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XSD Style: Flat, Nested or Combined 
• Flat chosen as preferred style at OGF35, but....a consensus? (are still 

requirements for nested and for backward compatibility).   
• Style choice applies to how an entity’s <Associations> element models 

relationships to other entities.  
 

• Solely Flat: 
– <Associations> nests Element ID reference elements 

• All entity elements are siblings, no nesting.  

• Solely Nested: 
– <Associations> uses 2 methods:  

• Nesting used to define (most) child associations +  
• Some associations also modelled using Element ID references. Is necessary when 

child has many parents and for *-to-* associations (and we MUST NOT duplicate 
elements).  

• Nested is thus really a ‘Partial Hybrid’ approach 

• Combined:  
– XSD provides a choice between Flat, Nested or a style-mix depending on 

rendering requirements.  
• Capable of solely flat, solely nested, or hybrid docs using the same XSD.  
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1. <Entities> is single Doc Root Element  
• Using <Entities> is same as flat style which means 

we do not have to support different Doc-Root 
elements. 

2. Nesting enforces parent-child relationships.  
3. Easy doc traversal for most associations (easy XPath to 

select nested children rather than cross referencing IDs, 
nesting is the ‘natural’ approach in XML) 
 

4. Associations: ID references are still required for some 
associations (consider *-to-* and multiple parents).  

5. Cascading Children: For any given entity, you MUST 
always render child associations in full, inc. all 
children/grandchildren and so on...  
• Thus can’t always ‘Project’ just the required data 

using a Projection Query (‘select * Services 
where...’ without rendering all associatios, see 
supporting slides). This can lead to XML bloat.  

• Consider rendering 1000s of <*Service> records 
and we don’t require child associations such as 
Endpoints, Contacts, Shares etc to be rendered. 

• Note, most child associations are optional, so its 
possible to not render those child elements, but this 
is incomplete/misleading - Entities MUST be 
rendered in full. 

• Same applies if we just need to render immediate 
<*Domain> data (i.e. excluding child Services etc).  ( ...   detail elided) 

Nested   
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Nested XSD 
Sample XML All 

associations 
are directly 
nested 

Inner 
(nested) 
endpoint s 
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1. <Entities> is single Doc Root element 
2. Relationships modelled using ID element references only 

(caters for *-to-* and Bi/Uni directional associations). 
3. Efficient. Do not have to render children/grandchildren/etc.. 

when rending results from Projection Queries (only need to 
render immediate child ID <Associations>).    
 

4. Weaker association; relationship is not enforced by XSD.  
• Pro: a grid can be represented as multiple XML docs.  
• Con: extra coding effort to validate that a reference 

points to the correct element.  
5. Traversing associations requires sub-queries to cross 

reference element IDs   
 

 

(elements are collapsed) 

Flat    
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Flat XSD 
Sample XML All 

associations 
are element 
ID references 

ID References 
to endpoints 
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• A global element bag that lists 
GLUE entities as siblings.  
 

• Applies to all styles (flat, nested, 
and combined).  
 

• Enables Projection style queries 
regardless of style, i.e. 
select/render required entities 
only:   
 
• ‘select * Services where...’  
• Note, projection for the nested 

style is less efficient as you still 
need to render all 
children/grandchildren/so on 
(Cascading children).  

<Entities> is Common Doc 
Root Element for All Styles 
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Q. Should we consider a Combined approach that enables a 
choice of nesting and/or element ID refs? 
 
• For any single entity, use <xsd:choice> to allow a choice 

between Element ID refs OR nesting to model 
<Associations>.  
 

• Variations on the <xsd:choice> pattern possible.  
 

 
 
Q. Alternatively, define two separate XSDs: one flat and one 
nested?  (also valid, but requires 2 XSDs)   
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Combined 
Approach  
Sample XSD  
 
For an element, choose 
between Nested or ID Refs 
for EACH <Association> 
 
A single element can mix 
both refs and nesting in 
<Associations/>. 

Reference a <Contact> 
that is declared globally as 
a child of <Entities>, OR 
directly nest a <Contact> ?  

Rule: <ElementID> reference 
elements MUST only reference 
global elements that are 
immediate children of <Entities>.  
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Combined Approach 
Sample XML 
 
Both styles can be rendered in 
same Doc.  
Nested and Flat <AdminDomain>  

.... 

.... 

Rule: <ElementID> reference 
elements MUST only reference 
global elements that are immediate 
children of <Entities>.  
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Combined Approach  
Sample XML 
 
Both styles can be rendered in same doc. 
 
Nested and Flat <ComputingService> 

.... 

.... 
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Variation on Combined 
Approach  
Sample XSD  
 
For any single element, 
choose between ALL 
Nested or ALL Refs for 
all <Associations>. 
 
Any single element can’t 
mix both refs and 
nesting in single 
<Associations/> 
element. 
 

ID refs 

Nested 

or 

Note, a nested ‘<Service>’ association is 
not suitable here (thus only provide 
<ServiceID> option) 12 



Combined Approach 
• Pros: Single XSD facilitates both styles  

– XML Producers can choose style to suit rendering 
requirements:  

1. Use ElementID refs for projection queries when you just need to 
render selected entities;  “select * Services, Endpoints where...”  

2. Use Nesting for other (eg XPath friendly) renderings and for 
backward compatibility (ARC) 

 
• (Using both styles is not new;  e.g. Spring framework caters for both 

Inner/Nested Beans + Bean references in ‘spring-beans.xml’ in very 
similar way)  

 
• Cons: Is this too flexible/complex?  

– XML Consumers need logic to deal with both approaches for 
full interoperability. 

– Docs can appear ‘jumbled’ (although XSD validation doesn’t 
care about that).  
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Summary 
• All variations have now been covered and discussed, now lets choose: 

1.  Nested Only  
• Does not seem to be an option, too many requirements for the flat style. 

2. Flat Only  
• Drop any support for element nesting. Not backward compatible.  

3. Combined  
• XML producers can choose between Flat + Nesting renderings 

• Too flexible for XML consumers? (full interop requires support for both styles)  

4. Two related but separate XSDs (one flat, one nested, prefer single XSD) 
• Interop still requires support for both XSDs, unless this can be profiled; 

– ‘Interoperability requires support for at least the flat style...’ ? 

– ‘Implementations MAY optionally choose to implement the nested style’ ? 

 

• Regardless of style choice, these common validation rules still apply:   
1. <Entities> is the only supported Doc Root element.  

2. MUST not duplicate elements:  Fail validation if a document contains two or more elements 
with the same <ID> value. 

3. Element ID refs MUST only reference globally declared elements that are immediate 
children of <Entities>.  
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Flat XSD:  
Grouping Elements and/or 

BaseType Attribute 

Additional (minor) style choices for Flat rendering 
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Flat XSD: Grouping Elements and/or 
BaseType Attribute 

• At least one (or both) of these approaches is required 
to simplify XPath querying of a Flat XML document.  

• For the fully flat XSD, then the BaseType attribute is 
required to simplify XPath queries. 

• (note, BaseType attribute was carried over from 
original nested XSD).  

• Grouping elements adds slight complexity as not all 
entities are siblings, but does allow easy 
collapsing/expanding of elements belonging to the 
same substitution group (but is this really a Pro?).  

• Grouping elements are just a ‘nice to have’  
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Flat with Grouping Elements Flat with no Grouping Elements 

<Services>  
groups different 
Service impls 

<Endpoints>  
groups different 
Endpoint impls 

<Managers>  groups 
different Manager 
impls 

No grouping elements needed for 
concrete elements (they have no 
substitutable alternatives)  

Sample XPath to select all services, 
endpoints with Grouping elements:  
 
/Entities/Services/* 
/Entities/Endpoints/* 

Grey boxes = 
Collapsed 
elements 
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Flat with no Grouping Elements Requires the BaseType Attribute to simplify Xpath  

Sample XPath to select all services and 
endpoints without Grouping elements 
but with the BaseType Attributes: 
 
/Entities/*[@BaseType=‘Endpoint‘] 
/Entities/*[@BaseType=‘Service‘] 

@BaseType=‘Endpoint’ 
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Additional/backup slides 
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• Render results from Projection queries 

– Projection queries simply specify the entities you 
need to render when building a SELECT query (for 
SQL, you would normally specify fields/cols). 

 

• E.g. GOCDB provides 18 projection style 
methods:  
– get_service_endpoint  

– get_ngi  

– get_site 

– get_contact 

– get_downtime 

– get_site_contacts ... 

GLUE2: Projection Query Support 
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e.g. ‘Select * service_endpoints where ....’ 
(don’t need to return all parent and child 
associations)   



1)  https://goc.egi.eu/gocdbpi/private/?method=get_roc_contacts&roc=NGI_UK 
2)  https://goc.egi.eu/gocdbpi/public/?method=get_downtime&topentity=GOCDB  

2. 1. 

~ Consider 1000’s of 
records = can produce 
large XML documents.  

GLUE2: Sample Projection Query Results from GOCDB 
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Sample Flat Rendering 
(projecting services and endpoints)  
   

• Can select/render (project) 
just the required entities 
under the same Doc root.  
 

• Efficient: No redundant data 
(consider 1000s of records).   

 
• When selecting multiple 

entities (e.g. ‘select * services, 
endpoints, Contacts for 
NGI_X’) its harder to traverse 
the associations in the results 
(lots of ID lookups).   

23 



Another variation 
on the Combined 
Approach 
 
Unrestricted Mixing of 
Nested + ID Refs in 
<Associations> 
 
This variation is 

probably too flexible.  

Associations 
can be directly 
nested and/or 
referenced 

2 Referenced 
      +  
1 Nested 
endpoints 24 


