
GWD-I Editors:
Category: Informational Ramin Yahyapour,
Grid Scheduling Architecture Research Group (GSA-RG) Philipp Wieder
draft-ggf-gsa-usecase-1.2

Jul 19, 2004
Feb 22, 2005, revised

May 17, 2005, revised

gsa-rg@ggf.org

Grid Scheduling Use Cases

Status of this Memo
This document provides information to the community regarding the Grid scheduling use case
scenarios used in the definition of a Grid Scheduling Architecture (GSA-RG). Distribution of this
document is unlimited. This is a DRAFT document and continues to be revised.

Abstract
Grids will provide a large variety of complex services. The interactions of those services
require an extensible and integrated resource management. Although such a coordinated
scheduling of services is currently not readily available. Access to resources is typically
subject to individual access, accounting, priority, and security policies of the resource
owners. Those policies are typically enforced by local management systems. Therefore,
an architecture that supports the interaction of independent local management systems
with higher-level scheduling services is an important component for Grids. Further, user
of a Grid may also establish individual scheduling objectives. Future Grid scheduling
and resource management systems must consider those constraints in the scheduling
process. Taking into account different policies is also important for the implementation
of various economic and business models.

The goal of the Grid Scheduling Architecture research group (GSA-RG) is to define a
scheduling architecture that supports cooperation between different scheduling instances
for arbitrary Grid resources. Considered resources include network, software, data,
storage and processing units. The research group will particularly address the interaction
between resource management and data management. Co-allocation and the reservation
of resources are key aspects of the new scheduling architecture, which will also include
the integration of user or provider defined scheduling policies.

The group will begin with identifying a set of relevant use-cases based on experiences
obtained by existing Grid projects. Then, it will determine the required components of a
modular scheduling architecture and their interactions.

gsa-rg@ggf.org 2

GLOBAL GRID FORUM

office@gridforum.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF website).

gsa-rg@ggf.org 3

Contents
1 Introduction... 5
2 Scheduling complex workflows.. 6

2.1 Summary ... 6
2.2 Customers ... 6
2.3 Scenarios ... 6
2.4 Involved resources .. 7
2.5 Functional requirements.. 7
2.6 Workflow of Scheduling Process.. 8
2.7 Involved Scheduling Components/Services ... 9
2.8 Failure Considerations .. 10
2.9 Security Considerations .. 10
2.10 Accounting Considerations... 11
2.11 Performance Considerations ... 11
2.12 Use case Situation Analysis .. 11
2.13 References... 12

3 Scheduling Component-based Applications for High Performance Heterogeneous
Computing... 13

3.1 Summary ... 13
3.2 Customers ... 13
3.3 Scenarios ... 13
3.4 Involved resources .. 13
3.5 Functional requirements.. 14
3.6 Workflow of Scheduling Process.. 14
3.7 Involved Scheduling Components/Services ... 15
3.8 Failure Considerations .. 16
3.9 Security Considerations .. 16
3.10 Accounting Considerations... 16
3.11 Performance Considerations ... 16
3.12 References... 17

4 Application-Oriented Scheduling in the KNOWLEDGE GRID 18
4.1 Summary ... 18
4.2 Customers ... 19
4.3 Scenarios ... 19
4.4 Involved resources .. 20
4.5 Functional requirements.. 20
4.6 Workflow of Scheduling Process.. 20
4.7 Involved Scheduling Components/Services ... 21
4.8 Failure Considerations .. 21
4.9 Security Considerations .. 21
4.10 Accounting Considerations... 21
4.11 Performance Considerations ... 21
4.12 Use case Situation Analysis .. 21
4.13 References... 21

5 GRASP (Grid Resource Allocation Services Package) .. 23
5.1 Summary ... 23

gsa-rg@ggf.org 4

5.2 Customers ... 24
5.3 Scenarios ... 24
5.4 Involved resources .. 25
5.5 Functional requirements.. 25
5.6 Workflow of Scheduling Process.. 26
5.7 Involved Scheduling Components/Services ... 26
5.8 Failure Considerations .. 27
5.9 Security Considerations .. 27
5.10 Accounting Considerations... 27
5.11 Performance Considerations ... 27
5.12 Use case Situation Analysis .. 28
5.13 References... 28

6 Scheduling in Loosely-Coupled Grids with GridWay .. 29
6.1 Summary ... 29
6.2 Customers ... 29
6.3 Scenarios ... 29
6.4 Involved resources .. 30
6.5 Functional requirements.. 31
6.6 Workflow of Scheduling Process.. 32
6.7 Involved Scheduling Components/Services ... 32
6.8 Failure Considerations .. 36
6.9 Security Considerations .. 37
6.10 Accounting Considerations... 37
6.11 Performance Considerations ... 37
6.12 Use case Situation Analysis .. 37
6.13 References... 38

7 Editor Information .. 39

gsa-rg@ggf.org 5

1 Introduction
One of the first milestones of the GSA-RG’s charter is the identification of relevant use-cases for
Grid scheduling.

This document is a collection of the use case scenarios contributed by GSA-RG participants or
solicited from others.

Based on this document the GSA-RG will identify and specify common requirements to support
the creation of Grid schedulers which serve the use-cases. This information will be used to
identify components, services and protocols for a Grid scheduling architecture. Services and
protocols from other GGF groups are considered as potential basic building blocks of such an
architecture and will be used wherever possible.

Note, that it is not the task of the Research Group to define protocols or algorithms. Instead, the
RG identifies the requirements for Grid scheduling, designs a suitable Grid scheduling
architecture including existing services as well as currently missing components and their
interaction.

gsa-rg@ggf.org 6

2 Scheduling complex workflows
2.1 Summary
Many Grid applications require the coordinated processing of complex workflows which
includes scheduling of heterogeneous resources within different administrative domains.
Here, a typical scenario is the coordinated scheduling of computational resources in
conjunction with data, storage, network and other available grid resources, like software
licenses, experimental devices etc. The Grid scheduler should be able to coordinate and
plan the workflow execution. That is, it should reserve the required resources and create a
complete schedule for the whole workflow in advance.
In addition, cost management and accounting have to be considered in the scheduling
process.

2.2 Customers
This use case is of interest for a wide variety of costumers namely every Grid user who
wants to process complex workflows. For instance, the presented use-case is common in
climate-research, and high-energy physics.

2.3 Scenarios
Since this use case defines the general requirements to schedule complex workflows a
broad variety of scenarios is possible. This includes the “classical” example of scheduling
a computational job including network, data, software and storage and also covers
examples like Grid based steering of simulations or experiments.

A typical example would be the following user request:

• A specified architecture with 48 processing nodes,
• 1 GB of available memory, and
• a specified licensed software package are required
• for 1 hour between 8am and 6pm of the following day.
• In addition, a specific visualization device should be available during program

execution, which requires
• minimum bandwidth between the visualization device and the main computer

during program execution
• The program relies on a specified data set from a data repository for input.
• The user wants to spend at most 5 Euro and
• prefers a cheaper job execution over an earlier execution.

A Grid scheduler should be able to generate a complete schedule for the execution of this
job including all resources required for implicit actions before and after the actual job
start for data management. However, this example should be considered as a quite simple
scenario. In a real application it could easily be extended to contain additional workflow
steps. The Grid scheduler should take the allocation on all required resource types into
account and if requested should create advance reservations. Figure 2-1 shows an
example of the anticipated scheduling output of a Grid scheduler.

gsa-rg@ggf.org 7

time

Data Transfer

Loading Data Parallel Computation Providing Data

Data Transfer Network 1

Computer 1

Parallel ComputationComputer 2

Communication for Computation

Network 3

VR-Cave Visualization

Data Data Access Storing Data

Communication for Visualization

Network 2

Software UsageSoftware License

Data StorageStorage

resources

time

Data Transfer

Loading Data Parallel Computation Providing Data

Data Transfer Network 1

Computer 1

Parallel ComputationComputer 2

Communication for Computation

Network 3

VR-Cave Visualization

Data Data Access Storing Data

Communication for Visualization

Network 2

Software UsageSoftware License

Data StorageStorage

resources

Figure 2-1: Example schedule

2.4 Involved resources
All kinds of available resources may be requested by the user, as long as the necessary
means are in place to integrate them into the scheduling process. Figure 2-1 shows the
usage of resources such as computing, data, storage, network and software resources, as
well as special devices. But it can also be anticipated that services, sensors or even
humans may be treated as resources in a Grid scheduling context.

2.5 Functional requirements
1. Authentication, authorization, user right delegation & job integrity

verification. Authentication and authorization are essential for every Grid based
job submission scenario. To enable the scheduler to act on behalf of the user the
respective rights have to be delegated from the user to the scheduler. This use
case also requires that the integrity of a job (parts of the job) can be verified
anytime during the scheduling process.

2. Job parsing & validation. The job description has to be parsed and formally
validated (job pre-processing).

3. Information retrieval (static & dynamic). To map the resource requests
contained in the job description onto available resources, information about the
resources and their status has to be retrieved from appropriate entities (and offered
by these entities). It should be possible to gather static (“static” with respect to the
runtime of the job) and dynamic resource information separately to restrict the
time-consuming dynamic information retrieval.

gsa-rg@ggf.org 8

4. Resource pre-selection. To avoid information queries on resources which do not
fulfil policy constraints defined by the user or which are definitely not capable of
fulfilling a resource request (why should one ask for information about the current
system state if the system has less processors than required by the user) a set of
resources should be selected based on those so-called “static” resource
information.

5. Service choreography, management. It might be useful to have mechanisms
which allow to choreograph/manage the services representing the pre-selected
resources on different levels to obtain the desired dynamic information faster and
more reliable (see 2.6 for the chronology of the scheduling process).

6. Scheduling. A schedule has to be generated based on the information about the
job and the resources, accounts, etc.

7. Advance reservation/agreement negotiation. It is essential to meet time or
precedence requirements defined by the workflow. Therefore one has to reserve in
advance the resources selected by the schedule to guarantee the proper execution
of the workflow. One approach to achieve this is specified by the GRAAP-WG
[1], called Web Service Agreement. This specification defines a
language/protocol to negotiate agreements between service provider and
consumer.

8. Workflow execution/processing. The job has to be processed. It is assumed that
the local resource managers execute the atomic entities a job is made of, but to
process the workflow or parts of it, a workflow engine or processor is needed.

9. Billing/accounting
10. Failure management. This is essential not only to have an instrument to monitor

and possibly reschedule jobs in case of failure within the system, but also to
provide users with information and tools to manage such failure situations.

2.6 Workflow of Scheduling Process
The different steps of the scheduling process are described in this section referring to the
example introduced in Section 2.3 (For each step the services needed are listed in
brackets, see Section 2.7):

1. Composition and submission the job request. The job description is generated
and transferred to an entity capable of processing its contents. In case of the
example a job will be generated that contains the resource requests and constraints
listed in Section 2.3. With respect to this use case no specific language to describe
the job request is demanded. (Services 1 and 2)

2. Pre-processing of the job request. The job request has to be parsed and
validated if possible. If the entity pre-processing the job is unable to do so it may
try to translate the job to a suitable description. (Services 2 and 5)

gsa-rg@ggf.org 9

3. Gathering of static resource information. Some service is needed which gathers
static information about the resources1. This service may be an information
service or a database. It is also possible that some Web Service Resource Property
[4] is queried to gather static information about the service. Concerning the
example it is assumed that this processing step identifies a pool of 800 resources
of all requested kinds. (Services 3, 4, 8 and 9)

4. Pre-selection of resources. Based on the information collected in Step 3
algorithms are used to limit the number of resources which are potentially capable
of participating in the workflow’s processing. With regard to the example this
may cut down resource candidates to 30 since e.g. some systems may not have 48
processors, may not offer the software requested or the respective system is
maintained the next day. (Services 3)

5. Query of dynamic resource information. The dynamic query delivers
information like whether the current load of the machine allows to allocate 48
processors (this is different from Step 4, where resources are sorted out because
they consist of less then 48 processors). This again limits the number of potential
resources which are actually used in the next step to process the schedule.
(Services 3, 4, 8 and 9)

6. Generation of schedule and initialization of required reservations. Based on
the resource information gathered in the previous steps a schedule is generated
(e.g. as shown in Figure 2-1). It is then attempted to reserve the necessary
resources in advance, a process which may fail several time due to the complexity
of the workflow and the number of dependencies between the reservations needed.
A failed negotiation with the resources chosen may lead to re-scheduling possibly
with a preceding step 5. (Services 2 and 6)

7. Execution of workflow. Once the schedule as shown in Figure 2-1 is confirmed it
is processed and executed. In case of the example at first data is taken from some
storage system and transferred via network 1 to computer 1. If no error occurs the
workflow is executed until the last chunk of resulting data is written via network 1
to storage. (Services 2 and 7)

8. Completion of workflow. This includes the finalization of accounting and billing
as well as the delivery of the data the job produced. (Services 1, 2, 8 and 9)

2.7 Involved Scheduling Components/Services
The following services are required (Please note that this does not imply a separate
service implementation for every entity listed here. The term service is used in the sense
of some functionality provided by a certain software component, which may integrate
several services. For each service the scheduling process steps it is involved are listed in
brackets, see Section 2.6):

1. User or an agent acting on-behalf of a user (Scheduling process steps 1. and 8.
The user/agent may also be involved in adjustments of the workflow if the

1 Information is called static if it is known to be valid after the job has terminated. This may be the case e.g.
concerning certain software available on a system, the maximum number of CPUs of a compute cluster,
etc.

gsa-rg@ggf.org 10

systems permit that. This may happen at different steps, e.g. due to some failure
condition)

2. Scheduling and resource management service (Scheduling process steps 1., 2., 3.,
6., 7. and 8.)

3. Brokering service (Scheduling process steps 3., 4. and 5.)
4. Information service (Scheduling process steps 3. and 5.)
5. Translation service (Scheduling process step 2.)
6. Negotiation service (Scheduling process step 6.)
7. Execution service (Scheduling process step 7.)
8. Accounting service (Scheduling process steps 3., 5. and 8.)
9. Billing service (Scheduling process steps3., 5. and 8.)

2.8 Failure Considerations
Based on 2.6 the following failures have to be taken into consideration:

• (Processing of the job request)
1. The parser does not support the format of the job
2. The job request is not valid.

• (Gathering of static resource information)
1. The information source(s) needed to gather static information are not

available.
• (Pre-selection of resources)

1. Pre-selection of resource prevents workflow from being executed since
resource requests already cannot be fulfilled.

• (Query dynamic resource information)
1. The information source(s) needed to query dynamic information are not

available.
• (Generation of schedule & initialization of required reservations)

1. Requested resources are not available. The result of the dynamic resource
query indicates that one or many of the resources requested are not available
(maybe due to local resource manager failures, ..)

2. Precedence relations/time constraints cannot be met. The initialization of
reservations required by the schedule fails for one/many resources.

3. Time out. No schedule could be generated within a pre-defined timeframe.
• (Execution of workflow)

1. The execution of the workflow may fail for different reasons like e.g.
temporary system unavailability, unrecoverable errors in the user code, etc.

Failures like unavailability of services, network, etc. are not considered here since those
are use case independent failures.

2.9 Security Considerations
The functional requirements list the four most prominent security features demanded by
this use case (see Section 2.5, bullet 1.). In general it has to be noted that protection of the
user’s identity, the job’s integrity and the confidentiality of information has to be
warranted throughout the whole process described here.

gsa-rg@ggf.org 11

2.10 Accounting Considerations
• Local domain accounting. The use case described here does not define any

demands concerning additional accounting mechanisms in addition to what is
already implemented locally. But accounting information provided by the local
resource administrators may have implications on the scheduling decisions so that
e.g. specific resources are not available due to temporary local restrictions. To
consider these information in the scheduling process they have to be available
through the extended information service/broker (which implies an appropriate
interface).

• Inter-domain accounting. The accounting/billing service is in the light of this
use case a black box providing interfaces to send/receive accounting/billing
information. Of greater interest are the information itself and the resulting
brokering/scheduling decisions as well as the integration of an accounting/billing
system into the system derived from this use case. It is suggested to refer to other
activities at GGF (like GESA [2] and SA3 [3]) and work carried out in projects.

2.11 Performance Considerations
The main impact on the performance of the whole process as described in Section 2.6 has
the communication between the involved components/services. This includes the
following items:

• Scalability. If the amount of resources which are part of a Grid increases, the
communication between local resource managers and the scheduling service or
the extended information service may have a negative impact on the overall
system performance. Solutions like information caching (e.g. based on WS-
Notification [4]) may be applied.

• Choice of the service programming model. Assuming that instances of that use
case are performed in a Web Service based environment using SOAP [5] to
exchange messages, one has to be aware that the performance is in general seen to
be worse than that of other solutions like e.g. CORBA [6].

• Communication failure. In a service-oriented architecture as described above the
failure of communication between services is not unusual. To realize a reliable
system and enforce a certain level of service quality (and therefore increase
performance), mechanisms are needed to manage services. One activity which is
to be monitored here is the Web Services Distributed Management TC [7].

The performance impact of the resource request – resource offer mapping and the
schedule generation is highly influenced by the performance of the implemented
algorithms, but also by the estimated number of involved resources.

2.12 Use case Situation Analysis
Diverse research and development activities are underway to find solutions for
scheduling complex workflows as described in this use case, but no consistent and
broadly applicable solution is available yet. It is envisaged that the Grid Scheduling

gsa-rg@ggf.org 12

Architecture Research Group will define an architecture which, once implemented, will
provide the functions required by this use case.
It is of particular interest that the scheduling architecture derived from this (and other)
uses case(s) is as much independent from the resources involved as possible.

2.13 References
[1] Grid Resource Allocation Agreement Protocol,

https://forge.gridforum.org/projects/graap-wg/.
[2] Grid Economic Services Architecture Working Group,

https://forge.gridforum.org/projects/gesa-wg/.
[3] Site Authentication, Authorization, and Accounting Requirements Research Group,

https://forge.gridforum.org/projects/saaa-rg/.
[4] OASIS Web Services Notification TC, http://www.oasis-

open.org/committees/wsn/charter.php.
[5] W3C XML Protocol Working Group, http://www.w3.org/2000/xp/Group/.
[6] Gokhale, Kumar, and Sahuguet. Reinventing the Wheel? CORBA vs. Web Services.

http://www2002.org/CDROM/alternate/395/.
[7] OASIS Web Services Distributed Management TC, http://www.oasis-

open.org/committees/wsdm/charter.php.

gsa-rg@ggf.org 13

3 Scheduling Component-based Applications for High
Performance Heterogeneous Computing

3.1 Summary
Component-based programming is currently one of the most promising paradigms for
programming complex systems, breaking them in smaller and simpler pieces; it is well
suited to efficiently face the new challenges in terms of programmability, interoperability,
code reuse and efficiency that mainly derive from the features that are peculiar to Grids
[5].
Such applications may need to gain access to several kinds of resources for execution,
mainly computing and network ones, but availability of storage and network resources
can also be required for the execution of these applications.
One of the main aspects to be taken into account when scheduling these applications is
the co-scheduling requirement, imposed by the strong interactions between the different
components.

3.2 Customers
This use case is of interest for a wide variety of costumers that use specific programming
environments (e.g. ASSIST [1, 2], GridCCM [3], ProActive [4]) to write, compile,
deploy and execute component-based applications. For example, ASSIST is used to build
and execute several HPC applications in the areas of Computer Graphics, Data Mining,
Earth Observations, etc.

3.3 Scenarios
A component-based application can be very general; in most cases a stream-like online
communication pattern is adopted as interaction mechanism between high performance
components. The basic requirements for this kind of applications are high computational
power and high communication bandwidth. This means that every single resource that
can influence these two quantities has to be involved in the scheduling process.
To exploit stream-based communications, it is important to guarantee the co-allocation of
the resources needed for the components; which implies some sort of reservation
mechanism to manage immediate and future co-allocations.
Moreover, the dynamic behaviour of the Grid imposes the need of adaptation
mechanisms for this kind of applications, i.e. the application has to be monitored at
runtime and possible re-scheduling actions must be undertaken to guarantee some level of
service. That is, if components are not performing as expected according to their service
guarantee on a given set of resources, it is necessary to adapt dynamically the current
resource allocations.

3.4 Involved resources
The experience with the ASSIST programming environment has shown that the main
resources involved in the execution of HPC applications are computation resources,

gsa-rg@ggf.org 14

network paths (guaranteed sockets and bandwidths) and storage access rights. With the
introduction of hosting environments for the components, access to the information about
available components, deployment mechanisms for new components and configuration
procedures for existing ones can be considered to be resources that we also may have to
deal with.

3.5 Functional requirements
1. Authentication, authorization, user right delegation & job integrity

verification. Authentication and authorization are essential for every Grid based
job submission scenario. To enable the scheduler to act on behalf of the user the
respective rights have to be delegated from the user to the scheduler. This use
case also requires that the integrity of a job (parts of the job) can be verified
anytime during the scheduling process, e.g. in the case of rescheduling.

2. Job parsing & validation. The job description has to be parsed and formally
validated (job pre-processing). Moreover a performance model, coupled with
user-level QoS requirements, needs to be built and evaluated.

3. Information retrieval (static & dynamic). To map the resource requests
contained in the job description onto available resources, information about the
resources and their status has to be retrieved from appropriate entities (and offered
by these entities). It should be possible to gather static (“static” with respect to the
runtime of the job) and dynamic resource information separately in order to
guarantee updated status information for the monitoring and rescheduling.

4. Resource pre-selection. To avoid information queries on resources which do not
fulfil performance constraints defined by the user a set of resources should be
selected based on the static resource information and the performance values.

5. Resources orchestration. To find a suitable mapping of the application to the
resource we need to manage the co-allocation of several, heterogeneous resources.
For example, we may have to search for computational resources to allocate new
components, reserve existing components for the execution and reserve high
performance data pathways between the several components in order to fulfil the
QoS requirements.

6. Scheduling. A schedule has to be generated based on the information about the
job and the resources, accounts, etc.

7. Application execution. The application has to be processed. It is assumed that the
local resource managers/hosting environments execute the single components, but

8. Failure management. During the execution the application has to be monitored
to detect QoS violations, and, if possible, modify the current allocation/scheduling
to find a new solution that, with minimal modifications of the original schedule,
can fulfil the QoS requirements.

3.6 Workflow of Scheduling Process
1. Search for existing components. To build the application existing components

can be exploited. The user can search for existing components with well-defined
interfaces to build the application he wants to execute. The interfaces must be
compatible in order to be able to compose new components.

gsa-rg@ggf.org 15

2. Composition of the application description and performance evaluation.
When all the components needed by the application are known (by direct
compilation or successful search) the application has to be described in some kind
of language and its performance model compiled and evaluated in order to drive
the resource selection, orchestration and scheduling phases.

3. Gathering of resource information. Some service is needed which gathers static
information about the resources. This service may be an information service or a
database.

4. Selection of the single resources. Based on the information collected in the
previous step, algorithms are used to select the resources which are potentially
capable of participating in the application execution. These resources can be
computational ones, as well as network links and hosting environments.

5. Orchestration of the selected resources. The resources that can be exploited for
execution of the application are heterogeneous. We have to match the single
resources found in the previous phase in order to find a solution where the
selected resources cooperate at the same time to execute the application. If such
cooperation (i.e. co-allocation with performance guarantees) can not be found, a
new gathering and selection process must be undertaken.

6. Generation of the schedule and initialization of required reservations. Based
on the resource information gathered in the previous steps a schedule is generated.
It could be necessary to reserve the necessary resource if the execution is not
immediate. The reservation process may fail and that may lead to restart the
selection scheduling phases at step 3.

7. Launch of the application. At this point the existing components must be
instantiated/activated and new ones must be transferred and activated on the
selected resources.

8. Monitoring. An application monitoring facility may need to face situations in
which the resource power required by the components/application is dramatically
changed. It can exploit the components adaptivity mechanisms, such the
activation of new components or the migration of existing ones.

9. Re-scheduling. If a worsening of the performance of the application forces an
adaptation to a new execution state, it is necessary to find new resources that can
co-operate with the existing ones to respect the user-level performance
requirements and schedule them for immediate execution.

10. Completion of execution. At the end of the application execution, the
components may need to be deactivated/removed from the hosting environments
and the output data sent back to the user.

3.7 Involved Scheduling Components/Services
1. Components search/composer service (Scheduling process steps 1. and 2.)
2. Performance evaluation service (Scheduling process steps 2. and 3.)
3. Static information service (Scheduling process step 3.)
4. Brokering service (Scheduling process steps 4. and 5.)
5. Translator service (Scheduling process steps 2. and 7.)
6. Co-allocation/Reservation service (Scheduling process step 6.)
7. Execution service (Scheduling process steps 7. and 10.)

gsa-rg@ggf.org 16

8. Monitoring service (Scheduling process steps 8. and 9.)

3.8 Failure Considerations
The following failures have to be taken into consideration:

• (Search for existing components)
1. Failure to find requested components.

• (Composition of the application description and performance evaluation)
1. Failure to build new components from the existing ones.
2. Failure to build the performance model.
3. Failure to evaluate the performance model.

• (Gathering of resource information)
1. The information source(s) needed to gather static information are not available.

• (Selection of the single resources)
1. The selection algorithm fails to find the resources needed to fulfil the

performance constraints.
• (Orchestration of the selected resources)

1. The orchestration algorithm fails to find a mapping solution with the resources
selected in the previous phase.

2. Timeout. No orchestration could be generated within a pre-defined timeframe.
• (Generation of the schedule and initialization of required reservations)

1. Requested resources are not available for scheduling.
2. The co-allocation algorithm fails to find an immediate or postponed co-

allocation of the selected resources.
3. Time constraints due to expected performance can not be met.
4. Timeout. No schedule could be generated within a pre-defined timeframe.

• (Launch of the application)
1. Errors in user-provided code.
2. Errors in third-party components (code or faulty interface description)

• (Completion of execution)
1. Impossible to send back the results to the user

3.9 Security Considerations
The common security features required by most Grid scenarios (authorization,
authentication, information integrity and confidentiality) are demanded by this use case
as well. These features must be present in every service involved in the scheduling
process, as well as in the external services. The security features demanded by the
components used to build an application must be taken into account, but they are not part
of the scheduling workflow.

3.10 Accounting Considerations
Obviously, an accounting mechanism may be easily integrated in the scheduling
workflow discussed above, but accounting components are not of highest priority.

3.11 Performance Considerations
Basically, the performance constraints of the whole process are the same of the
“Scheduling Complex Workflow” use case (see Section 2).

gsa-rg@ggf.org 17

3.12 References
[1] M. Vanneschi. The Programming Model of ASSIST, an Environment for Parallel and

Distributed Portable Applications. Parallel Computing, 28(12), 2002.
[2] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti,

R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The Implementation of
ASSIST, an Environment for Parallel and Distributed Programming. In Proc. of the
Euro-Par 2003 Conference: Parallel Processing, H. Kosch, L. Böszörményi and H.
Hellwagner, eds., LNCS 2970, pp. 712-721, Springer, 2003.

[3] GridCCM homepage, http://www.irisa.fr/paris/Gridccm/.
[4] ProActive homepage, http://www-sop.inria.fr/oasis/ProActive/.
[5] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L.

Scarponi, M. Vanneschi, and C. Zoccolo. Components for High-Performance Grid
Programming in Grid.it. In Component Models and Systems for Grid Applications,
Vladimir Getov and Thilo Kielmann, eds., Springer, 2004.

gsa-rg@ggf.org 18

4 Application-Oriented Scheduling in the KNOWLEDGE GRID
4.1 Summary
The KNOWLEDGE GRID (K-GRID) is an architecture built atop basic Grid middleware
services that defines more specific services for the definition, composition, validation and
execution of knowledge discovery applications over Grids, and for storing and managing
discovered knowledge [1, 2]. The K-GRID Resource Allocation and Execution
Management Service (RAEMS) is a service used by the KNOWLEDGE GRID to map
applications onto available resources and to coordinate their execution. The K-GRID
scheduler is part of the RAEMS; it can be seen as an “application agent” associated to
each application to be executed. Indeed, the scheduler produces job assignments (along
with timing constraints) for each application, with the goal of improving its
performances, on the basis of knowledge or prediction about computational and I/O costs.
Afterwards, it follows each application execution to adapt generated schedules to new
information about job status and available resources. Moreover, since in realistic Grid
applications it is generally infeasible to specify all the details of applications at
composition time, the KNOWLEDGE GRID scheduler allows the definition and use of
abstract hosts, i.e. hosts whose characteristics are only partially known, and that can be
matched to different concrete ones [3].

Therefore, the main objectives of the scheduler are:

• Abstraction from computational and network resources in application
composition. With the use of abstract hosts, users are allowed to disregard low-
level execution-related aspects, and to concentrate more on the structure of their
applications.

• Application performance improvement. Given a set of available hosts, schedules
are generated trying to minimize applications’ completion times.

Besides the scheduler, the K-Grid’s RAEMS includes an Execution Manager, used to
translate the output of the scheduling process into submissions to basic Grid services, and
a Job Monitor that follows the execution of submitted jobs and notifies the scheduler
about significant events occurred. Each K-Grid node has its own scheduler which is
responsible for instantiating a new application agent for each scheduling request coming
from the same or different nodes.

The architecture of the scheduler [4] comprises three main components (Figure 4-1):

• Mapper. It computes schedules employing a scheduling algorithm and making use
of resource descriptions and computational and I/O cost evaluations.

• Cost/Size Estimator. It builds the I/O and computational cost estimation functions.
The CSE comprises data gathering modules collecting dynamic information
about current and future availability and performance of resources, and estimation
modules dealing with the actual construction of estimation functions, on the basis
of the perceived status of resources with respect to time.

• Controller. It guides the scheduling activity by receiving abstract applications,
requesting the corresponding schedules to the Mapper, and ordering the execution
of scheduled jobs to the Execution Manager. The Controller also receives

gsa-rg@ggf.org 19

notifications about significant events occurred and re-schedules unexecuted parts
of the application.

Controller

Scheduling
Process

Cost/Size
Estim a tor

Data Gatherer

Estim ator

Mapper

Matchm aker

Sc heduling
Algorithm

Execution
Manager

Job Monitor

Job sta tus
inform ation

Job
perform anc e

inform ation

Resourc e
desc rip tions

Schedules

Resourc e
perform anc e

inform ation

Abstrac t
app lica tions

Instantia ted
app lic a tions

Estim ation
func tions

RAEMS

Resourc e Info
System

Abstrac t
app lica tions

Re
so

ur
ce

 In
fo

 C
ac

he

Ga thered
inform ation

Figure 4-1: K-GRID scheduler architecture

The scheduler modules are extensible as they provide an open interface allowing to plug-
in user-defined functionalities and behaviours. The scheduler can load modules
implementing scheduling algorithms and matchmaking functionalities (in the Mapper),
scheduling processes (in the Controller), and data gathering and cost estimation activities
(in the Cost/Size Estimator). Each module can refer to its own description of resources.
This makes the scheduler potentially useful in Grid frameworks different from the
KNOWLEDGE GRID. For instance, cooperation among different schedulers could be
implemented in the scheduling process, and resource and applications’ descriptions could
be properly designed to include the needed information.

4.2 Customers
The target customers of the KNOWLEDGE GRID scheduler are mostly Grid users who want
to perform knowledge discovery processes on Grids. However, since the scheduler is not
tightly coupled with the KNOWLEDGE GRID architecture, its use can be seamlessly
extended to other application domains.

4.3 Scenarios
• Application submission. The scheduler interprets user’s request and finds a

suitable schedule for it by matching resource requirements with concrete resource
descriptions, and trying to minimize the application completion time.

• Restart on failure. Both computation and communication jobs are automatically
observed during the execution, and a re-scheduling policy can be implemented in
the scheduler Controller.

gsa-rg@ggf.org 20

• Extension. The scheduler can load modules implementing different
functionalities, each of which can be based on a different way of characterizing
resources.

4.4 Involved resources
The extensibility of the KNOWLEDGE GRID scheduler allows the use of virtually any kind
of resource needed by the users; the only limitations are those of resource providers.

4.5 Functional requirements
• Information retrieval. The scheduler must be able to connect to external resource

information services to retrieve data about (current and future) availability and
performance of resources.

• Application parsing and validation. The scheduler must parse and validate the
scheduling requests with respect to their structure and with respect to the actual
possibility to instantiate them.

• Resource pre-selection. The available resources must be preliminarily filtered to
retain only those actually usable for the application.

• Scheduling. The scheduler must support a scheduling process, i.e., the sequence
of actions to be taken in coincidence with particular events, and a scheduling
algorithm, defining the way in which jobs are assigned to resources.

• Failure management. The scheduling process must be dynamic with re-
scheduling, i.e., the scheduler is invoked initially and then, during application
executions, it is invoked again as a consequence of significant events occurred, to
re-schedule unexecuted parts of the application.

• Extensibility. It must be possible to extend the scheduler functionalities with
personalized ones based on different application scenarios and Grid structures.

4.6 Workflow of Scheduling Process
For each application to be scheduled, the scheduler instantiates a different Controller.
Moreover, the following logical steps are performed:

1. The Cost/Size Estimator gathers data about characteristics and performances of
available resources and builds the cost estimation functions (this step can be done
offline).

2. The Matchmaker selects resources usable to execute the jobs composing the
application, using information coming from the Resource Information Cache.

3. The Mapper evaluates a certain set of possible schedules, using information
coming from the Estimation modules of the Cost/Size Estimator, and chooses of
the one minimizing the completion time.

4. The Controller requests job execution to the Execution Manager.
5. The Controller waits for job status notifications from the Job Monitor or new

information about availability and performance of resources and adapts the
schedule to such changes.

gsa-rg@ggf.org 21

4.7 Involved Scheduling Components/Services
Based on the general Grid scheduling architecture as defined in October, 2002 GSA
document, the following services are involved in the activity of the KNOWLEDGE GRID
scheduler:

• Data and Network Management services;
• Job Supervisor service;
• Information service (static and forecasted).

4.8 Failure Considerations
The KNOWLEDGE GRID scheduler handles job failures as described in Section 2.3.

4.9 Security Considerations
Security in the KNOWLEDGE GRID scheduler is demanded to other KNOWLEDGE GRID
services; it is essentially based on GSI.

4.10 Accounting Considerations
Accounting in the KNOWLEDGE GRID scheduler is demanded to other KNOWLEDGE GRID
services.

4.11 Performance Considerations
The KNOWLEDGE GRID scheduler caches resource information and strongly indexes them
in order to obtain the data access performance needed during the scheduling activity. In
addition, due to the inherent intractability of the scheduling problem to be dealt with, one
of the most important requirements of the scheduling heuristics is a suitable
effectiveness/efficiency trade-off.

4.12 Use case Situation Analysis
We have designed a complete scheduling model and implemented the architecture
described in Section 2.1 for its support. The scheduler is currently within the context of
the KNOWLEDGE GRID, but its structure and openness prove suitable for more general
scheduling scenarios. The study of suitable scheduling heuristics for different kinds of
applications and Grids is currently underway.

4.13 References
1. The KNOWLEDGE GRID Lab. http://dns2.icar.cnr.it/kgrid/.
2. M. Cannataro and D. Talia. The Knowledge Grid. Communications of the ACM, 46-1,
2003.
3. A. Pugliese and D. Talia. Application-oriented scheduling in the KNOWLEDGE GRID: a
model and architecture. International Conference on Computational Science and its
Applications (ICCSA), 2004.

gsa-rg@ggf.org 22

4. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, P. Trunfio. Distributed data mining
on Grids: services, tools, and applications. IEEE Transactions on Systems, Man, and
Cybernetics: Part B (TSMC-B). To appear.

gsa-rg@ggf.org 23

5 GRASP (Grid Resource Allocation Services Package)
5.1 Summary
GRASP(Grid Resource Allocation Services Package) is designed to meet the
requirements of the resource management problem concerning about delivering the users
plentiful computing power with distributed resources. Currently, Managed Job Service in
Globus Toolkit 3 is the service to be used to run the job on a remote resource. However,
in order to build more useful grid, there should be added some user-friendly resource
allocation manners including resource brokering, scheduling, monitoring, and so forth in
the collective layer. GRASP is aiming at this upper-GRAM level scheduling and job
submission system. Followings are brief introduction of GRASP functions.

○ Grid Job Submission: GRASP has a service, Job Submission Service, where users are
interfacing with grid computing environment. We solved the co-allocation problem for a
cross-resource MPI-based parallel job by designing an MPICH initialization process in
which all MPI sub-jobs are synchronized by Job Submission Service. And also
monitoring in the service allows the user to monitor his/her job as a whole.
○ Resource Brokering and Meta-Scheduling: A Grid Scheduling Service finds
resources fit to a user's job derived from a grid information service. To select proper
resources it performs matchmaking between a resource specification from the user and
resource owner policies about jobs or users from each resource administrator. And then it
selects resources to be allocated to the job from the candidates which have been found.
○ Local Job Execution : A Resource Manager Service authenticates the user for the job
execution on a local resource and submits the job to the local batch queuing system such
as PBS. And this service will support the immediate reservation to minimize the failure of
execution of scheduled job in the upper layer during meta-scheduling.
○ Fault Tolerant Job Execution : Grids consist of so many computing resource
components and each has a probability of local failure, which decreases the reliability of
the whole grid system. To increase the reliability of the system, fault tolerance for a grid
job is required. Without fault tolerance, parallel or distributed processes are vulnerable
even at local single failure and might loose all computation mid-result on failure only to
start from the beginning. We realized a fault tolerant job execution which makes a grid
job restarted automatically from where the failure occurs, adopting the periodic
checkpointing mechanism.

gsa-rg@ggf.org 24

Figure 5-1: Architecture of GRASP

5.2 Customers
The target customers of GRASP would be mostly computational scientists who used to
run parallel jobs in a grid environment.

5.3 Scenarios
○ Job Submission
Two major application types are considered: high throughput computing and high
performance computing applications. In the case of high throughput computing, it is not
necessary for each process on the resources to communicate with each other. Sensitivity
analysis and parameter tuning studies are performed by high throughput computing
method. The other application is MPI-based parallel job for the high performance
computing, which requires significant amount of communications among the sub-job
processes. And also a hybrid of HTC and HPC, that is, a HTC job whose sub-jobs are
MPI-based HPC jobs can be handled.
In order to support these kinds of applications, GRASP interprets user’s job request, and
then finds out and selects resources to appropriately run a job. After the scheduling
process, the job is distributed to selected resources.

○ Job Restart on Failure
In GRASP the MPI-based job can resume its computation automatically even when the
job stops because of the failure of any sub-job process. There could be two kinds of
failures on a distributed parallel job. One is a failure of a sub-job process running on a
computing node, the other is a failure of a resource on which sub-job processes are
running. When a process stops for its own reason, the cluster manager on the front node
will fork a new process on that computing node. If the node is down, the cluster manager
will choose another computing node in the cluster and resume the process on the node.
More seriously if the whole cluster which the cluster manager is running on is down or

gsa-rg@ggf.org 25

the connection to the cluster is lost, the central manager in the Job Submission Service
will choose another appropriate cluster and resume the sub-jobs on the cluster. As
mentioned above, GRASP takes hierarchical failure recovery system in which each
failure manager handles the failures on each layer respectively.

Figure 5-2: Fault Tolerance Job Execution Architecture

5.4 Involved resources
For now, we are restricting resources as computing resources which are mainly clusters.
However, we will gradually enlarge the scope of resources to storage devices, network
connections, and so on.

5.5 Functional requirements
○ Discovery and Brokering
For dynamic resource offering and user convenience, a grid scheduling service should be
able to discover and select proper resources from grid environment. In this phase, the
scheduling service would be aided from an information service.
○ Queuing
Grid environment is so dynamic and unpredictable that a grid job should wait in the
queue until the scheduling process ends.
○ Scheduling
Scheduling is a process of matching a job to the appropriate resources. In this phase,
various scheduling algorithm could be applied.
○ Authentication and Authorization
Authentication and authorization is essential to run a job on a remote resource. Therefore
the scheduling component should check if the user can acquire the admission to the
resources.
○ Advance Reservation
Although the advance reservation is required for grid scheduling, we have not reached it
yet. Therefore we are working on enabling the immediate reservation mechanism, in

gsa-rg@ggf.org 26

which the scheduling service can occupy the resources at the time when the meta-
scheduling is done.
○ Monitoring
Monitoring job status and resource status could be considered. Job monitoring should be
supported in the grid scheduling components. Although resource monitoring is required
to discover resources, it would be supported by an information service.
○ Fault Tolerance
Fault tolerant job management can make a grid system more effective because without a
fault tolerance, the computation results upon the job failure would be blown up and the
job should start again from very first step.

5.6 Workflow of Scheduling Process
1. Queue the job for the scheduling
2. Gather information about available resources from an information service
3. Filter unsuitable resources using matchmaking between the job specification and the
resource owner policies which should be offered by the information service
4. Select the resources and number of nodes using various scheduling algorithm
5. Reserve the resources based on the schedule
6. Generate sub-job request scripts for each resource
7. Submit each sub-job request to the resources
8. Authenticate and authorize the user on the resources
9. Verify the reservations
10. Stage the required files on the resources
11. Execute sub-jobs on the computing nodes

5.7 Involved Scheduling Components/Services
○ Job Submission Service
JSS(Job Submission Service) is responsible for management of the job. It receives a job
request from clients, requests scheduling to a grid scheduling service, requests job
execution to local resource management services, and controls the jobs during execution
with the job monitoring.
GRASP supports an extended MPICH, which was implemented to make it possible for
MPI sub-jobs that are dispersed on the remote resources to communicate each other. In
this mechanism, JSS plays an important role to synchronize sub-jobs by controlling the
barriers in each sub-job process when an application is initialized.
And also, JSS handles job failure as a central manager of fault tolerant job execution
system. It synchronizes the checkpointing process on the resources with each other, and
handles the failure on a resource level not on a computing node level.

○ Grid Scheduling Service
GSS(Grid Scheduling Service) discovers the resources available and chooses best fit
resources for the job. In order to filter unacceptable resources, GSS does matchmaking
between resource specification in the job request and resource owner’s preference in the
resource owner policy. The resource owner policy is delivered from the resource by
information service. Then the candidates selected from the matchmaking process enter

gsa-rg@ggf.org 27

the scheduling process and the final winners are picked out based on the scheduling
algorithm. One example of the scheduling algorithm in GSS is point-based algorithm, in
which all the resources have the point following user’s preferences and the resources with
higher points are selected. The last process in GSS is the reservation onto the resources
scheduled.

○ Resource Manager Service
RMS(Resource Manager Service) takes a job request from outside and starts execution of
the user program on the resource with some required functions, authentication,
authorization, file staging, output and error streaming, local scheduler interfacing, and so
forth. And also, during execution the job can be monitored and controlled by RMS. In
addition to the basic function of job submission, RMS supports JSS in synchronization of
MPI-based job and GSS in reservation of the resource.

5.8 Failure Considerations
GRASP can handle the job failure situations so that distributed processes don’t lose their
computation mid-results. Our approach is to adopt the periodic checkpointing mechanism
to decrease the loss of computation results. Checkpointing is an operation to store the
state of a process into stable storage so that a process can resume its previous state at any
time with the latest checkpoint file. In our system, hierarchical job managers in JSS and
RMS monitor and control MPI processes, that is to say, cluster manager in RMS and
central manager in JSS are responsible for detecting node/network/process failures and
deciding consistent global recovery line. [Figure 5-2]

5.9 Security Considerations
Security functionality of all services in GRASP is based on GSI generally. More
precisely, RMS, the grid service of computing resource follows the authentication
architecture of GT3 GRAM.

5.10 Accounting Considerations
For accounting, the usage of computing resources should be measured correctly. This
measuring is done by extracting information from local scheduler on matching local user
account to the grid user from outside. The grid user account is represented by a
distinguished name(DN) in the gridmap file.

5.11 Performance Considerations
GSS applies a cache mechanism in order to make a good performance in fetching
resource information. When discovering the resource information for a job, the local
cache is searched for the resources satisfying the query at first. Only if the proper
information could not be found in its local cache, GSS make a query to an information
service outside. The local cache is updated when new information reached from an
information service, and updated by the Cache Auto Updater periodically using the
notification mechanism in OGSI.

gsa-rg@ggf.org 28

5.12 Use case Situation Analysis
GRASP is ongoing architecture to support scientific applications in the grid infrastructure.
The implementation is not deployed in the real environment yet, but we are working on
the deployment of GRASP in the Korean grid infrastructure. The first targets would be
applications from bio-informatics, computational fluid dynamics using genetic algorithms,
and some data-intensive applications.

5.13 References
[1] MoreDream Project, http://www.moredream.org
[2] Globus Project, http://www.globus.org

gsa-rg@ggf.org 29

6 Scheduling in Loosely-Coupled Grids with GridWay
6.1 Summary

In spite of the great research effort made in Grid computing, application development and
execution in the Grid continue requiring a high level of expertise due to its complex
nature. In a Grid scenario, a sequential or parallel job is commonly submitted to a given
resource by manually performing all the scheduling steps.

Moreover, one of the most challenging problems that the Grid computing community has
to deal with is the fact that Grids are highly dynamic environments. An application
should be able to adapt itself to rapidly changing resource conditions, namely: high fault
rate and dynamic resource availability load and cost.

Therefore, in order to obtain a reasonable degree of both application performance and
fault tolerance, a Grid scheduler must be able to adapt a given job according to the
availability of the resources and the current performance provided by them. GridWay
[GW] is a Globus-based submission framework that allows an easier and more efficient
execution of jobs on such dynamic Grid environments. GridWay automatically performs
all the job scheduling steps, provides fault recovery mechanisms, and adapts job
scheduling and execution to the changing Grid conditions.

6.2 Customers
This use-case is intended for average Grid users, who mainly execute on the Grid
compute-intensive stand-alone jobs with no special requirements, and high throughput
computing applications. These jobs/tasks can be both parallel and sequential. The are two
kinds of costumers, each one devoted to:

• Execution: The scheduler should provide an easy and efficient way to execute
jobs on a Grid. The user specifies the Grid job through a job template, which
contains all the necessary parameters for its execution in a submit & forget
fashion. The underlying scheduling and execution system, automatically performs
all the job scheduling steps, and watches for its correct and efficient execution.

• Development: Grid developers need an interface to distributed applications
among Grid resources. These distributed applications consist mainly in
communicating jobs that follow typical distributed paradigms like: asynchronous
embarrassingly distributed, master worker, or complex workflows. The
Distributed Resource Management Application API (DRMAA) [DRMAA]
specification constitutes a homogenous interface to different Distributed Resource
Management Systems (DRMS) to handle job submission, monitoring and control,
and retrieval of finished job status. In this way, DRMAA could aid scientists and
engineers to express their computational problems by providing a portable direct
interface to DRMS.

6.3 Scenarios
We first describe the main characteristics and assumptions made about the scheduling
scenario dealt by GridWay. There exist different kinds of Grids, form tightly-coupled
environments, being dedicated to the execution of high-performance applications, to

gsa-rg@ggf.org 30

loosely-coupled systems, dedicated to the execution of high-throughput and complex
applications. We focus on computational Grid infrastructures, build up from uncoupled
resources and interconnected by high-latency public networks, dedicated to the execution
of high-throughput applications, which could be MPI-coded, and complex workflows,
which consist of transformations performed on the data.
These Grid environments inherently present the following characteristics:

• Multiple administration domains and autonomy

• Heterogeneity

• Scalability

• Dynamism or adaptation

These characteristics completely determine the way that scheduling and execution on
Grids have to be done. For example, scalability and multiple administration domains
prevent the deployment of centralized resource brokers, with total control over client
requests and resource status. On the other hand, the dynamic resource characteristics in
terms of availability, capacity and cost, make essential the ability to adapt job scheduling
and execution to these conditions. Finally, the management of resource heterogeneity
implies a higher degree of complexity.
From the user point of view, we assume the following application model:

• Executable file: The executable must be compiled for the remote host
architecture. The scheduler should provide a straightforward method to select the
appropriate executable for each host.

• Input files: These files are staged to the remote host. The scheduler should
provide a flexible way to specify input files and supports Parameter Sweep like
definitions. Please note that these files may be also architecture dependent.

• Output files: These files are generated on the remote host and transferred back to
the client once the job has finished.

• Standard I/O streams: The Standard Input file is transferred to the remote
system previous to job execution. Standard Output and Standard Error streams are
also available at the client once the job has finished.

• Re-start files: Restart files are highly advisable if dynamic scheduling is
performed. User-level checkpointing managed by the programmer must be
implemented because system-level checkpointing is not possible among
heterogeneous resources.

In addition the user must specify a set of job requirements, and a ranking criterion (see
Section 2.7 below). Also, it is possible for the application to generate a performance
profile as a registry of its activity (see Section 2.11 below).

6.4 Involved resources

This use case focuses on computational resources. In the present context we adopt a
rather simple management of storage resources, but more advanced techniques (like
third-party transfers, meta-data catalogues, access to online databases…) could be
possible.

gsa-rg@ggf.org 31

6.5 Functional requirements
• Support for adaptive scheduling: Given the dynamic characteristics of Grid

environments, it is necessary to periodically re-evaluate the schedule initially
performed. So, the schedule can be dynamically adapted to the available resources
and their characteristics, normally considering the number of pending and running
jobs, and the history profile of completed jobs. Adaptive scheduling has been
widely studied in the literature, and it has been demonstrated that periodic re-
evaluation of the schedule can result in significant improvements in both
performance and fault tolerance.

• Support for adaptive execution: Additionally, it could be necessary to migrate
running applications to more suitable resources. Adaptive execution can improve
application performance by adapting it to the dynamic availability, capacity and
cost of Grid resources. In this case the overhead induced by job migration is the
key issue that must be considered. Migration is commonly implemented by
restarting the job on the new candidate host. Therefore, the job should generate
restart files at regular intervals in order to restart execution from a given point.
However, for some application domains the cost of generating and transferring
restart files could be greater than the saving in compute time due to
checkpointing. Hence, if the checkpointing files are not provided the job is
restarted from the beginning. In order not to reduce the number of candidate hosts
where a job can migrate, the restart files should be architecture independent.

• Support for self-adaptive applications: An application could take decisions about
resource selection as its execution evolves, and provide its own performance
activity to detect performance slowdown.

• Fault tolerance: Job failures should be automatically detected, allowing the user to
abort or retry it execution or automatically migrating it to a new machine.

• Log information: Most relevant information about the jobs should be obtained
from several log files.

• Unix-like command interface: Commands should be very similar to those found
on Unix systems and resource management systems like PBS or SGE. Users
should be able to submit, kill, migrate, watch and wait for jobs or array of jobs.

• Programming interface: DRMAA should be supported to develop distributed
applications.

• Use of standard Grid services: It should be based on the functionality provided by
Globus basic services [GLOBUS]:

o Grid security infrastructure: GSI

o Grid execution service: GRAM

o Grid information service: MDS

o Grid file transfer service: GridFTP

gsa-rg@ggf.org 32

• Extensibility and adaptability of the functionality: the architecture should be
modular in order to support different middleware versions (middleware access
driver and wrapper modules for access Grid execution services, resource selector
module for access Grid information services, prolog/epilog modules for access
Grid file transfer services). Moreover, the architecture should be decentralized,
allowing to be deployed as a client tool.

6.6 Workflow of Scheduling Process
In a Grid scenario, a sequential or parallel job is commonly submitted to a given resource
by taking the following path [GGF]:

1. Resource discovery and selection: Based on a set of job requirements, like
operating system or platform architecture, a list of appropriate resources is
obtained by accessing to an information service mechanism. Then a single
resource is selected among the candidate resources in the list.

2. Preparation: The selected host is prepared for job execution. This step usually
requires staging executable of input files.

3. Submission and migration: The job is submitted to the selected resource.
However, the user may decide to restart its job on a different resource, if a
performance slowdown is detected or a better resource is discovered.

4. Monitoring: The job evolution is monitored over time.

5. Termination: When the job is finished, its owner is notified and some completion
tasks, such as output file staging and cleanup, are performed.

6.7 Involved Scheduling Components/Services
The core of the GridWay framework [SPE] is a personal submission agent that performs
all submission stages and watches over the efficient execution of the job. Adaptation to
changing conditions is achieved by dynamic rescheduling. Once the job is initially
allocated, it is rescheduled when performance slowdown or remote failure are detected,
and periodically at each discovering interval. Application performance is evaluated
periodically at each monitoring interval by executing a performance evaluator program
and by evaluating its accumulated suspension time. A resource selector module acts as a
personal resource broker to build a sorted list of candidate resources.
The submission agent consists of the following components:

• Request manager (RM): To handle client requests.

• Dispatch manager (DM): To perform job scheduling.

• Submission manager (SM): To execute and migrate jobs and monitor its correct
execution.

• Performance monitor (PM): To evaluate the job performance.
The flexibility of the framework is guaranteed by a well-defined API (Application
Program Interface) for each submission agent component. Moreover, the framework has

gsa-rg@ggf.org 33

been designed to be modular to allow adaptability, extensibility and improvement of its
capabilities. The following modules can be set on a per job basis:

• Resource selector (RS): Used by the dispatch manager to select the most
adequate host to run the job according to the host's rank, architecture and other
parameters.

• Middleware access driver (MAD): Used by the submission manager to provide an
interface with the underlying resource management middleware.

• Performance evaluator (PE): Used by the performance monitor to check the
progress of the job (not supported in the current version).

• Prolog: Submitted by the submission manager to create the job directory
hierarchy on the remote machine and transfer the executable, input and restart
files.

• Wrapper: Submitted by the submission manager to run the executable file and
captures its exit code.

• Epilog: Submitted by the submission manager to transfer output or restart files,
clean up the GASS cache and remove the job directory from the remote machine.

The following actions are performed by the submission agent:

• The client application uses a Client API to communicate with the request
manager in order to submit the job along with its configuration file, or job
template, which contains all the necessary parameters for its execution. Once
submitted, the client may also request control operations to the request manager,
such as job stop/resume, kill or reschedule.

• The dispatch manager periodically wakes up at each scheduling interval, and tries
to submit pending and rescheduled jobs to Grid resources. It invokes the
execution of the resource selector module corresponding to each job, which

gsa-rg@ggf.org 34

returns a sorted list of candidate hosts. The dispatch manager submits pending
jobs by invoking a submission manager, and also decides if the migration of
rescheduled jobs is worthwhile or not. If this is the case, the dispatch manager
triggers a migration event along with the new selected resource to the job
submission manager, which manages the job migration.

• The submission manager is responsible for the execution of the job during its
lifetime, i.e. until it is done or stopped. It is initially invoked by the dispatch
manager along with the first selected host, and is also responsible for performing
job migration to a new resource. The Globus management components and
protocols are used to support all these actions through the middleware access
driver. The submission manager performs the following tasks:

o Prologing: Preparing the RSL and submitting the prolog executable.

o Submitting: Preparing the RSL, submitting the wrapper executable,
monitoring its correct execution (as explained in subsequent sections),
updating the submission states via GRAM call-backs and waiting for
migration, stop or kill events from the dispatch manager.

o Cancelling: Cancelling the submitted job if a migration, stop or kill event
is received by the submission manager.

o Epiloging: Preparing the RSL and submitting the epilog executable.

• The performance monitor periodically wakes up at each monitoring interval. It
requests rescheduling actions to detect better resources when performance
slowdown is detected and at each discovering interval.

Due to the heterogeneous and dynamic nature of the grid, the end-user must establish the
requirements that must be met by the target resources (discovery process) and criteria to
rank the matched resources (selection process). The attributes needed for resource

gsa-rg@ggf.org 35

discovery and selection must be collected from the information services in the grid
testbed, typically the Globus Monitoring and Discovery Service (MDS). Usually,
resource discovery is only based on static attributes (operating system, architecture,
memory size...) collected from the Grid Information Index Service (GIIS), while resource
selection is based on dynamic attributes (disk space, processor load, free memory...) that
can be obtained from the Grid Resource Information Service (GRIS) or by accessing the
Network Weather Service.
The resource selector is executed by the dispatch manager in order to get a ranked list of
candidate hosts when the job is pending to be submitted or a rescheduling action has been
requested. The resource selector is a script or a binary executable, specified in the job
template, which receives the parsed job template itself as an argument (so it can be easily
sourced in a script) and some other needed parameters in the environment.
The resource selector module performs the following actions:

1. Available compute resources are discovered by accessing the GIIS server and,
those resources that do not meet the user-provided host requirements are filtered
out. At this step, an authorization test (via a GRAM ping request) is also
performed on each discovered host to guarantee user access to the remote
resource.

2. Then, the dynamic attributes of each host and the available GRAM job managers
are gathered from its local GRIS server.

3. This information is used by an user-provided rank expression to assign a rank to
each candidate resource.

Finally, the resultant prioritized list of candidate resources is used to dispatch the job.

Job execution is performed in three steps by the following modules:

• Prolog: This module is responsible for creating the remote experiment directory
and transferring the executable and all the files needed for remote execution, such
as input or restart files corresponding to the execution architecture. These files
can be specified as local files in the experiment directory or as remote files stored

gsa-rg@ggf.org 36

in a file server through a GridFTP URL. Once the files are transferred to the
remote host, they are added to the GASS cache so they can be re-used if they are
shared with other jobs.

• Wrapper: This module executes the submitted job and writes its exit code to
standard output, so the submission agent can read it and can be used to determine
whether the job was successfully executed or not. The capture of the remote
execution exit code allow users to define complex jobs, where each depends on
the output and exit code from the previous job. It is interesting to note that
versions previous to 3.9 of the Globus Toolkit do not provide any mechanism to
capture the exit code of a job.

• Epilog: This module is responsible for transferring back output files, and cleaning
up the remote experiment directory. At this point, the files are also removed from
the GASS cache.

File transfers are performed through a reverse-server model. The file server (GASS or
GridFTP) is started on the local system, and the transfer is initiated on the remote system
using Globus transfer tools (i.e. globus-url-copy command).
The prolog and epilog modules are always submitted to the fork GRAM job manager. In
this way, our tool is well suited for closed systems, such as clusters, where only the front-
end node is connected to the Internet and the computing nodes are connected to a system
area network, so they are not accessible from the client.

Job migration is performed in the following way. The execution of the wrapper module is
cancelled (if it is still running). Then, the prolog module is submitted to the new
candidate resource, preparing it and transferring all the needed files to it, including the
restart files from the old resource. After that, the epilog module is submitted to the old
resource (if it is still available), but no output file staging is performed, it only cleans up
the remote system. And finally, the wrapper module is submitted to the new candidate
resource.

Briefing, the execution of jobs in three separate steps has the following advantages:

• Support for closed systems (like clusters).

• Easy and efficient way to implement job migration.

• Possibility to separately schedule transfers and executions.

• Better adjustment of job definition parameters (RSL language), as
MaxCPUTime.

• Implementation of different transfer strategies (caching, compression, access to
replica catalogues or online databases…) doesn’t affect the compute nodes.

6.8 Failure Considerations
GridWay provides the application with the fault detection capabilities needed in such a
faulty environment:

gsa-rg@ggf.org 37

• The GRAM job manager notifies submission failures as GRAM call-backs. This
kind of failures includes connection, authentication, authorization, RSL parsing,
executable or input staging, credential expiration and other failures.

• The GRAM job manager is probed periodically at each polling interval.

• The standard output of prologue, wrapper and epilogue is parsed in order to detect
failures. In the case of the wrapper, this is useful to capture the job exit code,
which is used to determine whether the job was successfully executed or not. If
the job exit code is not set, the job was prematurely terminated, so it failed or was
intentionally cancelled.

When an unrecoverable failure is detected, it retries the submission of prologue, wrapper
or epilogue a number of times specified by the user and, when no more retries are left, it
performs an action chosen by the user among two possibilities: stop the job for manually
resuming it later, or automatically generate a rescheduling event.

6.9 Security Considerations
In a loosely coupled environment, security decisions must be performed at the resource or
site level.

6.10 Accounting Considerations
The gwps and gwhistory commands provide status and accounting information about
the submitted hosts. Nevertheless, in a loosely coupled environment, accounting must be
performed at the resource or site level.

6.11 Performance Considerations
The framework provides two mechanisms to detect performance slowdown:

• A performance evaluator is periodically executed at each monitoring interval by
the performance monitor to evaluate a rescheduling condition. Different strategies
could be implemented, from the simplest one based on querying the Grid
information system about workload parameters to more advanced strategies based
on detection of performance contract violations. The performance evaluator is a
script or a binary executable specified in the job template, which can also include
additional parameters needed for the performance evaluation. A mechanism to
deal with application own metrics is provided since the files processed by the
performance evaluator could be dynamically generated by the running job. The
rescheduling condition verified by the performance evaluator could be based on
the performance history using advanced methods like fuzzy logic, or comparing
the performance with the initial performance attained, or a base performance.

• A running job could be temporally suspended by the resource administrator or by
the local queue scheduler on the remote resource. The submission agent takes
count of the overall suspension time of its job and requests a rescheduling action
if it exceeds a given threshold. Notice that the maximum suspension time
threshold is only effective on queue-based resource managers.

6.12 Use case Situation Analysis
GridWay is currently available [GW] with some limitations.

gsa-rg@ggf.org 38

6.13 References
[DRMAA] The DRMAA Working Group. www.drmaa.org.
[GGF] J. Schopf: “Ten Actions when Superscheduling”.
[GLOBUS] The Globus Alliance. www.globus.org.
[GW] The GridWay Project. www.gridway.org.
[SPE] E. Huedo, R. S. Montero, I. M. Llorente: “A Framework for Adaptive

Execution on Grids”. Software: Practice and Experience 34(7): 631-651
(2004).

gsa-rg@ggf.org 39

7 Editor Information
Editors:
Philipp Wieder
Research Centre Jülich
Central Institute for Applied Mathematics
52425 Jülich, Germany
ph.wieder@fz-juelich.de

Ramin Yahyapour
Computer Engineering Institute
University Dortmund
44221 Dortmund, Germany
Ramin.yahyapour@udo.edu

Contributing authors:
Andrea Pugliese, Domenico Talia
DEIS-University of Calabria
Via P. Bucci, 41/C, Rende ,Italy
{apugliese,talia}@deis.unical.it

Jaegyoon Hahm
Supercomputing Center
Korea Institute of Science and Technology Information
305-333, Daejeon, Korea
Phone: +82-42-869-0580,
jaehahm@kisti.re.kr

Ignacio M. Llorente
Dpto. Arquitectura de Computadores y Automatica
Facultad de Informatica
Universidad Complutense
Phone: +34 91 394 76 16
llorente@dacya.ucm.es
http://asds.dacya.ucm.es/

Nicola Tonellotto
Istituto di Scienza e Tecnologie dell´Informazione “A. Faedo“
Consiglio Nazionale delle Ricerche
Via G. Moruzzi 1, 56100, Pisa, Italy
nicola.tonellotto@isti.cnr.it

