

Optical Network Infrastructure for Grid

Editor: Dimitra Simeonidou

Contributors: Bill St. Arnaud, Micah Beck, Bela Berde, Freek Dijkstra, Doan B. Hoang, Gigi Karmous-Edwards, Tal Lavian, Jason Leigh, Joe Mambretti, Reza Nejabati, John Strand, Franco Travostino

Motivation:

- Predictions for deployment of data-intensive Grid applications that will require transfers of Terabytes or even Petabytes of data
- These applications will require a high bandwidth network environment where BW will be allocated on demand or by user/application driven scheduled reservation
- Optical Technologies are well suited to fulfil these requirements:
 - Offer huge capacity and relatively low latency
 - WDM & tunable optical technologies in combination with optical switching can provide dynamic control of bandwidth at the fibre, wavelength-band, wavelength or subwavelength level
 - Can offer the capability to provide BW services dynamically controlled by individual users/application

■ This draft aims:

■ To suggest solutions towards an efficient and intelligent network infrastructure for Grid taking advantage of recent developments in optical technologies

- Why optical networking for the Grid
 - Factors supporting the need for optical infrastructure
 - Application requirements
 - Network limitations for data-intensive applications (i.e. packet switching, end-to-end and new transport protocols)
- Photonic Grid network characteristics
 - Network topology
 - Optical switching technology & transport format
 - Wavelength switching
 - Hybrid router/wavelength switching
 - Optical burst switching
- Optical network elements for the Grid
 - Optical switching nodes
 - Multicasting in photonic elements
 - Grid User Network Interface (GUNI)

- Optical network control and signalling
 - Generic proposal
 - GMPLS in combination with OBGP or other multi-domain protocols
 - Optical Grid networks serving well defined scientific communities and/or high volume users
 - Shared optical switched cloud
 - Fixed point-to-point links + automatic fibre patch panel switching
 - Access issues
 - Framing protocols
- Optical networks as Grid service environment
 - How optical resources (i.e. λ , optical switches) can be encapsulated in a Grid service in the same way as processing or storage
- Security
 - Specific strengths, treats & design options associated with the deployment of optical network technologies

Topics for Further Consideration & New Topics I

- Grid applications and their need for optical infrastructure
 - No widespread applications requiring lambda or optical Grids
 - Today's applications with large BW requirements (i.e. high energy physic centres, radiotelescopes) belong to well defined communities of users and destinations with typically long lived persistent relationships
 - What will be the demand for "anonymous" large file transfers?
 - SAN growth & evolution in SAN network architecture
 - Application scenarios such as high bandwidth interactive applications, data visualisation applications, application that require bandwidth to reduce latency have been mentioned
 - Further work is needed in order to dimension Grid applications in terms of their near and longer term BW demand, users characteristics, volume and behaviour

Topics for Further Consideration & New Topics II

- Need for network scalability
 - Will optical Grids only serve well defined specialised communities or will be wider deployed to serve a growing number of high BW "anonymous" users?
 - What will be the growth pattern of such networks?
 - There has been strong support for scalable solutions
 - Scalability is an inherent attribute of the Grid vision-enables the creation of ad-hoc VOs
 - The topic needs further justification and discussion
 - Scalability considerations will play an important role in any design and engineering decisions concerning optical Grids

Topics for Further Consideration & New Topics III

- Further and more specific definition of the OBS scenario:
 - How the OBS technology, protocols and architecture can provide solutions for Grid environments
 - Evaluate resource reservation, scheduling and release OBS variants suitable for Grid applications (i.e. tell and wait & just enough time)
 - Provide examples of switch architectures optimised for OBS
- Optical packet switching
 - Comments on the role (if any) of this technology in future photonic Grid networks
- Comparison of different transport formats & switching technologies
 - Discuss the relevant merits of wavelength and optical burst switching for Grid network deployment

Topics for Further Consideration & New Topics IV

- GUNI
 - Further detail on the GUNI functionality and how it relates to OIF UNI
 - Examples of implementation architectures
- Network control and signalling
 - Alternative approaches to OBGP, i.e. ONNI and various control plane gateway solutions
 - An overview of the relevant OIF/IETF optical networking standards has been suggested (John Strand). The OIF 12-vendor UNI/NNI interoperability demonstration at OFC 2003 could give a good source of information
 - A comparison with OBGP solutions will be useful
- Quality monitoring
- Redundancy & survivability

Topics for Further Consideration & New Topics V

- Encapsulating optical networks resources in the Grid service
 - Optical network resources need to be scheduled in a similar manner as computing and storage resources
 - i.e. Globus Resource Allocation Manager (GRAM) should perform λ-allocation
 - For resource optimisation a richer, OGSI compliant interface need to be defined?
 - We need further detail on resource scheduling/interfacing issues and some recommendations on extensions to the existing solutions

- Reevaluate the case for optical networking as Grid service infrastructure
 - Application requirements
 - Scalability
 - Deployment roadmap
- Incorporate the suggested amendments and additions into the next version of the draft before the deadline for GGF10
- Leverage on other groups work GGF, IETF, OIF
- Seek wider exposure of this work (outside GGF) in order to get the views of the broader community & establish this document as reference for future work in the field (publications, conference presentations, dedicated workshop, collaboration with photonic technology roadmap initiatives (i.e. OPTIMIST, BREAD))

Further Suggestions?

e-mail: ghpn-wg@gridforum.org

