
DFDL Introduction For Beginners

Lesson 2: DFDL Language Basics

Version Author Date Change

1 S Hanson 2011-01-24 Created

2 S Hanson 2011-01-24 Updated

3 S Hanson 2011-03-30 Improved

4 S Hanson 2012-02-29 Improved

5 S Hanson 2012-09-21 Editorial corrections

We have seen in lesson 1 how DFDL is not an entirely new language. Its
foundation is XML Schema 1.0. Although XML Schema was created as a way
of specifying XML documents, it turns out to be very good at describing the
logical structure of all kinds of data. DFDL therefore uses XML Schema
constructs for describing the logical structure of non-XML data, and uses XML
Schema’s annotation facility to describe the physical structure of the same
data.

DFDL and XML Schema

XML Schema is a powerful language that is designed for modeling XML.
When you look at the constructs in XML Schema, it turns out that many of
them are quite specific to XML. DFDL has chosen to use a subset of the
constructs in XML Schema that is just enough to model non-XML data, in
order to keep the language simpler. The subset is shown in Figure 2.1.

Fig 2.1. DFDL Schema subset

Type Element

Simple type

Sequence Choice

 Group

*

*
Complex type

This subset is enough to model the logical structure of all kinds of non-XML
data.

Consider the simple ‘address’ example from lesson 1 where we have an
address that consists of a number of variable length fields.

118*Ridgewood Circle*Rochester*NY

Each individual field is modeled by an element. This supplies the name of the
field, the number of occurrences of the field, and refers to a type that
describes the field content.

If a field is a value, then it is modeled by a simple type, for example, an
integer or a string. XML Schema provides a set of built-in simple types and
DFDL allows a subset of those. You can also create your own, by deriving
from the built-in types.

If a field has structure, then it is modeled by a complex type, which contains a
group. The group defines the content for the complex type, by referring to the
elements that model the individual fields that make up the structure. A group
can either be a sequence or a choice. A sequence is used when all the fields
in the structure appear (they can be ordered or unordered). A choice is used
when only one of the fields in the structure may appear (that is they are
alternatives). A group can directly contain another group but that’s a more
advanced feature.

When an element is referred to in a group, you can specify whether the
element may occur once or may repeat, and whether occurrences are
optional or required.

Note that a field may have either a value or structure, it can not have both. Put
in DFDL terms, an element may have either a simple type or a complex type,
but not both.

In the example, we can immediately see fields for house number, street, city
and state. These are all fields that have a value, and therefore have a Simple
Type. But there’s also a field that’s not so obvious; the overall address itself.
This field has structure, and therefore have a Complex Type.

One way of modeling the example in XML Schema looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="address" type="addressType"/>

 <xs:complexType name="addressType">

 <xs:sequence>

 <xs:element ref="houseNumber"/>

 <xs:element ref="street"/>

 <xs:element ref="city"/>

 <xs:element ref="state"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="houseNumber" type="xs:int"/>

 <xs:element name="street" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

</xs:schema>

In this model, all the elements and the complex type are given a name and
are global allowing them to be re-used. For example, you could go on to
create another complex type that also referred to the ‘houseNumber’ element.
Global objects are great for re-use but you can create a more compact model
by making objects local. This is the recommended approach if you know
particular objects will not be re-used. Here’s the same model but using local
objects.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="houseNumber" type="xs:int"/>

 <xs:element name="street" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

DFDL’s XML Schema subset also permits the use of namespaces. This is a
useful mechanism if you want to make sure that your DFDL model does not
clash with a model belonging to someone else. When using namespaces, the
name of each global object in the schema is qualified by the namespace of its
schema. Here’s the same model but using a namespace.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema“

 targetNamespace=“http://myAddress.com“

 xmlns:addr=“http://myAddress.com“ >

 <xs:element name="address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="houseNumber" type="xs:int"/>

 <xs:element name="street" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Any subsequent references to global element ‘address’ are qualified by the
namespace prefix ‘addr’ declared at the top of the schema.

 <xs:element ref="addr:address" />

DFDL annotations

Using DFDL’s subset of XML Schema allows you to describe the logical
structure of your data. We will now look at how DFDL annotations allow the
physical representation of your data to be described.

An XML Schema annotation provides some extra information about an XML
Schema object such as an element, type or group. There are two kinds of
annotation, documentation and appinfo. While documentation is intended to
provide humans with a nice readable description for the object, appinfo is
intended for programs. With DFDL, you use appinfo annotations to describe
the physical representation of your data.

Here’s what a DFDL appinfo annotation looks like.

<xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >

 ..physical representation description goes here..

 </xs:appinfo>

</xs:annotation>

The source attribute says that this appinfo belongs to DFDL, so other
processors know to ignore it.

The actual physical representation description takes the form of special DFDL
XML elements that carry DFDL properties that describe the physical data.
There is a special DFDL element for each kind of DFDL Schema object for
which properties are provided, as shown in table 2.1.

Annotation Used on Component Purpose

dfdl:element xs:element
xs:element reference

Contains the DFDL properties of a
xs:element and xs:element
reference

dfdl:choice xs:choice Contains the DFDL properties of a
xs:choice.

dfdl:sequence xs:sequence Contains the DFDL properties of a
xs:sequence.

dfdl:group xs:group reference Contains the DFDL properties of a
xs:group reference to a group
definition containing an
xs:sequence or xs:choice.

dfdl:simpleType xs:simpleType Contains the DFDL properties of a
xs:simpleType

Table 2.1. Core DFDL annotation elements

Note that xs:complexType does not carry a DFDL annotation.

This is what the ‘houseNumber’ element from the variable length ‘address’
example might look like once it has a DFDL annotation added. In English, this
is saying that ‘houseNumber’ is a variable length right-justified ASCII text
integer at least 1 digit long.

<xs:element name="houseNumber" type="xs:int">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >

 <dfdl:element representation=”text”

 textNumberRep=”standard”

 lengthKind=”delimited”

 encoding=”ASCII”

 textNumberPattern=”##0” .../>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

If ‘houseNumber’ was instead a big-endian 4 byte fixed length two’s
complement binary integer then the DFDL annotation might look like this.

<xs:element name="houseNumber" type="xs:int">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >

 <dfdl:element representation=”binary”

 binaryNumberRep=”binary”

 lengthKind=”explicit”

 length=”4”

 lengthUnits=”bytes”

 byteOrder=”bigEndian” .../>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

The DFDL annotations shown above are known as attribute form. A more
compact equivalent syntax is also provided known as short form, which is
explained in lesson 3.

The number of DFDL properties is very large, providing the ability to model a
huge variety of data formats. These are fully described in the DFDL
specification, and many are further described in later lessons.

DFDL provides further annotations that enable you to:

o Set up groups of DFDL properties and have them apply to all objects
in a DFDL Schema;

o Make assertions about objects;
o Resolve points of uncertainty in the model;
o Define escape schemes for text data;
o Define, instantiate and set variables.

These are briefly described in table 2.2, and described in more detail in later
lessons.

Annotation Used on
Component

Purpose

dfdl:format xs:schema
dfdl:defineFormat

Contains a set of DFDL properties that
can be used by multiple DFDL schema
objects. When dfdl:format is used
directly on the xs:schema itself, the
property values act as defaults for all
objects in the DFDL schema.

dfdl:defineFormat xs:schema Defines a reusable data format by
associating a name with a set of DFDL
properties contained within a child
dfdl:format annotation. The name can
be referenced from DFDL annotations
on multiple DFDL schema objects,
using dfdl:ref.

dfdl:assert xs:element,
xs:choice
xs:sequence,
xs:group

Defines a test to be used to ensure the
data are well formed. Used only when
parsing data.

dfdl:discriminator xs:element,
xs:choice
xs:sequence,
xs:group

Defines a test to be used when
resolving a point of uncertainty such as
choice branches or optional elements.
Used only when parsing data.

dfdl:escapeSchemedfdl:defineEscape
Scheme

Defines a scheme by which quotation
marks and escape characters can be
specified. This is for use with text
formats.

dfdl:defineEscape
Scheme

xs:schema Defines a reusable escape scheme by
associating a name with a contained
child dfdl:escapeScheme annotation.
The name can be referenced from
DFDL annotations on multiple DFDL
schema objects.

dfdl:defineVariable xs:schema Defines a variable that can be
referenced elsewhere. This can be
used to communicate a parameter from
one part of processing to another part.

dfdl:newVariable
Instance

xs:element,
xs:choice

Creates a new instance of a variable.

xs:sequence,
xs:group

dfdl:setVariable xs:element,
xs:choice
xs:sequence,
xs:group

Sets the value of a variable whose
declaration is in scope.

Table 2.2. Other DFDL annotations

Reusing DFDL schemas

Let’s assume you have created a DFDL schema for the ‘address’ element, in
a file called address.xsd. You now want to use that ‘address’ element in
another DFDL schema you are creating called customer.xsd. One approach
is to take the address element and copy it into customer.xsd. A better
approach is to use XML Schema’s include or import capability, both of which
are part of DFDL’s XML Schema subset. This enables the creation of
modular models that cater for reuse.

Use include when either namespaces are not involved or the two schemas
have the same namespace.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema“>

 <xs:include schemaLocation="address.xsd"/>

 <xs:element name=”customer”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstName" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 <xs:element ref="address"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Use import when the two schemas have different namespaces.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema“

 targetNamespace=“http://myCustomer.com“

 xmlns:addr=“http://myAddress.com“

 xmlns:cust=“http://myCustomer.com“ >

 <xs:import schemaLocation="address.xsd"/>

 <xs:element name=”customer”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstName" type="xs:string"/>

 <xs:element name="surname" type="xs:string"/>

 <xs:element ref="addr:address"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

