalElements

ProductParentChild

*

*
*
0..1

*

Logical
Identity

*
*

Collection

MemberOfCollection*

ManagedElementDependency

METHODS

ASSOCIATIONS

CIM’s MOF (An Abstract Rendering,
Just One of the Possible Renderings)

 [Abstract, Description (
 "An abstraction or emulation of a hardware entity, that may "
 "or may not be Realized in physical hardware. ... ")]
class CIM_LogicalDevice : CIM_LogicalElement
{
. . .
 [Key, MaxLen (64), Description (
 "An address or other identifying information to uniquely "
 "name the LogicalDevice.")]
 string DeviceID;
 [Description (
 "Boolean indicating that the Device can be power "
 "managed. ...")]
 boolean PowerManagementSupported;
 [Description (
 "Requests that the LogicalDevice be enabled (\"Enabled\" "
 "input parameter = TRUE) or disabled (= FALSE). ...)"]
 uint32 EnableDevice([IN] boolean Enabled);
. . .
};

Qualifiers

Class Name and Inheritance

Properties

Methods

CIM’s Structure – Core and Common
Models

Infrastructure Specification
– “Meta”-model, high level concepts and language

definitions
“Core” and “Common” Models
– Core Model contains info applicable to all

management domains
– Common Models address specific domains - Systems,

Devices, Applications, Networks, Users, ...
Subclass from the Core Model
Models overlap and cross-reference

– Vendor extensions encouraged

Using the CIM Schema

NEVER … “What class(es) do I need?”
ALWAYS … “What is being managed and
modeled?”

– Who (Users and Security), What (Physical and Logical
Elements), Where (Location), When (aspects of time), How
(Services and Service Access Points) and Why (ROI !)

– Do any of the core or common models match the design
points?

– Examine the CIM inheritance tree to find matching concepts
/ Read profiles or the MOF for details

– Iterate based on the use cases, data flow and what is found
in CIM

CIM Grid Service Example

AcmeJobManager
ServerA

QueueBHigh
QueueB

ServerB

QueueC

ServerC

QueueDHigh
QueueD

ServerD

AcmeSpareManager

CIM_QueueForBatchService (assoc
to indicate where jobs are distributed)

Instances of CIM_BatchService Instance of
CIM_Computer
System

Instances of CIM_ComputerSystem with CIM_Processor
associated via CIM_SystemDevice and CIM_Operating
System associated via CIM_RunningOS

Instances of
CIM_JobQueue

CIM_HostedJobDestination (assoc
to indicate where queues are located)

CIM_HostedService (assoc to
indicate where service is located)

Failover (see
subsequent slide)

Example – The Job Managers

"AcmeJobManager" is an instance of BatchService
– “Submit job" method is part of its functional/business

interface, and not its management interface
– So, BatchService works as defined

"ServerA" hosts the AcmeJobManager
– Is an instance of ComputerSystem
– Used to manage the status of the system and the service

"RedundantJobManagers” is an instance of a
RedundancySet

– For failover of the AcmeJobManager
– Associated with the "AcmeSpareManager" (idea that Acme

is cheap and only has 1 spare for all its job managers
across the Internet)

Service and System Subclasses of
EnabledLogicalElement

Instances:
AcmeJobManager
AcmeSpareManager

Instances:
ServerA, ServerB,
ServerC, ServerD

CIM Redundancy Modeling

Instance associates
AcmeSpareManager

Instance associates
AcmeJobManager and
other Acme managers to
the RedundancySet

Instance:
RedundantJobManagers

Background: CIM Class Derivation

Example – The Execution Servers

"ServerB", "ServerC" and "ServerD" are instances of
ComputerSystem

– With SystemDevice associations to 4 instances of
Processor (on B and D) and 2 instances of Processor (on
C) / Servers B and C are running "Linux", while D runs
"Microsoft Windows Server 2003"

"QueueBHigh", "QueueB", "QueueC", "QueueDHigh"
and "QueueD" are instances of JobQueue on
Servers B (2 queues), C (1 queue) and D (2 queues)

– Each has an associated QueueStatisticalData
Queues are associated to AcmeJobManager via the
QueueForBatchService relationship

– AcmeJobManager distributes jobs to Servers B, C and D
based on their queue backlogs, and OS

Example – Jobs and Notifications

Jobs are really instances of BatchJob, and are
located in a queue using the JobDestinationJobs
association
AcmeJobManager registers for Indications on all
submitted Jobs

– If the Job's Run* properties indicate a time earlier than
StartTime (ie, the job was scheduled to run at a specified
time, but did not start on or before that time)

– Then another Indication is raised regarding an SLA violation

More Subclasses of EnabledLogical
Element to Manage OS and Processor

Associated to a
System via
SystemDevice

Associated to a System
via InstalledOS and
RunningOS

CIM Job Queues

CIM Queue Statistics

CIM Jobs

CIM Notifications

Backup

OO Example - Abstractions

Good to eat!

Cheeseburger

Fun to cook!

OO Example - Modularity

OO Example - Encapsulation

To cook the cheeseburger:
- Is the stove available?
- Are the burners working?
- Are the ingredients available?

To eat the cheeseburger:
- Is it made correctly?
- Is my plate clean or disgusting?

OO Example - Hierarchy

Sandwich

Cheeseburger

French Dip

Hamburger

