
GFD-R.052 H. Nakada, AIST
Category: Recommendation-modified S. Matsuoka, Tokyo Institute of Tech.
GridRPC Working Group K. Seymour, Univ. of Tenn., Knoxville
 J. Dongarra, Univ. of Tenn., Knoxville

C. Lee, The Aerospace Corp.
H. Casanova, UCSD, SDSC

September 23, 2004
February 17, 2005

July 21, 2005
April 12, 2007

gridrpc@ggf.org 1

A GridRPC Model and API for End-User Applications

Status of This Memo

This document provides a recommendation to the Grid community on a proposed model and API
for a grid-enabled remote procedure call. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.
Copyright © Open Grid Forum (2007). All Rights Reserved.

Abstract

This document presents a model and API for GridRPC, i.e., a remote procedure call (RPC)
mechanism for grid environments. Specifically this document is targeted for end-user
applications, not middleware. That is to say, this document presents a simpler version of the
GridRPC model and API that is completely sufficient for end-users and does not include the more
complex features and capabilities required for building middleware. As a Recommendations track
document in the Global Grid Forum, the goal of this document is to clearly and unambiguously
define the syntax and semantics for GridRPC, thereby enabling a growing user base to take
an advantage of multiple implementations. The motivation for this document is to provide an
easy avenue of adoption for grid computing, since (1) RPC is an established distributed
computing paradigm, and (2) there is a growing user-base for network-enabled services. By
doing so, this document will also facilitate the development of multiple implementations.

Contents

Abstract...1
1. Introduction ..2
2. The Basic GridRPC Model..2
3. Document Scope..2

3.1 In Scope..2
3.2 Out of Scope ...3

4. The GridRPC API ...3
4.1 GridRPC Data Types...3
4.2 Initializing and Finalizing Functions..4
4.3 Remote Function Handle Management Functions..4
4.4 GridRPC Call Functions...6
4.5 Asynchronous GridRPC Control Functions ..7
4.6 Synchronous GridRPC Wait Functions ..8
4.7 Error codes and Error Reporting Functions ..10

5. Related Work ...12
6. Security Considerations..12
Author Contact Information..12
Intellectual Property Statement..13
Full Copyright Notice ...13
References..14

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 2

1. Introduction

The goal of this document is to clearly and unambiguously define the syntax and semantics for
GridRPC, a remote procedure call (RPC) mechanism for grid environments, thereby providing an
avenue of easy access to grid computing. Specifically this document is targeted for end-user
applications that do not require the more complex features and capabilities required for
middleware packages. As such, it is outside the scope of this document to review or discuss
those issues related to middleware, or the important issues related to network-enabled services
or to provide any kind of tutorial information. Nonetheless, a Related Work section is provided to
capture many references and pointers to relevant works that have lead up to this document. A
preliminary version of this model and API appeared as [15]. A longer version of that paper is
available as [16]. Comparison with CORBA is shown as [21].

2. The Basic GridRPC Model

Figure 1. The Basic GridRPC Model.

Figure 1 illustrates the basic GridRPC model. The functions shown here are very fundamental

and, hence, appear in many other systems. A service registers with a registry. A client
subsequently contacts the registry to look-up a desired service and the registry returns a handle
to the client. The client then uses the handle to call the service which eventually returns the
results.

In the GridRPC terminology adopted here, the service handle is a function handle which
represents a mapping from a simple, flat function name string to an instance of that function on a
particular server. Once a particular function-to-server mapping has been established by
initializing a function handle, all RPC calls using that function handle will be executed on the
server specified in that binding. A session ID is an identifier representing a particular non-
blocking GridRPC call. The session ID is used throughout the API to allow users to obtain the
status of a previously submitted non-blocking call, to wait for a call to complete, to cancel a call,
or to check the error code of a call.

3. Document Scope

This simple, common model nonetheless represents multiple fundamental issues. It is clearly
impossible to deal with them all at the same time. Hence, we now clarify what this document
defines and does not define.

3.1 In Scope

This document focuses on just defining the API and the minimal programming model needed to
understand and use the API for end-user applications. More specifically, it focuses on simple,
client-server interaction since this comprises the majority of usage scenarios.

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 3

3.2 Out of Scope

The following topics are very important but are nonetheless out of the scope of this document:

・ Middleware.
Middleware must be able to deal with situations that don't typically arise in end-user code, e.g., a
variable number of arguments in a specific GridRPC call that is not known until call time.

・ Service Discovery.
How the actual service registry or look-up is done is not addressed in this document. It is
assumed that some type of registry or grid information service is available to accomplish this
function.

・ Non-flat Service Names.
The current API assumes simple name strings for GridRPC services. Describing and discovering
GridRPC services by attributes or metadata schemas would certainly be very useful but is not
addressed here.

・ General Workflow.
Defining general mechanisms for managing grid workflows are not in the scope of this document.
However, simple extensions to the API may be possible that allow the use of workflow
management tools.

・ Interoperability between Implementations.
Since this document focuses on the GridRPC API, it says nothing about the protocols used to
communicate between clients, servers, and registries. Hence, it does not address interoperability.

4. The GridRPC API

We begin the presentation of the GridRPC API by defining the data types used. We then
present the initialization/finalization calls, function handle management calls, the function calls
themselves, and the control and wait calls. Each call definition includes a table of possible error
codes that it can return.

4.1 GridRPC Data Types
grpc_function_handle_t

Variables of this data type represent a specific remote function that has been bound to a specific
 server which might be chosen by underlying GridRPC system. They are allocated by the user.
After a function handle is initialized, it may be used to invoke the associated remote function as
many times as desired. The lifetime of a function handle is determined when the user invalidates
the function handle with a handle destruct call.

grpc_sessionid_t

Variables of this data type represent a specific non-blocking GridRPC call. Session IDs are used
to probe or wait for call completion, to cancel a call, or to check the error status of a call. Session
IDs are also allocated by the user but their lifetime is determined automatically. A session ID is
initialized when a non-blocking GridRPC call is made. It is invalidated, or destroyed, when (1) all
return arguments have been received, and (2) a wait function has returned a ``call complete’’
status to the application. If an invalid session ID is passed to any GridRPC call, an error will
result.

grpc_error_t

This data type is used for all error and return status codes from GridRPC functions.

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 4

4.2 Initializing and Finalizing Functions
The initialize and finalize functions are similar to the MPI initialize and finalize calls. Client

GridRPC calls before initialization or after finalization will fail.

grpc_error_t grpc_initialize(char *config_file_name)

This function reads the configuration file and initializes the required modules. After this function is
called once, subsequent call will return with GRPC_ALREADY_INITIALIZED.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_CONFIGFILE_NOT_FOUND Specified configuration file not found

GRPC_CONFIGFILE_ERROR
An error occurred parsing or processing the
configuration file

GRPC_OTHER_ERROR_CODE Internal error detected

GRPC_ALREADY_INITIALIZED The function is called more than once.

grpc_error_t grpc_finalize(void)

This function releases any resources being used by GridRPC, canceling all the unfinished
asynchronous calls.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_OTHER_ERROR_CODE Internal error detected

4.3 Remote Function Handle Management Functions

The function handle management group of functions allows the creation and destruction of
function handles.

grpc_error_t grpc_function_handle_default(

grpc_function_handle_t *handle,
char *func_name)

This creates a new function handle using a default server associated with the given function
name. This default could be a pre-determined server or it could be a server that is dynamically
chosen by the resource discovery mechanisms of the underlying GridRPC implementation. The
server selection process could be postponed until the actual call is made on the handle. Once
selection is made, all the calls through the handle must go to the server.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_SERVER_NOT_FOUND GRPC client cannot find any server

GRPC_FUNCTION_NOT_FOUND
GRPC client cannot find the function on the
default server

GRPC_RPC_REFUSED Handle creation is refused by the server

GRPC_OTHER_ERROR_CODE Internal error detected

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 5

grpc_error_t grpc_function_handle_init(

grpc_function_handle_t *handle,
char *server_name,
char *func_name)

This creates a new function handle with a server explicitly specified by the user.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_SERVER_NOT_FOUND GRPC client cannot find the specified server

GRPC_RPC_REFUSED Handle creation is refused by the server

GRPC_FUNCTION_NOT_FOUND
GRPC client cannot find the function on the
specified server

GRPC_OTHER_ERROR_CODE Internal error detected

Advice to Implementors:
 The exact form of the server name string is not specified. One common possibility is a string of
the form ``host_name:port_number''. Another possibility is a string in some resource specification
language.
End of Advice to Implementors.

grpc_error_t grpc_function_handle_destruct(grpc_function_handle_t *handle)

This releases all information and resources associated with the specified function handle. It also
cancels a running session bound to the handle, if exists, before releasing the handle itself.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_FUNCTION_HANDLE
Function handle pointed to by handle is not

valid

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_get_handle(

grpc_function_handle_t **handle,
grpc_sessionid_t sessionID)

This returns the function handle corresponding to the given session ID (that is, corresponding to

that particular non-blocking request).

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID sessionID is not valid

GRPC_OTHER_ERROR_CODE Internal error detected

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 6

4.4 GridRPC Call Functions
 Two GridRPC call functions are available for end-users. These two calls are similar but provide
either blocking (synchronous) or non-blocking (asynchronous) behavior. In the non-blocking case,
a session ID is returned that is subsequently used to test for completion.

grpc_error_t grpc_call(grpc_function_handle_t *handle, <varargs>)

This makes a blocking remote procedure call with a variable number of arguments.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_SERVER_NOT_FOUND GRPC client cannot find the specified server

GRPC_FUNCTION_NOT_FOUND
GRPC client cannot find the function on the
specified server

GRPC_INVALID_FUNCTION_HANDLE
Function handle pointed to by handle is not

valid

GRPC_RPC_REFUSED
RPC invocation refused by the server, possibly
because of a security issue

GPRC_COMMUNICATION_FAILED Communication with the server failed somehow

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_call_async(

grpc_function_handle_t *handle,
grpc_sessionid_t *sessionID,
<varargs>)

This makes a non-blocking remote procedure call with a variable number of arguments. A
session ID is returned that can be used to probe or wait for completion, cancel the call, and check
for the error status of a call.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_SERVER_NOT_FOUND GRPC client cannot find the specified server

GRPC_FUNCTION_NOT_FOUND
GRPC client cannot find the function on the
specified server

GRPC_INVALID_FUNCTION_HANDLE
Function handle pointed to by handle is not

valid

GRPC_RPC_REFUSED
RPC invocation refused by the server, possibly
because of a security issue

GPRC_COMMUNICATION_FAILED Communication with the server failed somehow

GRPC_OTHER_ERROR_CODE Internal error detected

The GridRPC Recommendation does not define which implementation-related operations may
be assumed to be complete when an asynchronous call returns. However, all asynchronous
GridRPC calls must return as soon as possible after it is safe for a user to modify any input
argument buffers.

Rationale:

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 7

By returning as soon as possible, e.g., before the remote operation has started and before any
results are returned, the GridRPC user can overlap the remote computation with other local
computation. By allowing the user to modify any buffers after the asynchronous call returns, we
present the user with the safest and simpliest buffer handling semantics possible. While it may
be possible to improve performance further by allowing asynchronous calls to return before it is
safe to modify input argument buffers, it was considered not worth the added complexity and
``danger'' for handling buffers. This is the approach taken by current prototype implementations.
End of Rationale.

4.5 Asynchronous GridRPC Control Functions
 The following functions apply only to previously submitted non-blocking requests.

grpc_error_t grpc_probe(grpc_sessionid_t sessionID)

This call checks whether the asynchronous GridRPC call represented by the session ID
sessionID has completed. If it has completed, GRPC_NO_ERROR is returned. Otherwise,
GRPC_NOT_COMPLETED is returned.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID sessionID is not valid

GPRC_NOT_COMPLETED Call has not completed

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_probe_or(

grpc_sessionid_t *idArray,
size_t length,
grpc_sessionid_t *idPtr)

This call checks whether the asynchronous GridRPC calls represented by the array of session
IDs in idArray have completed. If any calls have completed, the function return value is
GRPC_NO_ERROR and the grpc_sessionid_t pointed to by *idPtr contains exactly one valid,

completed call. If no call has completed, the function return value is
GRPC_NONE_COMPLETED and the grpc_sessionid_t pointed to by *idPtr is undefined. If any
of the session IDs in idArray are invalid, no operations will occur and an
GRPC_INVALID_SESSION_ID error will be returned. However, the array of session IDs may

contain completed session IDs without causing an error.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID A session ID in idArray is not valid

GPRC_NONE_COMPLETED No calls in idArray have completed

GRPC_OTHER_ERROR_CODE Internal error detected

Rationale:

Users will typically fill a such an array with session IDs and then check for them to finish one by
one. Hence, it will be a common occurrence that such an array may contain completed session

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 8

IDs. If having a sparse array presents a performance concern, the user has the option of packing
the array themselves.
End of Rationale.

Advice to Implementors:

While this document does not specify the actual representation for grpc_sessionid_t, it would

be possible for implementations to use some value to denote void or invalid variables of this type
that could be used for internal error-checking. For example, when grpc_probe_or() returns
GRPC_NONE_COMPLETED, the grpc_sessionid_t pointed to by idPtr could actually be set to

this void value.
End of Advice to Implementors.

grpc_error_t grpc_cancel(grpc_sessionid_t sessionID)

This cancels the specified asynchronous GridRPC call.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID sessionID is not valid

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_cancel_all(void)

This cancels all outstanding asynchronous GridRPC calls.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_OTHER_ERROR_CODE Internal error detected

Rationale:
 A ``cancel array’’ call was considered but dismissed since it would cause difficult error handling.
End of Rationale.

4.6 Synchronous GridRPC Wait Functions
 The following five functions apply only to previously submitted non-blocking requests. These
calls allow an application to express desired non-deterministic completion semantics to the
underlying system, rather than repeatedly polling on a set of session IDs.

Advice to Implementors:

From an implementation standpoint, such information could be conveyed to the OS scheduler
to reduce cycles wasted on polling.
End of Advice to Implementors.

grpc_error_t grpc_wait(grpc_sessionid_t sessionID)

This blocks until the specified non-blocking requests to complete.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 9

GRPC_INVALID_SESSION_ID sessionID is not valid

GPRC_COMMUNICATION_FAILED Communication with the server failed somehow

GRPC_SESSION_FAILED The specified session failed

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_wait_and(

grpc_sessionid_t *idArray,
size_t length)

This blocks until all of the specified non-blocking requests in idArray have completed.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID
One or more session IDs in idArray are not

valid

GRPC_SESSION_FAILED One or more sessions failed

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_wait_or(

grpc_sessionid_t *idArray,
size_t length,
grpc_sessionid_t *idPtr)

This blocks until any of the specified non-blocking requests in idArray has completed. On a
successful return, idPtr points to a completed request.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID
One or more session IDs in idArray are not

valid

GRPC_SESSION_FAILED The session ID pointed to by idPtr failed

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_wait_all(void)

This blocks until all previously issued non-blocking requests have completed.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_SESSION_FAILED One or more sessions failed

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_wait_any(grpc_sessionid_t *idPtr)

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 10

This blocks until any previously issued non-blocking requests has completed. On a successful
return, idPtr points to a completed request.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_SESSION_FAILED The session ID pointed to by idPtr failed

GRPC_OTHER_ERROR_CODE Internal error detected

Note: For grpc_wait_or() and grpc_wait_any(), if more than one call has completed, it is
undefined which completed session ID is pointed to by idPtr. That is to say, if more than one call

has completed, it is not guaranteed that the session ID returned is for the call that actually
completed first, or that successive wait calls will return completed session IDs in any particular
order.

4.7 Error codes and Error Reporting Functions
 When a GridRPC call fails, an error code is returned. Table 1 gives the error code identifiers
that can be used with variables of type grpc_error_t.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_CONFIGFILE_NOT_FOUND Specified configuration file not found

GRPC_CONFIGFILE_ERROR
An error occurred parsing or processing the
configuration file

GRPC_SERVER_NOT_FOUND GRPC client cannot find any server

GRPC_FUNCTION_NOT_FOUND
GRPC client cannot find the function on the default
server

GRPC_INVALID_FUNCTION_HANDLE Function handle is not valid

GRPC_INVALID_SESSION_ID Session ID is not valid

GRPC_RPC_REFUSED
RPC invocation refused by the server, possibly
because of a security issue

GRPC_COMMUNICATION_FAILED Communication with the server failed somehow

GRPC_SESSION_FAILED The specified session failed

GRPC_NOT_COMPLETED Call has not completed

GRPC_NONE_COMPLETED No calls have not completed

GRPC_OTHER_ERROR_CODE Internal error detected

GRPC_UNKNOWN_ERROR_CODE
Error description string requested for an unknown error
code

GRPC_ALREADY_INITIALIZED grpc_initialize is called more than once.

GRPC_LAST_ERROR_CODE
Highest numerical error code; used to bound error
codes and does not denote an actual error

Table 1. Summary of GridRPC Error Codes

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 11

These error codes satisfy:

0 = GRPC_NO_ERROR < GRPC_... < GRPC_LAST_ERROR_CODE
This specifies a useful numerical ordering of the error codes based on the set of integers without
specifying a specific implementation.
 The ability to check the error code of previously submitted requests is provided. The following
error reporting functions provide error codes and human-readable error descriptions. These error
descriptions can be more informative about the actual cause of the error.

char *grpc_error_string(grpc_error_t error_code)

This returns the error description string, given a GridRPC error code. If the error code is
unrecognized for any reason, the string GRPC_UNKNOWN_ERROR_CODE is returned.

grpc_error_t grpc_get_error(grpc_sessionid_t sessionID)

This returns the error code associated with a given non-blocking request.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_INVALID_SESSION_ID sessionID is not valid

GPRC_COMMUNICATION_FAILED Communication with the server failed somehow

GRPC_SESSION_FAILED The specified session failed

GRPC_OTHER_ERROR_CODE Internal error detected

grpc_error_t grpc_get_failed_sessionid(grpc_sessionid_t *idPtr)
This returns the session ID associated with the most recent GRPC_SESSION_FAILED error.

This provides additional error information on a specific session ID that failed for calls that deal
with sets of session IDs, either implicitly, such as grpc_wait_all(), or explicitly, such as
grpc_wait_and(). When there are more than two failed sessions, this function will return the

session ID one by one. To make sure that all the failed sessions are handled, users have to call
this function repeatedly until it returns GRPC_SESSIONID_VOID.

Error Code Identifier Meaning

GRPC_NO_ERROR Success

GRPC_NOT_INITIALIZED GRPC client not initialized yet

GRPC_OTHER_ERROR_CODE Internal error detected

Rationale:

The GridRPC error codes are intended to be similar to error classes in the MPI standard. That
is to say, these are types of errors that are inherent to the GridRPC API and may occur in any
GridRPC implementation. Implementation-specific error information may be contained in the
associated error description strings. The GRPC_OTHER_ERROR_CODE error code may be

used for implementation-specific errors.
End of Rationale.

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 12

5. Related Work

The concept of Remote Procedure Call (RPC) has been widely used in distributed computing
and distributed systems for many years [4]. It provides an elegant and simple abstraction that
allows distributed components to communicate with well-defined semantics. RPC
implementations face a number of difficult issues, including the definition of appropriate
Application Programming Interfaces (APIs), wire protocols, and Interface Description Languages
(IDLs). Corresponding implementation choices lead to trade-offs between flexibility, portability,
and performance.

A number of previous works has focused on the development of high performance RPC
mechanisms either for single processors or for tightly-coupled homogeneous parallel computers
such as shared-memory multiprocessors [7, 3, 13, 2]. A contribution of those works is to achieve
high performance by providing RPC mechanisms that map directly to low-level O/S and hardware
functionalities (e.g. to move away from implementations that were built on top of existing
message passing mechanisms as in [5]). By contrast, GridRPC targets heterogeneous and
loosely-coupled systems over wide-are networks, raising a different set of concerns and goals.

This current work grew out of the Advanced Programming Models Research Group [10]. This
group surveyed and evaluated many programming models [11, 12], including GridRPC. Some
representative GridRPC systems are NetSolve [6, 20], and Ninf [14, 19]. Historically, both
projects started about the same time, and in fact both systems facilitate similar sets of features.
A number of related experimental systems exist, such as RCS [1] and Punch
(http://punch.purdue.edu). Those systems seek to provide ways for Grid users to easily send
requests to remote application servers from their desktop. GridRPC seeks to unify those efforts.

This work is also related to the XML-RPC (http://www.xml-rpc.com) and SOAP [18] efforts.
Those systems use HTTP to pass XML fragments that describe input parameters and retrieve
output results during RPC calls. In scientific computing, parameters to RPC calls are often large
arrays of numerical data (e.g. double precision matrices). The work in [9] made it clear that using
XML encoding has several caveats for those types of data (e.g. lack of floating-point precision,
cost of encoding/decoding). Nonetheless, recent work [17] has shown that GridRPC could be
effectively built upon future Grid software based on Web Services such as OGSA [8].

6. Security Considerations

Security issues of GridRPC are implementation-dependent and this document does not
specifically address security in the API. For reference, security mechanisms of Ninf-G and
NetSolve are described in this section. Security infrastructure of Ninf-G is based on GSI which is
based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL)
communication protocol. This means that not only all the components are protected properly, but
they can also utilize other Globus components, such as GridFTP servers, seamlessly and
securely. NetSolve’s current security is based on the ability to generate access control lists that
are used to grant and deny access to the NetSolve servers. NetSolve uses Kerberos V5 services
for authentication. The Kerberos extensions of NetSolve provide it with trusted mechanisms by
which to control access to computational resources. At this time, the Kerberized version of
NetSolve performs no encryption of the data exchanged among NetSolve clients, servers, or
agents, nor is there any integrity protection for the data stream.

Author Contact Information

Hidemoto Nakada
National Institute of Advanced Industrial Science and Technology
hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology
National Institute of Informatics
matsu@is.titech.ac.jp

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 13

Keith Seymour
University of Tennessee, Knoxville
Seymour@cs.utk.edu

Jack Dongarra
University of Tennessee, Knoville
dongarra@cs.utk.edu

Craig A. Lee
The Aerospace Corporation, M1-102
2350 E. El Segundo Blvd.
El Segundo, CA 90245
lee@aero.org

Henri Casanova
University of California, San Diego
San Diego Supercomputer Center
Casanova@cs.ucsd.edu

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other

rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims
of rights made available for publication and any assurances of licenses to be made available, or
the result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can be obtained from the GGF
Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 14

References

[1] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Parallel Computing,
23:1421-1428, 1997.
[2] I. Aumage, L. Boug, A. Denis, J.-F. Mhaut, G. Mercier, R. Namyst, and L. Prylli. Madeleine II:
A Portable and Efficient Communication Library for High-Performance Cluster Computing. In
Proceedings of the IEEE Intl Conference on Cluster Computing (Cluster 2000), pages 78-87,
2000.
[3] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight Remote Procedure Call.
ACM Transactions on Computer Systems (TOCS), 8(1):37-55, 1990.
[4] A. Birrel and G. Nelson. Implementing Remote Procedure Calls. ACM Transactions on
Computer Systems (TOCS), 2(1):39-59, 1984.
[5] L. Boug, J.-F. Mhaut, and R. Namyst. Efficient Communications in Multithreaded Runtime
Systems. In Proceedings of the 3

rd
 Workshop on Runtime Systems for Parallel Programming

(RTSPP’99), volume 1568 of Lecture Notes in Computer Science, Springer Verlag, pages 468-
484, 1999.
[6] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational
Science Problems. In Proceedings of Super Computing ’96, 1996.
[7] C.-C. Chang, G. Czajkowski, and T. von Eicken. MRPC: A High Performance RPC System for
MPMD Parallel Computing. Software – Practice and Experience, 29(1):43-66, 1999.
[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. http://www.globus.org/ogsa, January
2002.
[9] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon. Requirements for
and Evaluation of RMI Protocols for Scientific Computing. In Proceedings of SC’2000, Dallas, TX,
2000.
[10] Grid Forum Advanced Programming Models Working Group. Web site.
https://forge.gridforum.org/projects/gridrpc-wg/
[11] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A Grid
Programming Primer. http://www.eece.unm.edu/~apm/docs/APM_Primer_0801.pdf, August
2001.
[12] C. Lee and D. Talia. Grid programming models: Current tools, issues and directions. In
Berman, Fox, and Hey, editors, Grid Computing: Making the Global Infrastructure a Reality,
pages 555-578. Wiley, 2003.
[13] J. Liedtke. Improving IPC by Kernel Design. In Proceedings of the 14

th
 ACM Symposium on

Operating Systems Principles (SOSP), Asheville, NC, Dec. 1993.
[14] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementation of Ninf: towards a Global
Computing Infrastructure. Future Generation Computing Systems, Metacomputing Issue, 15(5-
6):649-658, 1999.
[15] K. Seymour et al. An Overview of GridRPC: A Remote Procedure Call API for Grid
Computing. In Proceedings of the 3

rd
 International Workshop on Grid Computing, volume 2536,

pages 274-278. Springer-Verlag, Lecture Notes in Computer Science, November 2002.
[16] K. Seymour et al. GridRPC: A Remote Procedure Call API for Grid Computing. In
Proceedings of the International Workshop on Grid 2002, pages 274-278, 2002.
[17] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based
Implementation of GridRPC. In Proceedings of HPDC11, pages 237-245, 2002.
[18] Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP, May 2000, W3C
Note.
[19] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A Reference
Implementation of RPC-based Programming Middleware for Grid Computing. Journal of Grid
Computing, 1(1):41-51, 2003.
[20] D. Arnold, S. Browne, J. Dongarra, G. Fagg, and K. Moore. Secure Remote Access to
Numerical Software and Computational Hardware. In Proceedings of the DoD HPC Users Group
Conference (HPCUG) 2000, 2000.
[21] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada, and S. Sekiguchi, Are Global
Computing Systems Useful? - Comparison of Client-Server Global Computing Systems Ninf,

GFD-R.052 (Recommendation)-modified April 12, 2007

lee@aero.org 15

NetSolve versus CORBA, In Proceedings of International Parallel and Distributed Processing
Symposium 2000, 2000.

