
GWD-R H. Nakada, NIAIST
Category: Recommendation S. Matsuoka, Tokyo Institute of Tech.
GridRPC Working Group K. Seymour, Univ. of Tenn., Knoxville

J. Dongarra, Univ. of Tenn., Knoxville
C. Lee, The Aerospace Corp.
H. Casanova, UCSD, SDSC

November 12, 2003

A GridRPC Model and API

Status of This Memo
This document provides information to the Grid community on a proposed model and API for a grid-enabled
remote procedure call. This is a WORKING DRAFT document. It does not currently define any standards or
technical recommendations. Distribution is unlimited.

Copyright Notice
Copyright (C) Global Grid Forum (2003). All Rights Reserved.

Abstract

This document presents a model and API for GridRPC, i.e., a remote procedure call (RPC) mechanism for grid
environments. As a Recommendations track document in the Global Grid Forum, the goal of this document is to
clearly and unambiguously define the syntax and semantics for GridRPC, thereby enabling a growing user base
to take advantage of multiple implementations. The motivation for this document is to provide an easy avenue of
adoption for grid computing, since (1) RPC is an established distributed computing paradigm, and (2) there is a
growing user-base for network-enabled services. By doing so, this document will also facilitate the development
of multiple implementations.

GWD-R (Recommendation) November 12, 2003

1. Introduction 3

2. The Basic GridRPC Model 3

3. Document Scope 3
3.1 In Scope . 3
3.2 Out of Scope . 3

4. The GridRPC API 4
4.1 GridRPC Data Types . 4
4.2 Initializing and Finalizing Functions . 4
4.3 Remote Function Handle Management Functions . 5
4.4 GridRPC Call Functions . 5
4.5 Argument Stack Functions . 6
4.6 Asynchronous GridRPC Control Functions . 6
4.7 Asynchronous GridRPC Wait Functions . 7
4.8 Error Codes and Error Reporting Functions . 8

5. Related Work 8

6. Security 9

7. Author Contact Information 9

Intellectual Property Statement 10

Full Copyright Notice 10

References 10

lee@aero.org [Page 2]

GWD-R (Recommendation) November 12, 2003

1. Introduction

The goal of this document is to clearly and unambiguously define the syntax and semantics for GridRPC, a
remote procedure call (RPC) mechanism for grid environments, thereby providing an avenue of easy access to
grid computing. As such, it is outside the scope of this document to review or discuss the important issues of
network-enabled services or to provide any kind of tutorial information. Nonetheless, a Related Work section
is provided to capture many references and pointers to relevant works that have lead up to this document. A
preliminary version of this model and API appeared as [16]. A longer version of that paper is available as [17].

2. The Basic GridRPC Model

Figure 1. The Basic GridRPC Model.

Figure 1 illustrates the basic GridRPC model. The functions shown here are very fundamental and, hence,
appear in many other systems. A service registers with a registry. A client subsequently contacts the registry to
look-up a desired service and the registry returns a handle to the client. The client then uses the handle to call the
service which eventually returns the results.

In the GridRPC terminology adopted here, the service handle is a function handle which represents a mapping
from a simple, flat function name string to an instance of that function on a particular server. Once a particular
function-to-server mapping has been established by initializing a function handle, all RPC calls using that function
handle will be executed on the server specified in that binding. A session ID is an identifier representing a
particular non-blocking GridRPC call. The session ID is used throughout the API to allow users to obtain the
status of a previously submitted non-blocking call, to wait for a call to complete, to cancel a call, or to check the
error code of a call.

3. Document Scope

This simple, common model nonetheless represents multiple fundamental issues. It is clearly impossible to
deal with them all at the same time. Hence, we now clarify what this document defines and does not define.

3.1 In Scope

This document focuses on just defining the API and the minimal programming model needed to understand
and use the API. More specifically, it focuses on simple, client-server interaction since this comprises the majority
of usage scenarios.

3.2 Out of Scope

The following topics are very important but are nonetheless out of the scope of this document:

lee@aero.org [Page 3]

GWD-R (Recommendation) November 12, 2003

� Service Discovery. How the actual service registry or look-up is done is not addressed in this document. It
is assumed that some type of registry or grid information service is available to accomplish this function.

� Non-flat Service Names. The current API assumes simple name strings for GridRPC services. Describing
and discovering GridRPC services by attributes or metadata schemas would certainly be very useful but is
not addressed here.

� General Workflow. General mechanisms for managing grid workflows are not in the scope of this docu-
ment. Simple extensions to the API may be possible, however, that facilitate workflow management.

� Interoperability between Implementations. Since this document focuses on the GridRPC API, it says
nothing about the protocols used to communicate between clients, servers, and registries. Hence, it does
not address interoperability.

4. The GridRPC API

We begin by introducing the data types defined by GridRPC.

4.1 GridRPC Data Types

grpc function handle t

Variables of this data type represent a specific remote function that has been bound to a specific server. They
are allocated by the user. After a function handle is initialized, it may be used to invoke the associated remote
function as many times as desired. The lifetime of a function handle is determined when the user invalidates the
function handle with a handle destruct call.

grpc sessionid t

Variables of this data type represent a specific non-blocking GridRPC call. Session IDs are used to probe or wait
for call completion, to cancel a call, or to check the error status of a call. Session IDs are also allocated by the
user but their lifetime is determined automatically. A session ID is initialized when a non-blocking GridRPC call
is made. It is invalidated, or destroyed, when (1) all return arguments have been received, and (2) a wait function
has returned a “call complete” status to the application. If an invalid session ID is passed to any GridRPC call, an
error will result.

grpc arg stack t

This data type is used for argument stacks. (See Subsections 4.4 and 4.5.)

grpc error t

This data type is used for all error and return status codes from GridRPC functions.

4.2 Initializing and Finalizing Functions

The initialize and finalize functions are similar to the MPI initialize and finalize calls. Client GridRPC calls
before initialization or after finalization will fail.

grpc error t grpc initialize(char *config file name)

This function reads the configuration file and initializes the required modules.

grpc error t grpc finalize(void)

This function releases any resources being used by GridRPC.

lee@aero.org [Page 4]

GWD-R (Recommendation) November 12, 2003

4.3 Remote Function Handle Management Functions

The function handle management group of functions allows the creation and destruction of function handles.

grpc error t grpc function handle default(
grpc function handle t *handle,
char *func name)

This creates a new function handle using a default server associated with the given function name. This default
could be a pre-determined server or it could be a server that is dynamically chosen by the resource discovery
mechanisms of the underlying GridRPC implementation.

grpc error t grpc function handle init(
grpc function handle t *handle,
char *host port str,
char *func name)

This creates a new function handle with a server explicitly specified by the user. This explicit server is specified
by a string of the form “host name:port number”.

grpc error t grpc function handle destruct(grpc function handle t *handle)

This releases all information and resources associated with the specified function handle.

grpc error t grpc get handle(grpc function handle t *handle, grpc sessionid t sessionId)

This returns the function handle corresponding to the given session ID (that is, corresponding to that particular
non-blocking request).

4.4 GridRPC Call Functions

The four GridRPC call functions may be categorized by a combination of two properties: blocking behavior
and calling sequence. A call may be either blocking (synchronous) or non-blocking (asynchronous) and it may
use either a variable number of arguments (like printf()) or an argument stack calling sequence. The argument
stack calling sequence allows building the list of arguments to the function at runtime through elementary stack
operations, such as push and pop. Table 1 shows the appropriate function to use for each combination of the two
call properties.

Blocking Non-blocking

Variable Argument List grpc call() grpc call async()
Argument Stack grpc call arg stack() grpc call arg stack async()

Table 1. GridRPC Call Functions

Rationale:
The use of stack arguments allows the GridRPC API to be used in middleware when the number of arguments is
not known at compile-time. Stack arguments can be seen as more fundamental since all remote execution calls
could be expressed as apply(func name, arg stack). This can enable type-checking and is more portable than
varargs. Allowing a variable number of arguments is, nonetheless, a tremendous convenience for end-users and a
very common practice.
End of Rationale.

grpc error t grpc call(grpc function handle t *handle, � varargs �)

This makes a blocking remote procedure call with a variable number of arguments.

grpc error t grpc call async(
grpc function handle t *handle,

lee@aero.org [Page 5]

GWD-R (Recommendation) November 12, 2003

grpc sessionid t *sessionID,
� varargs �)

This makes a non-blocking remote procedure call with a variable number of arguments. A session ID is returned
that can be used to probe or wait for completion, cancel the call, and check for the error status of a call.

grpc error t grpc call arg stack(grpc function handle t *handle, grpc arg stack t *args)

This makes a blocking call using the argument stack.

grpc error t grpc call arg stack async(
grpc function handle t *handle,
grpc sessionid t *sessionID,
grpc arg stack t *args)

This makes a non-blocking call using the argument stack. Similarly, a session ID is returned that can be used to
probe or wait for completion, cancel the call, and check for the error status of a call.

The GridRPC Recommendation does not define which implementation-related operations may be assumed to
be complete when an asynchronous call returns. However, all asynchronous GridRPC calls must return as soon
as possible after it is safe for a user to modify any input argument buffers.

Rationale:
By returning as soon as possible, e.g., before the remote operation has started and before any results are returned,
the GridRPC user can overlap the remote computation with other local computation. By allowing the user to
modify any buffers after the asynchronous call returns, we present the user with the safest and simpliest buffer
handling semantics possible. While it may be possible to improve performance further by allowing asynchronous
calls to return before it is safe to modify input argument buffers, it was considered not worth the added complexity
and “danger” for handling buffers. This is the approach taken by current prototype implementations.
End of Rationale.

4.5 Argument Stack Functions

These functions are used to construct a stack of arguments at runtime. When interpreted as a list of arguments,
the stack is ordered from bottom up. That is, to emulate a function call f(a,b,c), the user would push the arguments
in the same order: push(a); push(b); push(c);. Note that an argument stack has a fixed size when it is allocated.
It does not, however, have to be “fully populated” when used as a call argument. Only those arguments on the
stack at the time of the call will be used.

grpc error t *grpc stack init(grpc arg stack t *stack, int maxsize)

This initializes a new argument stack. maxsize is the maximum number of arguments that can be pushed on to
this stack.

grpc error t grpc stack push(grpc arg stack t *stack, void *arg)

This pushes the specified argument onto the stack. If this push operation exceeds the size of the stack argument,
the stack is not changed and an error is returned.

grpc error t grpc stack pop(grpc arg stack t *stack, void ** arg)

This removes the top element from the stack and returns it as the argument. If the stack is empty, a null pointer is
returned in arg.

grpc error t grpc stack destruct(grpc arg stack t *stack)

This frees all content associated with the specified argument stack.

4.6 Asynchronous GridRPC Control Functions

The following functions apply only to previously submitted non-blocking requests.

lee@aero.org [Page 6]

GWD-R (Recommendation) November 12, 2003

grpc error t grpc probe(grpc sessionid t sessionID)

This checks whether the asynchronous GridRPC call has completed.

grpc error t grpc probe or(grpc sessionid t *idArray, size t length, grpc sessionid t *idPtr)

This call checks the array of session IDs for any GridRPC calls that have completed. If any calls have completed,
the function return value is GRPC NO ERROR and exactly one session ID is returned in idPtr. If no call has
completed, the function return value is also GRPC NO ERROR but idPtr is null. If any of the session IDs
in idArray are invalid, no operations will occur and an GRPC INVALID SESSION ID error will be returned.
However, the array of session IDs may contain completed session IDs without causing an error.

Rationale:
Users will typically fill a such an array with session IDs and then check for them to finish one by one. Hence,
it will be a common occurrence that such an array may contain completed session IDs. If having a sparse array
presents a performance concern, the user has the option of packing the array themselves.
End of Rationale.

grpc error t grpc cancel(grpc sessionid t sessionID)

This cancels the specified asynchronous GridRPC call.

grpc error t grpc cancel all(void)

This cancels all outstanding asynchronous GridRPC calls.

Rationale:
A “cancel array” call was considered but dismissed since it would cause difficult error handling.
End of Rationale.

4.7 Asynchronous GridRPC Wait Functions

The following five functions apply only to previously submitted non-blocking requests. These calls allow
an application to express desired non-deterministic completion semantics to the underlying system, rather than
repeatedly polling on a set of sessions IDs.

Advice to Implementors:
From an implementation standpoint, such information could be conveyed to the OS scheduler to reduce cycles
wasted on polling.
End of Advice to Implementors.

grpc error t grpc wait(grpc sessionid t sessionID)

This blocks until the specified non-blocking requests to complete.

grpc error t grpc wait and(grpc sessionid t *idArray, size t length)

This blocks until all of the specified non-blocking requests in a given set have completed.

grpc error t grpc wait or(grpc sessionid t *idArray, size t length, grpc sessionid t *idPtr)

This blocks until any of the specified non-blocking requests in a given set has completed.

grpc error t grpc wait all(void)

This blocks until all previously issued non-blocking requests have completed.

grpc error t grpc wait any(grpc sessionid t *idPtr)

This blocks until any previously issued non-blocking request has completed.

For grpc wait or() and grpc wait any(), exactly one session ID for a completed call is returned in idPtr. If
more than one call has completed, it is undefined which session ID is returned. That is to say, if more than one
call has completed, it is not guaranteed that the session ID returned is for the call that actually completed first.

lee@aero.org [Page 7]

GWD-R (Recommendation) November 12, 2003

Error Code Identifier Notes

GRPC NOERROR
GRPC NOT INITIALIZED
GRPC CONFIGFILE NOT EXIST
GRPC CONFIGFILE ERROR
GRPC SERVER NOT FOUND
GRPC FUNCTION NOT FOUND
GRPC INVALID FUNCTION HANDLE
GRPC INVALID SESSION ID
GRPC RPC REFUSED
GRPC COMMUNICATION FAILED
GRPC SESSION FAILED
GRPC STACK NOT INITIALIZED
GRPC STACK OVERFLOW
GRPC EXCEED LIMIT
GRPC INVALID LENGTH
GRPC OTHER ERROR CODE
GRPC UNKNOWN ERROR CODE
GRPC LAST ERROR CODE

Table 2. GridRPC Error Codes

4.8 Error Codes and Error Reporting Functions

When a GridRPC call fails, an error code is returned. Table 2 gives the error code identifiers that can be used
with variables of type grpc error t. These error codes satisfy:

0 = GRPC NOERROR � GRPC ... � GRPC LAST ERROR CODE
This specifies a useful numerical ordering of the error codes based on the set of integers without specifying a
specific implementation.

The ability to check the error code of previously submitted requests is provided. The following error report-
ing functions provide error codes and human-readable error descriptions. These error descriptions can be more
informative about the actual cause of the error.

char *grpc error string(grpc error t error code)

This returns the error description string, given a GridRPC error code. If the error code is unrecognized for any
reason, the string GRPC UNKNOWN ERROR CODE is returned.

grpc error t grpc get error(grpc sessionid t sessionID)

This returns the error code associated with a given non-blocking request.

Rationale:
The GridRPC error codes are intended to be similar to error classes in the MPI standard. That is to say,

these are types of errors that are inherent to the GridRPC API and may occur in any GridRPC implementa-
tion. Implementation-specific error information may be contained in the associated error description strings. The
GRPC OTHER ERROR CODE error code may be used for implementation-specific errors.
End of Rationale.

5. Related Work

The concept of Remote Procedure Call (RPC) has been widely used in distributed computing and distributed
systems for many years [4]. It provides an elegant and simple abstraction that allows distributed components to

lee@aero.org [Page 8]

GWD-R (Recommendation) November 12, 2003

communicate with well-defined semantics. RPC implementations face a number of difficult issues, including the
definition of appropriate Application Programming Interfaces (APIs), wire protocols, and Interface Description
Languages (IDLs). Corresponding implementation choices lead to trade-offs between flexibility, portability, and
performance.

A number of previous works has focused on the development of high performance RPC mechanisms either for
single processors or for tightly-coupled homogeneous parallel computers such as shared-memory multiproces-
sors [7, 3, 13, 2]. A contribution of those works is to achieve high performance by providing RPC mechanisms
that map directly to low-level O/S and hardware functionalities (e.g. to move away from implementations that
were built on top of existing message passing mechanisms as in [5]). By contrast, GridRPC targets heterogeneous
and loosely-coupled systems over wide-are networks, raising a different set of concerns and goals.

This current work grew out of the Advanced Programming Models Research Group [10]. This group surveyed
and evaluated many programming models [11, 12], including GridRPC. Some representative GridRPC systems
are NetSolve [6], and Ninf [14]. Historically, both projects started about the same time, and in fact both systems
facilitate similar sets of features. A number of related experimental systems exist, such as RCS [1] and Punch [15].
Those systems seek to provide ways for Grid users to easily send requests to remote application servers from their
desktop. GridRPC seeks to unify those efforts.

This work is also related to the XML-RPC [20] and SOAP [19] efforts. Those systems use HTTP to pass XML
fragments that describe input parameters and retrieve output results during RPC calls. In scientific computing,
parameters to RPC calls are often large arrays of numerical data (e.g. double precision matrices). The work
in [9] made it clear that using XML encoding has several caveats for those types of data (e.g. lack of floating-
point precision, cost of encoding/decoding). Nonetheless, recent work [18] has shown that GridRPC could be
effectively built upon future Grid software based on Web Services such as OGSA [8].

6. Security

Security issues are not discussed in this document.

7. Author Contact Information

Hidemoto Nakada
Natl. Inst. of Advanced Industrial Science and Technology
hide-nakada@aist.go.jp

Satoshi Matsuoka
Tokyo Institute of Technology
National Institute of Informatics
matsu@is.titech.ac.jp

Keith Seymour
Univ. of Tennessee, Knoxville
seymour@cs.utk.edu

Jack Dongarra
Univ. of Tennessee, Knoxville
dongarra@cs.utk.edu

Craig A. Lee
The Aerospace Corporation, M1-102
2350 E. El Segundo Blvd.
El Segundo, CA 90245
lee@aero.org

lee@aero.org [Page 9]

GWD-R (Recommendation) November 12, 2003

Henri Casanova
University of California, San Diego
San Diego Supercomputing Center
casanova@cs.ucsd.edu

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might
be claimed to pertain to the implementation or use of the technology described in this document or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF
Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2003). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment

on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or
assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE GLOBAL GRID
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.”

References

[1] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Parallel Computing, 23:1421–1428, 1997.
[2] I. Aumage, L. Boug, A. Denis, J.-F. Mhaut, G. Mercier, R. Namyst, and L. Prylli. Madeleine II: A Portable and Efficient

Communication Library for High-Performance Cluster Computing. In Proceedings of the IEEE Intl Conference on
Cluster Computing (Cluster 2000), pages 78–87, 2000.

[3] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight Remote Procedure Call. ACM Transactions on
Computer Systems (TOCS), 8(1):37–55, 1990.

[4] A. Birrel and G. Nelson. Implementing Remote Procedure Calls. ACM Transactions on Computer Systems (TOCS),
2(1):39–59, 1984.

[5] L. Boug, J.-F. Mhaut, and R. Namyst. Efficient Communications in Multithreaded Runtime Systems. In Proceedings
of the 3rd Workshop on Runtime Systems for Parallel Programming (RTSPP’99), volume 1568 of Lecture Notes in
Computer Science, Springer Verlag, pages 468–484, 1999.

[6] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Problems. In Proceed-
ings of Super Computing ’96, 1996.

[7] C.-C. Chang, G. Czajkowski, and T. von Eicken. MRPC: A High Performance RPC System for MPMD Parallel Com-
puting. Software - Practice and Experience, 29(1):43–66, 1999.

lee@aero.org [Page 10]

GWD-R (Recommendation) November 12, 2003

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. http://www.globus.org/ogsa, January 2002.

[9] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon. Requirements for and Evaluation of RMI
Protocols for Scientific Computing. In Proceedings of SC’2000, Dallas, TX, 2000.

[10] Grid Forum Advanced Programming Models Working Group. Web site. http://www.eece.unm.edu/˜apm, 2000.
[11] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen, and J. Saltz. A Grid Programming Primer.

http://www.eece.unm.edu/˜apm/docs/APM Primer 0801.pdf, August 2001.
[12] C. Lee and D. Talia. Grid programming models: Current tools, issues and directions. In Berman, Fox, and Hey, editors,

Grid Computing: Making the Global Infrastructure a Reality, pages 555–578. Wiley, 2003.
[13] J. Liedtke. Improving IPC by Kernel Design. In Proceedings of the 14th ACM Symposium on Operating Systems

Principles (SOSP), Asheville, NC, Dec. 1993.
[14] H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards a Global Computing Infrastructure.

Future Generation Computing Systems, Metacomputing Issue, 15(5-6):649–658, 1999.
[15] The Punch project at Purdue. http://punch.ecn.purdue.edu.
[16] K. Seymour et al. An Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In 3rd International

Workshop on Grid Computing, volume 2536, pages 274–278. Springer-Verlag, Lecture Notes in Computer Science,
November 2002.

[17] K. Seymour et al. GridRPC: A Remote Procedure Call API for Grid Computing.
http://www.eece.unm.edu/˜apm/docs/APM GridRPC 0702.pdf, July 2002.

[18] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based Implementations of GridRPC.
In Proc. of HPDC11, pages 237–245, 2002.

[19] Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP, May 2000. W3C Note.
[20] XML-RPC. http://www.xml-rpc.com.

lee@aero.org [Page 11]

GWD-R (Recommendation) November 12, 2003

Contents

1. Introduction 3

2. The Basic GridRPC Model 3

3. Document Scope 3
3.1 In Scope . 3
3.2 Out of Scope . 3

4. The GridRPC API 4
4.1 GridRPC Data Types . 4
4.2 Initializing and Finalizing Functions . 4
4.3 Remote Function Handle Management Functions . 5
4.4 GridRPC Call Functions . 5
4.5 Argument Stack Functions . 6
4.6 Asynchronous GridRPC Control Functions . 6
4.7 Asynchronous GridRPC Wait Functions . 7
4.8 Error Codes and Error Reporting Functions . 8

5. Related Work 8

6. Security 9

7. Author Contact Information 9

Intellectual Property Statement 10

Full Copyright Notice 10

References 10

lee@aero.org [Page 12]

