
GLUE2 XML Renderings

David Meredith

Warren Smith

1

XSD Style: Flat, Nested or Combined
• Flat chosen as preferred style at OGF35, but....a consensus? (are still

requirements for nested and for backward compatibility).
• Style choice applies to how an entity’s <Associations> element models

relationships to other entities.

• Solely Flat:
– <Associations> nests Element ID reference elements

• All entity elements are siblings, no nesting.

• Solely Nested:
– <Associations> uses 2 methods:

• Nesting used to define (most) child associations +
• Some associations also modelled using Element ID references. Is necessary when

child has many parents and for *-to-* associations (and we MUST NOT duplicate
elements).

• Nested is thus really a ‘Partial Hybrid’ approach

• Combined:
– XSD provides a choice between Flat, Nested or a style-mix depending on

rendering requirements.
• Capable of solely flat, solely nested, or hybrid docs using the same XSD.

2

1. <Entities> is single Doc Root Element
• Using <Entities> is same as flat style which means

we do not have to support different Doc-Root
elements.

2. Nesting enforces parent-child relationships.
3. Easy doc traversal for most associations (easy XPath to

select nested children rather than cross referencing IDs,
nesting is the ‘natural’ approach in XML)

4. Associations: ID references are still required for some
associations (consider *-to-* and multiple parents).

5. Cascading Children: For any given entity, you MUST
always render child associations in full, inc. all
children/grandchildren and so on...
• Thus can’t always ‘Project’ just the required data

using a Projection Query (‘select * Services
where...’ without rendering all associatios, see
supporting slides). This can lead to XML bloat.

• Consider rendering 1000s of <*Service> records
and we don’t require child associations such as
Endpoints, Contacts, Shares etc to be rendered.

• Note, most child associations are optional, so its
possible to not render those child elements, but this
is incomplete/misleading - Entities MUST be
rendered in full.

• Same applies if we just need to render immediate
<*Domain> data (i.e. excluding child Services etc). (... detail elided)

Nested

3

Nested XSD
Sample XML All

associations
are directly
nested

Inner
(nested)
endpoint s

4

XSD

XML

1. <Entities> is single Doc Root element
2. Relationships modelled using ID element references only

(caters for *-to-* and Bi/Uni directional associations).
3. Efficient. Do not have to render children/grandchildren/etc..

when rending results from Projection Queries (only need to
render immediate child ID <Associations>).

4. Weaker association; relationship is not enforced by XSD.
• Pro: a grid can be represented as multiple XML docs.
• Con: extra coding effort to validate that a reference

points to the correct element.
5. Traversing associations requires sub-queries to cross

reference element IDs

(elements are collapsed)

Flat

5

Flat XSD
Sample XML All

associations
are element
ID references

ID References
to endpoints

6

XSD

XML

• A global element bag that lists
GLUE entities as siblings.

• Applies to all styles (flat, nested,
and combined).

• Enables Projection style queries
regardless of style, i.e.
select/render required entities
only:

• ‘select * Services where...’
• Note, projection for the nested

style is less efficient as you still
need to render all
children/grandchildren/so on
(Cascading children).

<Entities> is Common Doc
Root Element for All Styles

7

Q. Should we consider a Combined approach that enables a
choice of nesting and/or element ID refs?

• For any single entity, use <xsd:choice> to allow a choice

between Element ID refs OR nesting to model
<Associations>.

• Variations on the <xsd:choice> pattern possible.

Q. Alternatively, define two separate XSDs: one flat and one
nested? (also valid, but requires 2 XSDs)

8

Combined
Approach
Sample XSD

For an element, choose
between Nested or ID Refs
for EACH <Association>

A single element can mix
both refs and nesting in
<Associations/>.

Reference a <Contact>
that is declared globally as
a child of <Entities>, OR
directly nest a <Contact> ?

Rule: <ElementID> reference
elements MUST only reference
global elements that are
immediate children of <Entities>.

9

Combined Approach
Sample XML

Both styles can be rendered in
same Doc.
Nested and Flat <AdminDomain>

....

....

Rule: <ElementID> reference
elements MUST only reference
global elements that are immediate
children of <Entities>.

10

Combined Approach
Sample XML

Both styles can be rendered in same doc.

Nested and Flat <ComputingService>

....

....

11

Variation on Combined
Approach
Sample XSD

For any single element,
choose between ALL
Nested or ALL Refs for
all <Associations>.

Any single element can’t
mix both refs and
nesting in single
<Associations/>
element.

ID refs

Nested

or

Note, a nested ‘<Service>’ association is
not suitable here (thus only provide
<ServiceID> option) 12

Combined Approach
• Pros: Single XSD facilitates both styles

– XML Producers can choose style to suit rendering
requirements:

1. Use ElementID refs for projection queries when you just need to
render selected entities; “select * Services, Endpoints where...”

2. Use Nesting for other (eg XPath friendly) renderings and for
backward compatibility (ARC)

• (Using both styles is not new; e.g. Spring framework caters for both

Inner/Nested Beans + Bean references in ‘spring-beans.xml’ in very
similar way)

• Cons: Is this too flexible/complex?

– XML Consumers need logic to deal with both approaches for
full interoperability.

– Docs can appear ‘jumbled’ (although XSD validation doesn’t
care about that).

 13

Summary
• All variations have now been covered and discussed, now lets choose:

1. Nested Only
• Does not seem to be an option, too many requirements for the flat style.

2. Flat Only
• Drop any support for element nesting. Not backward compatible.

3. Combined
• XML producers can choose between Flat + Nesting renderings

• Too flexible for XML consumers? (full interop requires support for both styles)

4. Two related but separate XSDs (one flat, one nested, prefer single XSD)
• Interop still requires support for both XSDs, unless this can be profiled;

– ‘Interoperability requires support for at least the flat style...’ ?

– ‘Implementations MAY optionally choose to implement the nested style’ ?

• Regardless of style choice, these common validation rules still apply:
1. <Entities> is the only supported Doc Root element.

2. MUST not duplicate elements: Fail validation if a document contains two or more elements
with the same <ID> value.

3. Element ID refs MUST only reference globally declared elements that are immediate
children of <Entities>.

14

15

Flat XSD:
Grouping Elements and/or

BaseType Attribute

Additional (minor) style choices for Flat rendering

16

Flat XSD: Grouping Elements and/or
BaseType Attribute

• At least one (or both) of these approaches is required
to simplify XPath querying of a Flat XML document.

• For the fully flat XSD, then the BaseType attribute is
required to simplify XPath queries.

• (note, BaseType attribute was carried over from
original nested XSD).

• Grouping elements adds slight complexity as not all
entities are siblings, but does allow easy
collapsing/expanding of elements belonging to the
same substitution group (but is this really a Pro?).

• Grouping elements are just a ‘nice to have’

17

Flat with Grouping Elements Flat with no Grouping Elements

<Services>
groups different
Service impls

<Endpoints>
groups different
Endpoint impls

<Managers> groups
different Manager
impls

No grouping elements needed for
concrete elements (they have no
substitutable alternatives)

Sample XPath to select all services,
endpoints with Grouping elements:

/Entities/Services/*
/Entities/Endpoints/*

Grey boxes =
Collapsed
elements

18

Flat with no Grouping Elements Requires the BaseType Attribute to simplify Xpath

Sample XPath to select all services and
endpoints without Grouping elements
but with the BaseType Attributes:

/Entities/*[@BaseType=‘Endpoint‘]
/Entities/*[@BaseType=‘Service‘]

@BaseType=‘Endpoint’

19

Additional/backup slides

20

• Render results from Projection queries

– Projection queries simply specify the entities you
need to render when building a SELECT query (for
SQL, you would normally specify fields/cols).

• E.g. GOCDB provides 18 projection style
methods:
– get_service_endpoint

– get_ngi

– get_site

– get_contact

– get_downtime

– get_site_contacts ...

GLUE2: Projection Query Support

21

e.g. ‘Select * service_endpoints where’
(don’t need to return all parent and child
associations)

1) https://goc.egi.eu/gocdbpi/private/?method=get_roc_contacts&roc=NGI_UK
2) https://goc.egi.eu/gocdbpi/public/?method=get_downtime&topentity=GOCDB

2. 1.

~ Consider 1000’s of
records = can produce
large XML documents.

GLUE2: Sample Projection Query Results from GOCDB

22

https://goc.egi.eu/gocdbpi/private/?method=get_roc_contacts&roc=NGI_UK
https://goc.egi.eu/gocdbpi/public/?method=get_downtime&topentity=GOCDB

Sample Flat Rendering
(projecting services and endpoints)

• Can select/render (project)
just the required entities
under the same Doc root.

• Efficient: No redundant data
(consider 1000s of records).

• When selecting multiple

entities (e.g. ‘select * services,
endpoints, Contacts for
NGI_X’) its harder to traverse
the associations in the results
(lots of ID lookups).

23

Another variation
on the Combined
Approach

Unrestricted Mixing of
Nested + ID Refs in
<Associations>

This variation is

probably too flexible.

Associations
can be directly
nested and/or
referenced

2 Referenced
 +
1 Nested
endpoints 24

