
DFDL Introduction For Beginners

Lesson 3: DFDL properties

Version Author Date Change

1 S Hanson 2011-01-24 Created

2 S Hanson 2011-03-30 Updated

3 S Hanson 2012-09-21 Corrections for errata

In lesson 2 we learned that in the DFDL language, XML Schema conveys the
logical structure of the data format being modeled, and DFDL properties
carried on DFDL annotations describe the physical aspects of that data. In
this lesson we take a closer look at DFDL properties and explain the syntax
and rules that govern them.

DFDL properties

In order to define the physical representation of the data, we will add DFDL
properties to the model we are constructing to describe our data. A
comprehensive list of DFDL properties is available, allowing everything about
the physical data to be described. For this lesson we will concentrate on the
rules governing properties, and not the individual properties themselves which
are described in later lessons. For now it is sufficient to note that DFDL
properties can be divided into two broad categories:

Framing – how values are extracted from the data stream. Includes properties
for alignment, length, and delimiters.

Content – how values are represented in the data stream. Includes properties
for data values and padding.

DFDL property types

Properties on DFDL annotations are one of the following types:

• DFDL string literal.
The property value is a string that represents a sequence of literal bytes or
characters which appear in the data stream.

separator="*"

A special syntax called DFDL entities is provided to handle non-printable
characters and raw hexadecimal bytes.

separator="%CR;%LF;"

• Enumeration.
The property value is one of a set of allowed values, listed in the property
description.

lengthKind="delimited"

• Logical Value.
The property value is a string that represents a logical value. The type of
the logical value is one of the XML Schema simple types. For example, a
non-negative integer.

alignment="4"

• DFDL expression.
The property value is an expression that returns a value. Expressions are
covered in detail in lesson 12, but in brief they are XPath 2.0 compliant,
are able to refer to other elements in the data, and must be enclosed in
curly braces { }.

inputValueCalc="{../myElement}"

• QName.
The property value is an XML Qualified Name, that is, a name in a
namespace. For example, a reference to an object in the XML Schema.

prefixLengthType="tns:twoBytePrefixType"

• Regular expression.
The property value is a regular expression that can be applied to the literal
bytes or characters which appear in the data stream. Only used by a
couple of properties.

lengthPattern="[0-9]{5}"

Sometimes a single value of a single type is not enough to model the
behaviour we want from a property. DFDL allows some properties to have
several values, and allows some properties to have more than one type.

List properties
DFDL allows some properties to be a space-separated list of values. For
example, a structure in the data might permit either of two different characters
to be its separator. To represent this, DFDL allows the separator property

to be a list. In this example, either a * or a % in the data is accepted as the
separator.

separator="* %"

Union properties
DFDL allows some properties to be a choice of two types, that is, the value
can be of one type or the other. For example, elements in the data can be
aligned on an explicit boundary, or can be implicitly aligned according to their
data type. To represent this, DFDL allows the property type to be a union. In
this example, the alignment property may either be a logical value (non-

negative integer) or the enumeration ‘implicit’.

alignment="4"

alignment="implicit"

Where one of the types in the union is an expression, the expression must
return a value that matches the other type in the union.

DFDL property syntax

DFDL properties may be expressed in one of three equivalent syntaxes –
attribute form, element form and short form. We will use the variable length
Address example from lessons 1 and 2 to illustrate this.

118*Ridgewood Circle*Rochester*NY

Attribute form
In lesson 2 we showed what the ‘houseNumber’ element from the ‘address’
example might look like once it has a DFDL annotation added, if
‘houseNumber’ is a variable length right-justified ASCII text integer.

<xs:element name="houseNumber" type="xs:int"/>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >

 <dfdl:element representation=”text”

 textNumberRep=”standard”

 lengthKind=”delimited”

 encoding=”ASCII”

 textNumberPattern=”##0”

 </xs:appinfo>

 </xs:annotation>

</xs:element>

When DFDL properties are carried as attributes on a DFDL annotation
element in this way, the DFDL properties are said to be in attribute form
(sometimes called long form).

Element form
In this form, the value of a DFDL property is the value of a DFDL property
annotation element.

<xs:element name="houseNumber" type="xs:int"/>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >

 <dfdl:element>

 <dfdl:property name=”representation”>text</dfdl:property>

 <dfdl:property name=”textNumberRep”>standard</dfdl:property>

 <dfdl:property name=”lengthKind”>delimited</dfdl:property>

 <dfdl:property name=”encoding”>ASCII</dfdl:property>

 <dfdl:property name=”textNumberPattern”>##0</dfdl:property>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

Element form is useful when the DFDL property value contains characters
that are not allowed in XML attributes. You can even use the CDATA tag if the
value is malformed from an XML point of view.

Short form
In this form, the DFDL properties are attributes in the
http://www.ogf.org/dfdl/dfdl-1.0/ namespace and are carried directly on the
XML Schema objects themselves. This is a more concise encoding syntax
and you will see it used a great deal from now on!

<xs:element name="houseNumber" type="xs:int"

 dfdl:representation=”text”

 dfdl:textNumberRep=”standard”

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII”

 dfdl:textNumberPattern=”##0” />

You can mix all property forms on an object, as long as a specific property
only appears once.

Providing defaults for DFDL properties

When you start to create a DFDL schema model of your data, you will soon
notice that many of your data elements are very similar, and that
consequently the elements, groups and simple types need to carry a common
set of DFDL property values. For example, in the variable length ‘address’
example, all elements have text representation, the same encoding, and are
delimited.

<xs:schema … xmlns:dfdl=”http://www.ogf.org/dfdl/dfdl-1.0/“>

 <xs:element name="address" dfdl:lengthKind="implicit">

 <xs:complexType>

 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:encoding=”ASCII"

 dfdl:separator="*"

 dfdl:separatorPosition="infix”

 dfdl:separatorPolicy="required">

 <xs:element name="houseNumber" type="xs:int"

 dfdl:representation=”text”

 dfdl:textNumberRep=”standard”

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII”

 dfdl:textNumberPattern=”##0” />
 <xs:element name="street" type="xs:string"

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII” />
 <xs:element name="city" type="xs:string"

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII” />
 <xs:element name="state" type="xs:string"

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII” />
 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The format annotation
DFDL provides an annotation called format which allows you to set up values
that act like defaults. A single format annotation can be created at the top
level of the XML Schema (which means it belongs to the schema object itself).
Any properties carried by the format annotation in this manner provide
defaults for all the objects in the schema.

Here’s the ‘address’ example again, but with common properties moved into
such a format annotation.

<xs:schema … xmlns:dfdl=”http://www.ogf.org/dfdl/dfdl-1.0/“>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
 <dfdl:format representation=”text” lengthKind="delimited"

 encoding=”ASCII” />

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="address" dfdl:lengthKind="implicit">

 <xs:complexType>

 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix"

 dfdl:separatorPolicy="required">

 <xs:element name="houseNumber" type="xs:int"

 dfdl:textNumberRep=”standard”

 dfdl:textNumberPattern=”##0” />
 <xs:element name="street" type="xs:string" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

In the example, the representation, encoding, and lengthKind

properties have effective defaults for all objects in the schema that need those
properties. If an object provides a value for representation, encoding

or lengthKind then that overrides the default.

The DFDL properties on the format annotation may be expressed in attribute
form and element form only (short form is not allowed).

RULE: Individual properties in DFDL do not have built-in default values. If a
property is applicable to an object then a value must be provided somewhere
in the schema.

RULE: The defaults from a format element do not apply to objects in other
DFDL schemas accessed using xs:include or xs:import statements. Defaults
apply only to the objects within the same schema.

DFDL property scoping rules

RULE: A DFDL property only applies to the object on which it is declared.

In the ‘address’ example, the encoding property of a sequence applies only

to the sequence itself, and not to any contained elements. So the sequence’s
encoding says whether each separator between child elements is ASCII or

EBCDIC, etc, but says nothing about the child elements themselves. The
elements for each child have their own encoding property which says
whether the element content is ASCII or EBCDIC, etc.

Creating reusable sets of DFDL properties

The defineFormat annotation
DFDL provides an annotation called defineFormat which allows the
declaration of reusable bundles of DFDL properties. DFDL defineFormat
annotations are created at the top level of the XML Schema. Any number of
these bundles can be created in a DFDL schema, and they are identified by
their ‘name’ attribute. Once created, they may be referenced from other
objects in the schema, using a special DFDL ref property. Here’s the

‘address’ example again, but this time with the common properties moved into
a defineFormat annotation named ‘common’.

<xs:schema … xmlns:dfdl=”http://www.ogf.org/dfdl/dfdl-1.0/“>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
 <dfdl:defineFormat name="common">

 <dfdl:format representation=”text” lengthKind="delimited"

 encoding=”ASCII” />

 </dfdl:defineFormat>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="address" dfdl:lengthKind="implicit">

 <xs:complexType>

 <xs:sequence dfdl:ref=”common”

 dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix"

 dfdl:separatorPolicy="required">

 <xs:element name="houseNumber" type="xs:int"

 dfdl:ref=”common”

 dfdl:textNumberRep=”standard”

 dfdl:textNumberPattern=”##0” />
 <xs:element name="street" type="xs:string"

 dfdl:ref=”common” />

 <xs:element name="city" type="xs:string"

 dfdl:ref=”common” />

 <xs:element name="state" type="xs:string"

 dfdl:ref=”common” />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Notice that the defineFormat annotation contains a format element that
actually carries the properties. Syntactically this is the same as the format
annotation introduced earlier.

An object in the schema uses the DFDL ref property to ‘pull in’ the properties

in a defineFormat annotation. Those properties are then combined with the
properties defined locally on the object. If a property appears both locally and
via ref, that’s ok, the local one is used in preference and the one via ref is

ignored.

Only one ref property can ever appear on an object, but you can create

chains of defineFormat annotations to assemble larger groups of properties.

<xs:schema … xmlns:dfdl=”http://www.ogf.org/dfdl/dfdl-1.0/“>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
 <dfdl:defineFormat name="base">

 <dfdl:format representation=”text” encoding=”ASCII” />

 </dfdl:defineFormat>

 <dfdl:defineFormat name="common">

 <dfdl:format ref=”base” lengthKind="delimited" />

 </dfdl:defineFormat>

 </xs:appinfo>

 </xs:annotation>

…

</xs:schema>

In the example above, the representation and encoding properties have
been moved into a separate defineFormat named ‘base’. The defineFormat
‘common’ pulls in the properties of ‘base’, using the ref property of its child

format element. Any object using its own ref property to access ‘common’

will get the properties of both ‘base’ and ‘common’.

The DFDL properties on the format annotation within a defineFormat may be
expressed in attribute form and element form only (short form is not allowed).

DFDL properties on referenced objects

When modeling the physical aspects of a particular data element, you can
sometimes be faced with a choice of where exactly to place your DFDL
properties. Here’s an example.

In lesson 2 we said that DFDL allows you to create your own simple types by
deriving from the built-in types. Here’s what that might look like for the
‘houseNumber’ element from the ‘address’ example, if we decided that house
numbers could only be positive numbers.

<xs:element name="houseNumber" type="houseNumberType"/>

<xs:simpleType name="houseNumberType">

 <xs:restriction base=”xs:int”>

 <xs:minInclusive value=”1” />

 </xs:restriction>

</xs:simpleType>

DFDL lets you add properties to elements and simple types, so where should
you place the DFDL properties that model the ‘houseNumber’ element?

One approach is to place the DFDL properties on the element.

<xs:element name="houseNumber" type="houseNumberType"

 dfdl:representation=”text”

 dfdl:textNumberRep=”standard”

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII”

 dfdl:textNumberPattern=”##0” />

<xs:simpleType name="houseNumberType">

 <xs:restriction base=”xs:int”>

 <xs:minInclusive value=”1” />

 </xs:restriction>

</xs:simpleType>

Alternatively, the DFDL properties could be placed on the referenced simple
type.

<xs:element name="houseNumber" type="houseNumberType" />

<xs:simpleType name="houseNumberType"

 dfdl:representation=”text”

 dfdl:textNumberRep=”standard”

 dfdl:lengthKind=”delimited”

 dfdl:encoding=”ASCII”

 dfdl:textNumberPattern=”##0” >

 <xs:restriction base=”xs:int”>

 <xs:minInclusive value=”1” />

 </xs:restriction>

</xs:simpleType>

Both approaches are equally valid and model the element in the same way.
Placing the properties on the simple type is often a good idea as it gives you a
model with better reuse, as the type could then be used by several elements.

You can even split the DFDL properties between the element and the simple
type. In this case, all the properties are combined into a single set.

There are several instances in DFDL where properties on objects and
references may need to be combined in this way:

• An element and its referenced simple type restriction

• An element reference and its referenced global element

• A group reference and the sequence or choice in its referenced global
group

• A simple type restriction and its base simple type restriction

RULE: When combining properties on objects and references, an individual

property can only appear once (whether defined locally or pulled in via ref).

For example you are not allowed to specify encoding on both an element

and the simple type it references.

Putting DFDL properties into action

In this lesson we have seen how to specify DFDL properties locally, as
defaults using a format annotation, in named defineFormat annotations, and
how to combine properties with those on referenced objects. The DFDL
specification provides an algorithm that specifies how the effective set of
DFDL properties for an object is obtained, taking all these techniques into
account. It may be summarized as follows:

1. Independently for an object and a reference, merge local properties
with those obtained via ref

2. Combine the merged properties from the object and the reference
3. If any properties are missing, use defaults from format annotation, with

reference’s defaults taking precedence

At the end of all that, if a DFDL property is needed by the object and the
property has not got a value, it is an error. Remember, there are no built-in
defaults!

Here’s the ‘address’ example updated to illustrate everything we have learned
in this lesson.

<xs:schema … xmlns:dfdl=”http://www.ogf.org/dfdl/dfdl-1.0/“ >

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/” >

 <dfdl:format representation=”text” initiator=""

 terminator=”” sequenceKind="ordered"

 separatorPosition="infix"

 separatorPolicy="required" … />

 </dfdl:format>

 <dfdl:defineFormat name="base">

 <dfdl:format encoding=”ASCII” />

 </dfdl:defineFormat>

 <dfdl:defineFormat name="common">

 <dfdl:format ref=”base” lengthKind="delimited" />

 </dfdl:defineFormat>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="address" dfdl:lengthKind="implicit">

 <xs:complexType>

 <xs:sequence dfdl:ref=”base” dfdl:separator="*" >

 <xs:element name="houseNumber" type="houseNumberType"

 dfdl:ref=”common” />

 <xs:element name="street" type="xs:string"

 dfdl:ref=”common” />

 <xs:element name="city" type="xs:string"

 dfdl:ref=”common” />

 <xs:element name="state" type="xs:string"

 dfdl:ref=”common” />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:simpleType name="houseNumberType"

 dfdl:textNumberRep=”standard”

 dfdl:textNumberPattern=”##0” >

 <xs:restriction base=”xs:int”>

 <xs:minInclusive value=”1” />

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

