
DFDL Introduction for Beginners

Lesson 5: Modeling Alternative Structures

In lesson 2 we learnt that an xs:sequence is used when all the fields in the

structure appear in the data stream. In this lesson we introduce xs:choice
which is used when only one of the fields in the structure may appear (that is
they are alternatives). Each alternative in the xs:choice is known as a

‘choice branch’.

When parsing a data stream and a choice is encountered it must be possible
to discover which of the possible alternatives is present. The first choice
branch is used to parse the data stream. If the first branch fails to parse the
data stream completely correctly then the next branch, in schema definition
order, is tried and so on until a branch is found that parses the data stream
correctly. This technique is sometimes called ‘backtracking’ or ‘speculative
parsing’.

Note that it is necessary to distinguish between a parsing error caused by the
choice branch not being present and an error caused by the branch being
present but badly formed. The former condition causes backtracking, but the
latter condition does not. The dfdl:initiatedContent property can help

here by stipulating that each branch must have an initiator and, if the initiator
is found, then that choice branch is present. If dfdl:initiatedContent is

set to "yes" and the initiator is found but a subsequent element in the choice
branch fails to parse then it is a real parsing error in that choice branch and no
backtracking takes place. If dfdl:initiatedContent is set to "no" and the

initiator is found but a subsequent element in the choice branch fails to parse
then the choice branch is deemed to be not present, backtracking occurs, and
the next branch is tried.

Modeling alternative data structures

Building on the Address example from lesson 4, we introduce an alternative
that allows either a state or a county or a province element to be present, in
order to allow a US or UK or Canadian address.

Example 1: Choice of addresses

Data stream

[house:118*street:Ridgewood Circle*city:Rochester*state:N

Y]

OR

[house:25*street:The Hundred*city:Romsey*county:Hampshire

]

OR

[house:279*street:Lakeside Road*city:Toronto*province:Ont

ario]

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="delimited"

 encoding=”ASCII” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit"

 dfdl:initiator="[" dfdl:terminator"]">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix"

 dfdl:separatorPolicy="required">

10 <xs:element name="houseNumber"

 type="xs:string"

 dfdl:initiator="house:" />

11 <xs:element name="street" type="xs:string"

 dfdl:initiator="street:" />

12 <xs:element name="city" type="xs:string"

 dfdl:initiator="city:" />

13 <xs:element name="jurisdiction"

 dfdl:lengthKind="implicit">

14 <xs:complexType>

15 <xs:choice

 dfdl:choiceLengthKind="implicit"

 dfdl:initiatedContent="yes">

16 <xs:element name="state"

 type="xs:string"

 dfdl:initiator="state:" />

17 <xs:element name="county"

 type="xs:string"

 dfdl:initiator="county:" />

18 <xs:element name="province"

 type="xs:string"

 dfdl:initiator="province:" />

19 <xs:choice/>

20 </xs:complexType>

21 </xs:element>

22 </xs:sequence>

23 </xs:complexType>

24 </xs:element>

25 </xs:schema>

Infoset

 address

 houseNumber(string) '118'

 street(string) 'Ridgewood Circle'

 city(string) 'Rochester'

 jurisdiction

 state(string) 'NY'

OR

 address

 houseNumber(string) '25'

 street(string) 'Main Street'

 city(string) 'Newtown'

 jurisdiction

 county(string) 'Hampshire'

OR

 address

 houseNumber(string) '279'

 street(string) 'Lakeside Road'

 city(string) 'Toronto'

 jurisdiction

 province(string) 'Ontario'

The xs:choice on line 15 indicates that there can be one of a number of

elements at this point in the data stream. The dfdl:initiatedContent =

"yes" indicates that the elements’ initiators should be used alone to decide
which is present. The parser will look for the "state:" initiator and if found will
add the state element to the infoset. Otherwise it will look for a "county:"
initiator and add a county element to the infoset. Otherwise it will look for a
"province:" initiator and add a province element to the infoset.

The dfdl:choiceLengthKind = "implicit" specified on the xs:choice on
line 15 indicates that the length of the choice in the data stream is the length
of the selected choice branch. A dfdl:choiceLengthKind = "explicit"

indicates that irrespective of which choice branch is found, the length

occupied by the choice is given by dfdl:choiceLength. Some languages,

such as COBOL, require choices (REDEFINES in the COBOL language) to
be the same length and dfdl:choiceLengthKind "explicit" is used to

model this.

Summary

In this lesson we have looked at how you can define alternative structures that
might appear in the same place in the data stream. We also saw how
dfdl:initiatedContent can be used to decide which alternative is

present.

When no initiators are present in the data stream, DFDL provides an
alternative construct called a ‘discriminator’ which can be used to decide
which alternative is present. Discriminators are described in a later lesson.

