Multi-constrained path selection

Miroslav Živković

University of Amsterdam
17 ${ }^{\text {th }}$ March 2014
Collaborators: Freek Dijkstra (SURFsara) Diederik Vandevenne (SURFsara) Ralph Koning (UvA)

Problem

- We abstract the network as a graph $G(V, E)$
- Each link (u, v) is specified by a link weight vector $\vec{w}(u, v)=\left[w_{1}(u, v), w_{2}(u, v), \cdots, w_{m}(u, v)\right]$
- Given constraints for each element of this vector $0 \leq w_{i}(u, v) \leq L_{i}$
- Find a path P from a source node s to a destination node t

$$
w_{i}(P) \stackrel{\text { def }}{=} \sum_{(u, v) \in P} w_{i}(u, v) \leq L_{i}
$$

Assumptions

- Complete view of inter-domain topology
- Different parameters are used to describe link(s)
- Additive
- Min/Max
- The definition of the path length $l(P)$ is required to be able to compare paths

Path lengths definition

- Linear

$$
l(P)=\sum_{i=1}^{m} d_{i} w_{i}(P)=\vec{d} . \vec{w}(P)
$$

- Nonlinear

$$
l_{q}(P)=\left(\sum_{i=1}^{m}\left[\frac{w_{i}(P)}{L_{i}}\right]^{q}\right)^{\frac{1}{q}}
$$

Two dimensional MCP problem (linear path length)

Paths of equal "length"

$$
l(P)=\sum_{i=1}^{m} d_{i} w_{i}(P)=\vec{d} . \vec{w}(P)
$$

$$
\omega_{i}(P) \leq L_{i}
$$

Increase of path length

Two dimensional MCP problem (nonlienar path length)

In multiple dimensions and using a nonlinear path length, the subsections of the shortest path are not necessarily shortest paths themselves

What if?

- Next to the usual suspect (capacity, latency, cost, energy, ...) there may be two additional parameters that need to be taken into account
- Technology incompatibilities
- Adaptation capabilities

Incompatibilities

- Rate incompatibilities
- Higher rate connections cannot be transferred over lower rate links without data rate conversion
- Wavelength incompatibilities ($850 / 1310 / 1550 \mathrm{~nm}$)
- Conversion between different wavelengths necessary
- Architecture incompatibilities (IP over SONET/SDH, IP over WDM, IP over SONET/SDH over WDM, ...)
- direct communication between network domains may depend on lowest layer technology and adaptation to upper layers

Next steps

- Once we understand the relevant aspects, we need to be able to describe them (topology) and only then we can perform MCP selection
- So... what parameters should we include in our topology?
- Only then we can move to
- Multi-constrained path selection (MCP)

Thank you!

