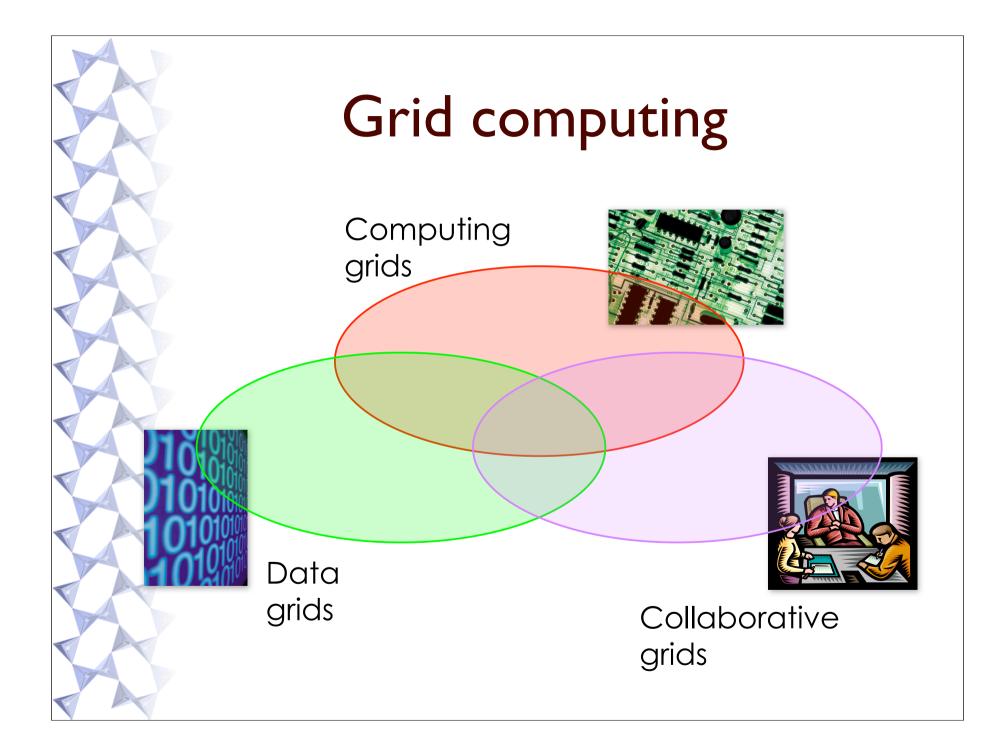
eMinerals community grid user-based grids for collaborative science

Martin Dove University of Cambridge


Individual collaborators

Cambridge: Peter Murray-Rust, Emilio Artacho, Richard Bruin, Ian Frame, Gen-Tao Chiang, Stuart Ballard, Andrew Walker, Kat Austen, Toby White, Andrew Walkingshaw

CCLRC: Rik Tyer, Kerstin Kleese van Dam, Tom Mortimer-Jones, Ilian Todorov

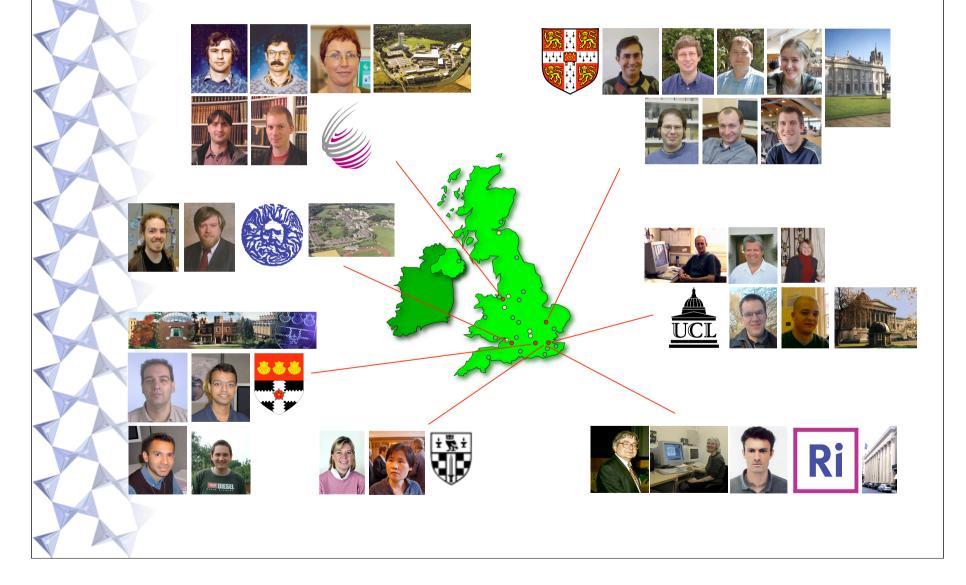
Bath: Steve Parker, Arnaud Marmier, Corinne Arrouvel

Reading: Vassil Alexandrov, Gareth Lewis, Ismael Bhana

A scientist's – anarchic – view of escience

There are many valid perspectives, from the user to the provider of resources

- The eMinerals approach is to focus on scientists: their work, their data and their collaborations
- Tool development is tensioned against what the scientists use
- Virtual organisations may resolve a number of technical issues pragmatically
 - Scientists get their hands dirty
- Our grids are self-managed: community grids

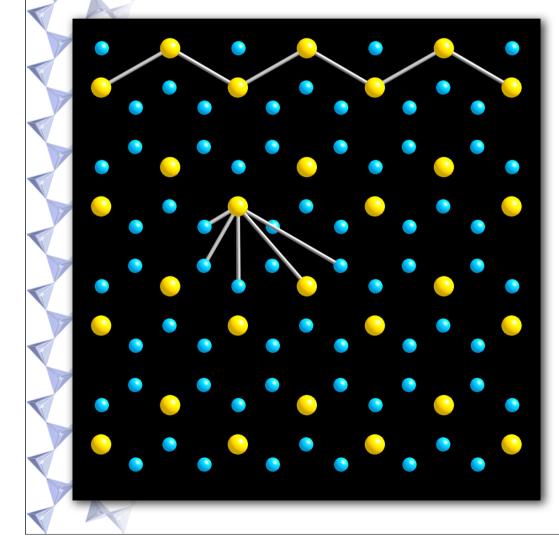

User profile

- Our users only want portals/GUIs for specific tools, not for the working environment
- Users do not want their applications pre-wrapped as services: they want to have complete control over their applications, e.g. to add capability
- Users do not want a provider/ consumer model: that does not provide the freedom they need

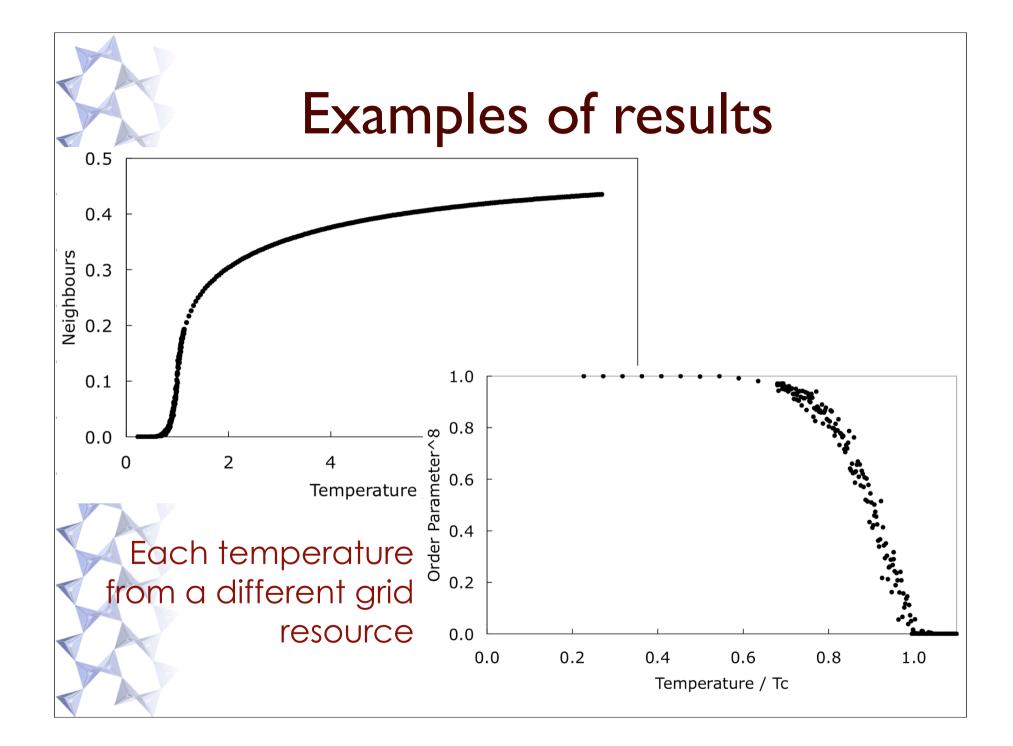
Hence a bottom-up approach

The eMinerals project team

CCLRC connection


Science & Technology Facilities Council

The collaboration with the eScience centre within STFC may lead to our tools being deployed within Diamond and ISIS



Monte Carlo simulations of cation ordering in layer silicates

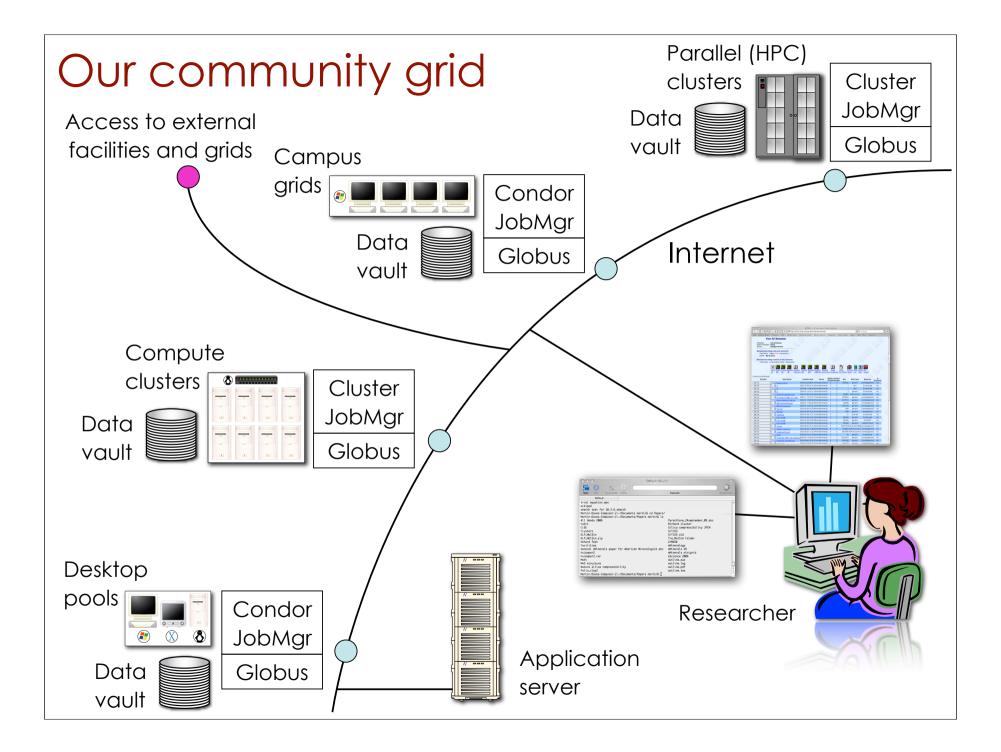
Simulations of cation ordering in layer silicates based on parameterises Hamiltonian

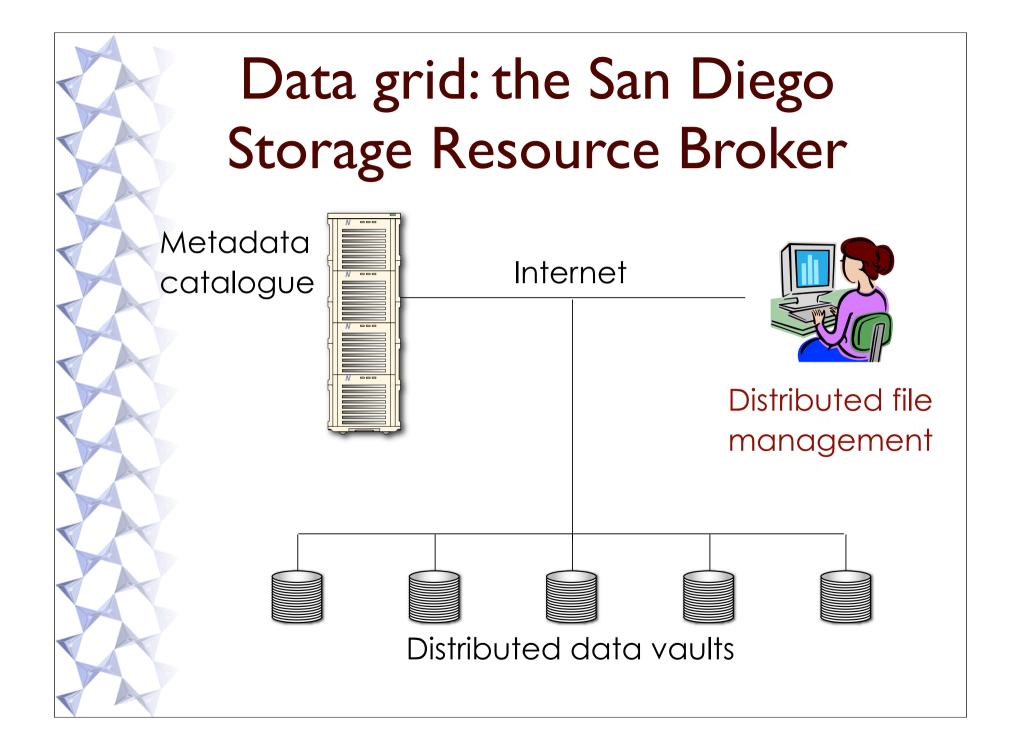
Example of parametric study which suits grid computing environments well

eScience: "Science beyond the lab book"

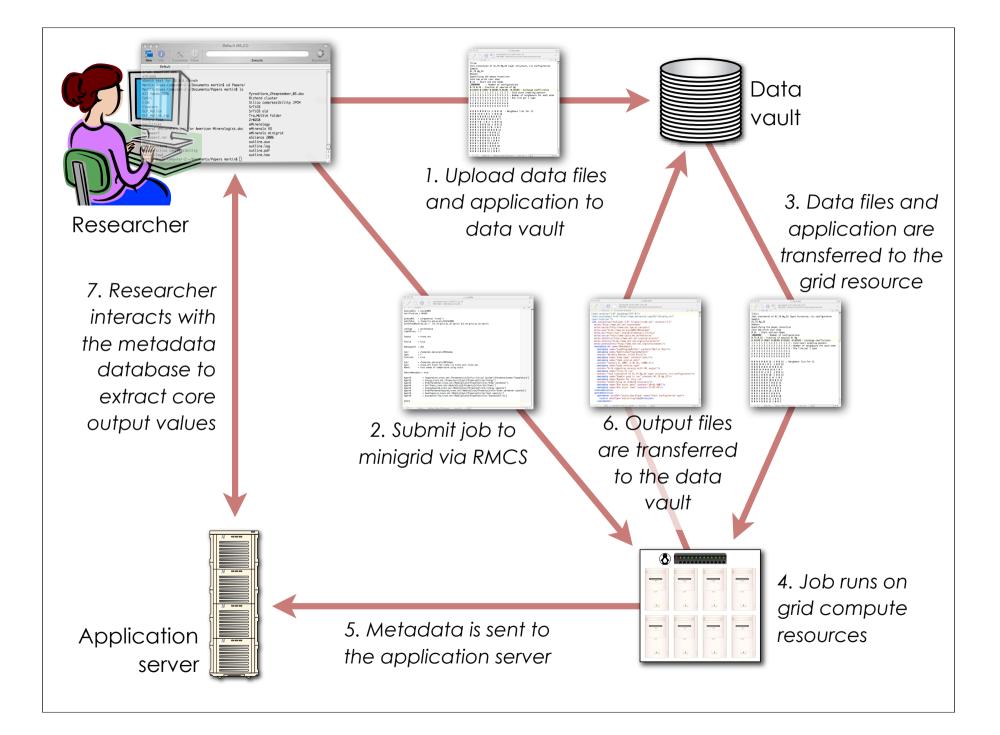
- Management of too many computing tasks
- Management of the resultant data deluge
- Sharing the information content with collaborators

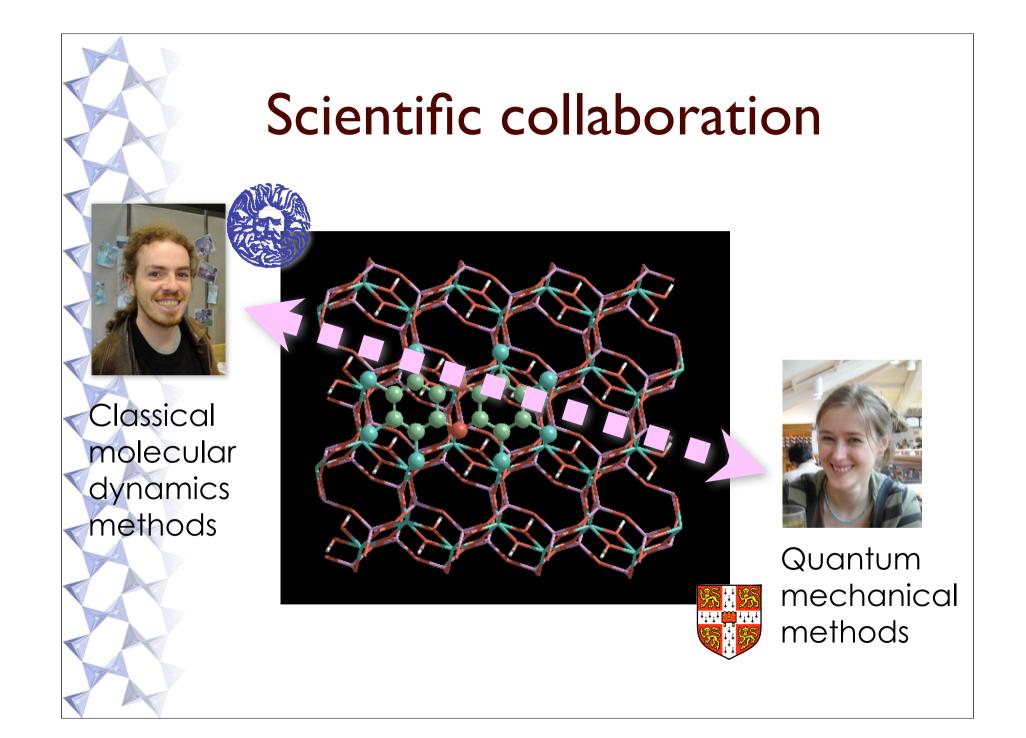
eScience can help the human scientist cope, including maintaining accuracy and accountability


Compute grids: some of the components


High-throughput and highperformance clusters

> Pools of individual machines linked together by "Condor"


Authentication & authorisation, and job submission, handled by "Globus"


What the SRB has given us

- Our scientists now expect to be able to share their data with collaborators ...
- ... and they now expect this to be easy (ie not via a multi-stage process)
- Our scientists now routinely produce complete archives of files associated with a study easily and automatically
- We now expect a single place to deposit data, and for this process to be easy and automatic

Our user interface

	Two such a h l a		_						
10-	Executable			ossia2004					
	pathToExe	- · ·		/home/bob.eminerals/OSSIA2004					
		eList		<pre>lv1.nw-grid.ac.uk-serial dl1.nw-grid.ac.uk-serial</pre>					
	jobType			performance					
	numOfProcs		=	1					
A									
	Output			trans.out					
	Sdir		=	/home/bob.eminerals/RMCSdemo					
	Sget		=	*					
	Sput		=	*					
10	GetEnvMetadata = true								
	RDesc	= те	st	sweep of temperature using ossia					
A	RDatasetID	= 26	3						
	AgentX	= Te	mpe	erature,trans.xml:/ParameterList[title='Initial					
	System']/Parameter[name='Temperature']								
1	AgentX	= En	erg	<pre>yy,trans.xml:/PropertyList[last]/Property</pre>					
	[title='Energy']								
	AgentX	= Or	deı	Parameter,trans.xml:/Module[last]/Property					
10	[title='Order pa	rame	ter	:']					
	AgentX	= He	atC	Capacity,trans.xml:/Module[last]/Property					
A	[title='Heat cap	acit	y':						
	AgentX	= Su	sce	eptibility,trans.xml:/Module[last]/Property					
	[title='Suscepti								
10-	-		-	-					

Data and information

						0
		ca50_m	11.out			
10	0.00	Saved: 08/01/2007 10:05:48				⇒
	J TO 1 File P	Saved: 08/01/2007 10:05:46 ath: /Volumes/MARTIN DOVE/c	a50_m1.out			U. D
-	* * * * * *					
	Results from RMCA versio	on 3.04				\sim
	CaSrTiO3 rt2					
						1.1
	4 experiments 10 partie	als				
	Partial g(r)'s are prin					
	Partial g(r)'s are prin					
	1357 10 are NR and NPA	R				1.11
		$g(r)_2 g(r)_3$			0.0000000	0.000000
	r g(r)_1 0.0200000 0.0000000	0 0000000 0.0000000	0.0000000	0000000	0.0000000	0.000000
	0.0200000 0.0000000 0.0400000 0.0000000	0.000000 0.000000	0.0000000	0.0000000	0.0000000	0.000000
	0 0600000 0.0000000	0.000000 0.000000 0.000000 0.000000	0.0000000	0.0000000		0.000000
	0.0800000 0.0000000		0 0.0000000	0.0000000	0.0000000000000000000000000000000000000	0.000000
	0.1000000 0.0000000	0.000000 0.000000 0.000000 0.000000	0.0000000	0.0000000	0.0000000	0.000000
	0.1200000 0.0000000	0.000000 0.000000	0.0000000	0.0000000	0.0000000	0.000000
		0.000000 0.000000	0.0000000	0.0000000	0.0000000	0.000000
	0.1600000 0.0000000 0.1800000 0.0000000	0.000000 0.000000	0000000.0	0.0000000	0.0000000	0.000000
	0 2000000 0.0000000	0.000000 0.000000		0.0000000	0.0000000	0.000000
	0 2200000 0.0000000	0.000000 0.00000		0.000000	0.0000000	0.000000
	0.2400000 0.0000000	0.0000	0000000.0 00	0.0000000	0.0000000.0	0.000000
	0.2600000 0.0000000	0.00000 0.00000	00 0.0000000	0.0000000	0.0000000	0.000000
	0.2800000 0.0000000	0.00000 0.00000	00 0.0000000	0.0000000	0.0000000	0.000000
		0.000000 0.00000	0000000.0	0.0000000	0.0000000	0.000000
-	0.3200000 0.0000000 0.3400000 0.0000000	0.000000 0.00000		0.0000000	0.0000000	0.000000
	0 3600000 0.0000000	0.0000000 0.00000		0.0000000	0.0000000	0.000000
	0.3800000 0.0000000	0.000000 0.0000	0000000.0 000	0.000000	0.0000000	
	0.400000 0.000000	0.0000000000000000000000000000000000000	0000000.0 000	0.0000000		
-	0.4200000 0.000000	0.00000 0.0000	0000000.0 000	0.000000	0.0000000	
	0.4100000	ern (Mac OS Roman) 💠 Unix (
	1 1 (none) 🕴 Weste	ern (mac OS Romany -				

Data and information sharing: XML data representation

```
<?xml version="1.0" encoding="UTF-8"?>
                                                   Chemical Markup Language
<cml convention="FoX wcml-2.0" fileId="cis1.cml"
 version="2.4" xmlns="http://www.xml-cml.org/schema">
  <metadataList name="Metadata">
    <metadata name="Code name" content="ossia"/>
   <metadata name="Code version date" content="January 8, 2007, v2007.3"/>
                                                   Capturing audit metadata
  </metadataList>
  <module title="Initial System" dictRef="emin:initialModule">
    <parameterList>
      <parameter dictRef="ossia:temperature" name="Temperature">
        <scalar dataType="xsd:double" units="cmlUnits:eV">1.00000000000e-1</scalar>
      </parameter>
      <parameter dictRef="ossia:NumberOfSteps" name="Number of steps">
        <scalar dataType="xsd:integer" units="units:countable">10000000</scalar>
      </parameter>
                                                   Capturing initial parameters
    </parameterList>
  </module>
  <module title="Finalization" dictRef="emin:finalModule">
    <propertyList>
      <property dictRef="ossia:Energy" title="Energy"></property dictRef="ossia:Energy" title="Energy">
        <scalar dataType="xsd:double" units="cmlUnits:eV">2.052516362912e-1</scalar>
      </property>
                                                   Capturing computed properties
   </propertyList>
 </module>
</cml>
```

XML and Fortran

Most of our simulation codes are written in Fortran, which has little support for XML

Thus we have written a set of XML libraries for Fortran – called FoX – which make writing XML easy

We have XML-ised a number of simulation codes, including SIESTA, CASTEP, DL_POLY and GULP

We have also developed an XML-aware interface to the SRB called TobysSRB

What XML gives us

- Simulation code output that is self-describing (no more mere lists of numbers!)
- XML files can be transformed to give usercentric and information-centric representations of data, including plotted data
 - XML files can have key information extracted easily, essential for large combinatorial studies
 - XML enables automatic capture of metadata, and metadata is essential for managing data

$XML \rightarrow metadata$

Dictionary and Thesaurus

Dictionary

a set of data that describes and gives

information about other data.

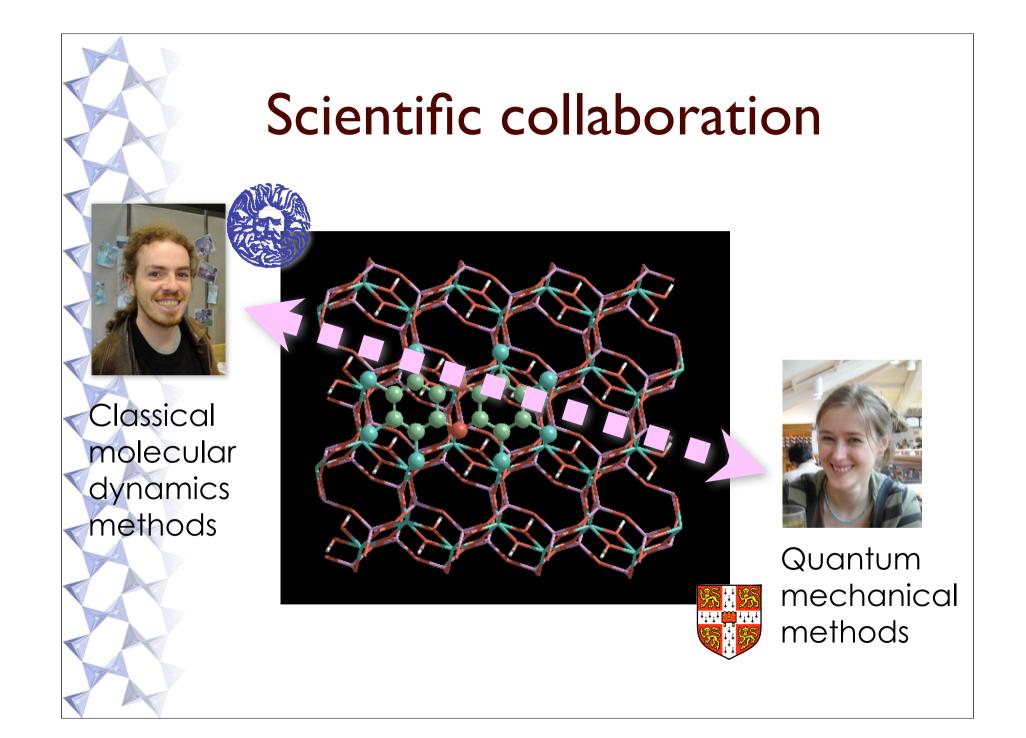
met•a•da•ta

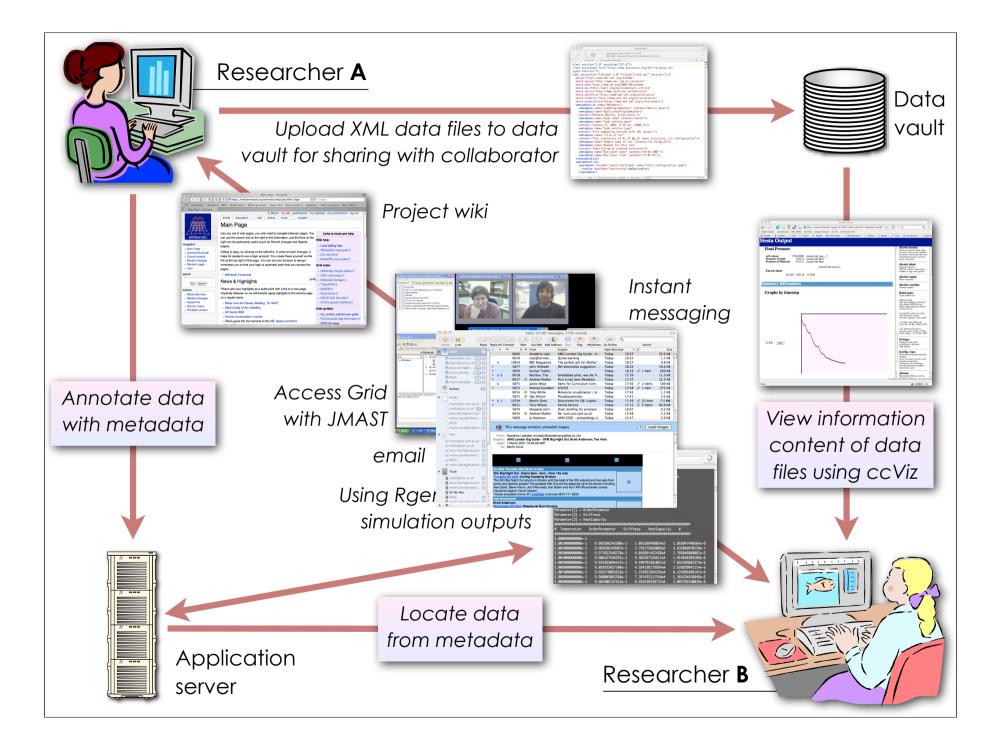
Q metadata

AA

- Our job submission tools automatically harvest metadata from our output XML files
- We have developed a new set of tools to access the metadata database ("RCommands")

We use metadata for locating data and datasets created by our colleagues


We also use metadata for extracting core information from data – useful for analysing combinatorial studies


RCommands and metadata

Metadata are associated with a hierarchy of studies, datasets and data objects, both as descriptions and as name/value pairs.

Examples of commands:

- Rls: list metadata items
- Rget: get metadata
- Rannotate: add metadata
- Rgem: extract metadata from all data objects within a dataset

Social networking sites, Web 2.0

These have the potential to revolutionise how scientists work

- MySpace, facebook etc ..
- http://nature.network.com/
- http://www.scispace.net/

Summary

Grid computing is radically changing how we do simulation science

I have discussed a community-grid approach based on integration of compute and data grids, with extensibility, and a focus on aiding collaboration

I am happy to demonstrate some of this stuff within the UK eScience village