
Grid Capacity Planning with Negotiation-based Advance

Reservation for Optimized QoS ∗

Mumtaz Siddiqui† Alex Villazón Thomas Fahringer

Institute of Computer Science, University of Innsbruck
Technikerstraße 21A/2, 6020 Innsbruck, Austria

{ mumtaz| avt | tf }@dps.uibk.ac.at
-

To Appear in the ACM/IEEE Super Computing (SC|06)
November 11-17 2006, Tampa, Florida, USA

Abstract

Advance reservation of Grid resources can play a key role
in enabling Grid middleware to deliver on-demand resource
provision with significantly improved Quality-of-Service
(QoS). However, in the Grid, advance reservation has been
largely ignored due to the dynamic Grid behavior, under-
utilization concerns, multi-constrained applications, and lack
of support for agreement enforcement. These issues force
the Grid middleware to make resource allocations at run-
time with reduced QoS. To remedy these, we introduce a
new, 3-layered negotiation protocol for advance reservation
of the Grid resources. We model resource allocation as an
on-line strip packing problem and introduce a new mecha-
nism that optimizes resource utilization and QoS constraints
while generating the contention-free solutions. The mech-
anism supports open reservations to deal with the dynamic
Grid and provides a practical solution for agreement enforce-
ment. We have implemented a prototype and performed ex-
periments to demonstrate the effectiveness of our approach.

Keywords: Grid Resource Allocation, Negotiation, Ad-
vance Reservation, Capacity Planning

1 Introduction

Grid resource management plays a fundamental role in mak-
ing Grid infrastructure reliable and pervasive. It has to make

∗The work described in this paper is partially supported by the Higher
Education Commission (HEC) of Pakistan under the doctoral fellowship
program for Austria and partially supported by European Union through the
FP6-IST-004617 project ASG.

†Corresponding author!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00c© 2006 IEEE

the resources available on-demand while dealing with their
heterogeneity, dynamic behavior, and belonging to differ-
ent trust domains. As the resources are controlled and ad-
ministered locally on a Grid site, automatic management of
the Grid becomes non-trivial and requires a complex mid-
dleware infrastructure. The problem becomes harder and
more challenging with the rapid growth of Grid resources
and applications. Applications have to compete for the re-
sources while dealing with the middleware complexities, and
resources have to distribute their capacity among competing
applications based on some multi-criteria QoS parameters
(e.g. cost, capacity, timeframe, utilization, and fairness).

This challenge leads to the requirement of a robust mid-
dleware with a sophisticated capacity planning for optimized
resource allocation. This optimization can be improved sig-
nificantly with advance reservation so that a Grid Resource
Management System (GRMS) can ensure that a certain re-
source capability will be available at some time in the future.
However, advance reservation in the Grid infrastructure has
been mostly ignored due to dynamic Grid behavior, concerns
about under utilization of resources, applications with mul-
tiple constraints, and lack of support in the environment for
agreement enforcement. These problems force a GRMS to
employ runtime solutions with limited view of the overall
Grid capacity availability along a time horizon. These is-
sues significantly reduce the utility of the Grid as well as its
applications compared to allocations made properly with a
planning horizon.

To overcome this situation, we introduce a mechanism of
Grid capacity planning for optimized QoS with negotiation-
based advance reservation of Grid resources. An advance
reservation, i.e. a limited and restricted delegation of a par-
ticular resource capability over a certain timeframe, is ob-
tained for an application from the GRMS, on behalf of re-
source provider through a negotiation process. We propose
a 3-layered cooperative negotiation protocol that is used to
efficiently reach an acceptable agreement. Furthermore, in
order to deal with dynamic nature of the Grid, we intro-
duce a priority provisioning mechanism, in which the reser-

Mumtaz Siddiqui et. al. 2 GRID RESOURCE ALLOCATION

vation system makes a promise that a certain capability will
be available in the future. The decision of the actual node
allocation however is done or exposed later on, just before
resource acquisition. The resources, no matter where they
reside or who owns them, are automatically allocated on-
demand in order to maximize the global utility. In this way,
the process of resource (co)allocation is automatized and the
complexity of the Grid is shielded from clients through so-
phisticated middleware services.

The negotiation for resource allocation is initiated by a
client and continues with the generation of allocation of-
fers for individual nodes, followed by co-allocation offers
for multiple nodes. Contentions, if any, are eliminated at
the third layer of negotiation protocol. At each layer, a set
of possible options are proposed based on different QoS pa-
rameters. The first layer deals with allocation of a single
Grid node. We model it as an on-line strip packing prob-
lem [Csirik and Woeginger 1997] and introduce a new algo-
rithm to solve it. The second layer deals with co-allocation
of multiple Grid nodes. It receives a set of allocation offers
generated by the first layer for a set of available nodes and
then generates a set of co-allocation offers with optimized
global utility. We frame co-allocation as Constraint Satis-
faction Problem (CSP) [Shang and Wah 1998] and employ a
new approach to solve it.

We have implemented a prototype of the proposed system
as a set of cooperative Grid services using Globus Toolkit 4
(GT4) [Globus], that is a reference implementation of WS-
Resource Framework [WSRF], and introduced a practical
solution for agreement enforcement using the state-of-the-art
Grid technologies. We demonstrate through experiments that
our system adapts to more allocation requests and ensures
maximum resource utilization with better capacity planning.

The rest of this paper is as follows: Section 2 introduces
the resource allocation problem along with a description of
utility functions. Section 3 describes a 3-layered negotiation
protocol for advance reservation. In Section 4, we discuss
capacity planning strategies, followed by Section 5 with ar-
chitecture and implementation details. Experiment results
are depicted in Section 6 followed by the description of the
related work in Section 7. Finally we conclude the paper in
Section 8.

2 Grid Resource Allocation

The Grid resource allocation corresponds to on-demand pro-
vision of Grid resources to Grid applications. Generally,
a Grid application consists of multiple activities (software
components) which run on multiple Grid nodes in a well-
defined order during a specific timeframe [Cooper et al.
2004; Yu and Buyya 2005; Fahringer et al. 2005]. The task
of resource allocation involves resource selection, i.e. dis-
covering and matching nodes to each activity, finding allo-
catable time intervals on each node during which an activity
can execute, and finally making a combination of all avail-

able time intervals on all nodes. In this way, the Grid appli-
cation can run successfully with optimized QoS parameters.

The resource selection mechanism is already available as
part of our previous work called GridARM [Siddiqui et al.
2005b; Siddiqui and Fahringer 2005], that is, Askalons’s
GRMS [Fahringer et al. ; Fahringer et al. 2005], and it cov-
ers both physical and logical resources. New work is an ex-
tension of GridARM and consists of two main components:
allocator that makes reservations of a single node, andco-
allocator that makes reservations of multiple nodes for a sin-
gle Grid application1.

A co-allocator accepts requests from the clients and gen-
erates alternative co-allocation offers, which can be usedby
the client to execute its application. A co-allocation request
may consist of a set of allocation requests for each Grid ac-
tivity along with a set of constraints. The negotiation starts
either on a client’s request or when the state of the Grid
is changed (some resources leave or join the Grid). The
co-allocator negotiates with clients as a resource trader and
with allocators as a cooperative negotiation mediator. Co-
operative negotiation enables the system to generate offers
closer to clients requirements so that negotiation interactions
with client are minimized, resource utilization and other QoS
constraints are optimized, and inter/intra-application con-
tentions are eliminated. Resource contention is introduced
when the same slot is simultaneously offered for multiple
Grid activities. Coallocators try to agree over sharing of
scarce resources without loosing their clients. This intro-
duces the need for a cooperative negotiation mechanism, i.e.
internal negotiation between components of the reservation
system.

2.1 Problem Description

Grid resource allocation is a hard problem due to contention,
let alone dynamic Grid behavior. Generally speaking, a re-
source allocation problem is the problem of assigning a lim-
ited set of Grid nodesS, each with a scarce capacity (e.g.
number of processorsPs) to a set of co-allocation requestsR
(for an applicationα) by a set of clientsC. Each allocation
requestr ∈ R requires a certain capacityPr ∈ Ps for a spe-
cific time interval (duration)T(r) = endt(r)−startt(r), and
may have the potential for varying utilityU(r) depending on
application constraints. Here we refer tor i as a single allo-
cation request for a specific Grid activity, which may have
some dependencies on other requests in a co-allocation. Fig-
ure 1 depicts the format of an allocation request that consists
of a set of activity and node constraints, and of a context re-
ferring to the participants. The right side of Figure 1 shows
the format of a constraint that includesname/valueof a con-
straint andf lexibility ∈ {0..10} that represents client’s will-
ingness for negotiation.

1Here we useallocator and co-allocator terms which refers to node-
level and Grid-level reservation managers respectively, and the termnode
refers to a Grid site

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

2

Mumtaz Siddiqui et. al. 2 GRID RESOURCE ALLOCATION

A

B C

D

workflow

Coallocation Request Allocation
(Request/Offer)

Template
<Constraint>
 <name>duration</name>
 <unit>minute</unit>
 <flexibility>4</flexibility>
 <directionality> -1
 </directionality>
 <value>45</value>
 <limits/>
</Constraint>

Constraint Format

AR-A

AR-D

AR-B AR-C
Activity Constraints

Node Constraints

Context

Node Constraints

Activity Constraints

Grid
Activity

allocation request constraint descriptioncoallocation request

Figure 1: A workflow to co-allocation request mapping
along with an allocation and a constraint format.

The goal is to maximize the global utilityU , choosing the
right options for applications, and achieving an optimal com-
promise over constraints of the stakeholders. More formally,
the Grid resource allocation problem comprises of

• A set of Grid applicationsα = {α1, ...,αn} | n∈ N.

• A set of co-allocation requestsρ = {R1, ...,Rn} where
Ri = {r i,1, ..., r i, j}, andr is the allocation request. Note
that each co-allocation requestRi corresponds to a Grid
application and consists of one or more allocation re-
quests and may come from different clients.

• A set of Grid nodesS=
⋃N

i=1si,k whereN is number of
nodes andk ∈ time is planning horizon. Each nodesi,k

possess some capacity, for instance number of proces-
sorsPs. The total Grid capacity in terms of processors
would beP = ∑N

s=1Ps.

• A set of utility functions,U = {U1, ...,Un |Ui : 2|S|+k →
R}, each associated with an application.

The goal is to come up with a set of co-allocation offers

Ω : Ω = {ω1, ...,ωn | ωi ∈ 2|S|+k}

such that∑n
i=1U(ωi) is maximized and

n
⋂

i=1

ωi = ∅.

We used 2|S|+k to indicate the power-set of the available al-
location options (maximum allocations possible on resource
and time horizon (|S|+ k)). Because the resource require-
ments may change over time, or a particular pattern of re-
source usage may be needed to obtain utility, allocation op-
tions are reduced on both the resource and time dimensions,
hence the need for a planning horizon. Increasing the num-
ber of resources or the time horizon can have a significant
effect on the overall complexity of the allocation problem,
which is NP-complete[Shang and Wah 1998; Csirik and
Woeginger 1997].

2.2 Utility Functions

The goal of resource allocation is two fold: (1) to obtain
enough resource capacity requested for each single applica-
tion in the requested order, and (2) to maximize resource and

application utility. Depending on QoS-constraints, the utility
function associated with each application and resource may
change. Generally, increasing the resource capacity or mak-
ing allocations with values of the QoS-parameters closer to
the application requirements improves the application utility.

Application utility is a function of distance between re-
quested allocation and real option offered. IfD(c) is the dis-
tance between the requested and offered value of a constraint
c of a single allocationω , then the application utility is the
aggregation of utility of all allocations for the applicationαi ,
i.e.

U(αi) = ∑
ω∈Ωαi

U(ω) : U(ω) = ∑
c∈Constraints

util(D(c))

andU = ∑αi∈α U(αi) is the global utility.
An allocation is generated, by using a set of objectives

defined by the utility functions, to assign resource capacity
to an application. Each function is expressed in terms of
application’s utility or in terms of resource utility whichis
the function of its offered QoS, for instance, the capacity,
cost, and time.

Distance Formula

The application utility is derived by aggregating the differ-
ences between ideal and real values of all QoS constraints.
For a specific constraintc, if creq is the required (ideal) value,
co f f ered is the offered (real) value, andcf lex is the level of
flexibility for negotiation, then distanceD(c) for constraintc
is calculated as

D(c) =
creq−co f f ered

cf lex

Herecf lex ∈ N | 0≤ cf lex ≤ 10, where 0 means no flexibility
over a given constraint thus making it ahard constraint(i.e.
has to be fulfilled in order to make an agreement), whereas
10 shows maximum flexibility for negotiation (asoft con-
straint). A negative distance may have different meaning for
different constraints, for instance, in case of cost a negative
distance shows that the offer is expensive, whereas in case
of capacity, a negative distance shows that more capacity is
offered than requested which could be acceptable. To deal
with these differences, we introduce the notion ofdirection
of a constraint cδ ∈ {−1,0,1} that tells whether or not a
negative distance matters. Depending on the direction and
flexibility of a constraint, the distanceD(c) can be

D(c) =

∞ (cf lex = 0)∧creq−co f f ered 6= 0

0 cδ 6= 0∧ (cδ ∗D(c)) < 0

|D(c)| otherwise

TheD(c) = ∞ leads to a situation where no solution is pos-
sible with available options and the capacity planner gives
up. A negative distance will become 0 ifcδ 6= 0, and be-
comes positive otherwise. For example, in the case of cost:

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

3

Mumtaz Siddiqui et. al. 3 NEGOTIATION PROTOCOL

offer procs mem cost Distance
A 4 5 180 4−3

1 + 5−2
4 + 180−150

6 = 6.8
B 2 6 140 2−3

1 + 6−2
4 + 140−150

6 = 3.9
C 6 1.5 220 6−3

1 + 1.5−2
4 + 1.5−2

6 = 15

Table 1: Ranking of offers using distances.

if costreq = 100,costo f f ered= 50,costδ =−1 thenD(cost) =
100−50
costf lex

∗−1 = −50
costf lex

< 0, i.e. a negative distance that be-

comes 0 because of a cheaper offer which is acceptable.
The distance of an allocationω is an aggregated distance

of all its constraints i.e.D(ω) = ∑c∈ConstraintsD(c), whereas
D(Ω) = ∑ω∈Ω D(ω), i.e. distance of a co-allocationΩ.
For instance, a client requests a resource with required con-
straints asprocs= 3, mem= 2GBandcost= 150, with f lex
1, 4, and 6 respectively. An allocator generates offers for this
request with offered constraints as shown in Table 1. Accord-
ing to the distance formula, the offerB has the least distance,
therefore it is ranked as the best one.

This formula is appropriate only for numeric values, e.g.
cost, number of processors etc. For lexicographical values,
typically used for logical resources (e.g. operating system),
we propose a different approach that uses a semantics-based
hierarchical structure of the all possible values of a constraint
c. Each level of the hierarchy is associated with a numerical
value. If i and j refer to the levels of ideal valueI and real
valueJ respectively in the hierarchy andk = root(i, j) is the
level of their common root, then

D(ci, j) =

{

0 i ≤ j ∧ i = k
2i+ j−2k

f lexci
otherwise

This covers two special cases related to the semantically de-
fined classesI andJ, for ideal and real values respectively:

• I ⊑ J | I ≡ J: The ideal value belongs to a sub or equiva-
lent concept of the offered value class, withD(ci, j) = 0
i.e. it is an ideal match.

• I ⊒ J: The ideal value is a super concept of the offered
value and thus it leads to a next satisfiable decision.

OS (Operating System) Level 1
/ \

Unix Windows (Sub classes of OS) Level 2
/ \

Linux Solaris (Specialized Classes) Level 3

For instance, in the hierarchy of operating systems as shown
above, theLinux to Unix distance

D(cLinux,Unix) =
1∗21

f lexc

and theLinux to Windowsdistance

D(cLinux,Windows) =
1∗23

f lexc

and for the same value of flexibility, it can be deduced that

D(cLinux,Windows) > D(cLinux,Unix),

i.e. Linux is closer to Unix than to Windows. This makes
constraints with lexicographical values, which can be de-
scribed in a hierarchy of subsumption tree [Siddiqui et al.
2005a], comparable with the constraints having numerical
values.

3 Negotiation Protocol

The negotiation process implies multiple interactions be-
tween clients (e.g. schedulers) and co-allocators until they
reach an agreement. Resources are offered to clients, who
can select the best suitable offer or can decide to re-negotiate
by changing some of the constraints. The protocol introduces
negotiation between a client and a co-allocator as well as be-
tween components of the reservation system. The goal is to
generate co-allocation offers as optimal as possible so that
interaction between the requester and provider is minimized
and resource utilization is maximized. The co-allocator ac-
cepts requests in the form of WS-Agreement templates and
generates a set of co-allocation offers in the WS-Agreement
format. The WS-Agreement is the proposed standard for the
Grid Resource Allocation Agreement Protocol [GRAAP-wg
2006].

As the problem isNP-Completewe use different heuris-
tics at different levels. As such, the elegance of the pro-
tocol is actually distributed in three layers: allocation,co-
allocation, and coordination. Figure 2 shows the negotiation
layers along with possible negotiators.

Theallocation layer, driven by theallocators, deals with
reservations of individual Grid nodes. The main objec-
tive of this layer is to perform resource-level capacity plan-
ning in order to optimize the utility. At this stage, offers
are available, albeit not necessarily optimal and/or conflict-
free. Theco-allocation layermoderated by theco-allocator
takes the client’s preferences into account and generates co-
allocations while optimizing the global utility. Therefore, the
second layer improves the quality of the generated offers in
a broader sense. If there is an intra-application contention,
i.e. contention between allocations generated for activities
of same application, is eliminated.

It is possible that an allocation made at the second layer
is optimal and contention-free for an application, but, as re-
sources are shared, the same option can be offered to mul-
tiple applications. This introduces the inter-application con-
tentions that demands the coordination among co-allocators
so that inter-application contentions can be eliminated. Such
contentions are propagated to and handled by the third layer,
which can be activated by the clients and also by the sys-
tem when resources join or leave the Grid. This layer also
ensures that open reservations will remain internally bound
to some nodes which satisfy required QoS. Open reserva-
tions are flexible allocations whose binding with nodes can
be changed before application runtime. This allows a co-
allocator to accommodate newly joined resources optimally
and to perform some sort ofoverbooking, depending on the

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

4

Mumtaz Siddiqui et. al. 3 NEGOTIATION PROTOCOL

Coallocator

Allocators (on each Grid site)

Cooperation (Negotiation)

Coordination
(Negotiation)

Negotiation

Coallocator

Clients

Figure 2: Cooperative Negotiation Protocol Layers.

history-based prediction for the possibility of new resources
who will join in the future.

3.1 Allocation

The allocation layer deals with the capacity planning of a
single node in which allocators work as capacity planners
and considers only a local view of the respective resource
capacity. Formally, an allocation requestr i is forwarded by
the co-allocator to its underlying allocators, which then gen-
erate a set of allocation offersAi and return the set ordered
by client utility. The allocator or resource utility may depend
on the providers strategy. Ifk is the total number of offers,
then:

Ai = {a1, ...,ak |Ui(ai) > U j(a j), i > j}

An allocationai is modeled as rectangle given by its width
(pi) and height (di) corresponding to the processing capac-
ity and the duration. The allocation start time isstartti , the
requested execution time isdi , and the deadline isendti ,
with endti ≥ startti + di . The capacity of an entire node
is also modeled as a rectangle but with fixed widthP and
infinite height (time horizon). The allocator tries to locate
a set of available slots so that the hard constraints (with
f lexibility = 0) are met and distance of soft constraints is
minimized, such that,

• (startti +di) ≤ starttj ∨ (starttj +d j) ≤ startti

• ∀A j ∈ A : A j 6= Ai , i.e. allocations must not overlap.

• D(ω) 6= ∞ and should be minimum.

The allocation problem shares similarities with strip pack-
ing problem. In the strip packing problem we try to place
a set of two dimensional boxes into a vertical strip of width
W and height∞ while keeping the total packed height of the
strip minimum. Translated to our allocation problem, the
width of the strip corresponds to the resource capacity, for
instance, number of processors, and the vertical dimension
corresponds to time horizon. If the list of rectangles is un-
known in advance, the strip packing problem is called anon-
line strip packing, which isNP-hard[Csirik and Woeginger
1997], and exactly maps to our problem.

The simplest on-line method is to check whether a newly
requested allocation finds an immediate placement. If there
is none, the request is rejected. This is a very simple but
crude technique that needs to know only about the current
view and shows a low resource utilization resulting in the
wastage of the strip capacity. A sophisticated on-line method
increases the acceptance ratio by planning, i.e. looking into
the future according to the client’s flexibility for negotiation.

On-line strip packing is addressed by different heuristics
such as shelf algorithm [Csirik and Woeginger 1997]. We in-
troduce a new algorithm called Vertical Split and Horizontal
Shelf-Hanger (VSHSH), which provides a hybrid approach
and fits better to our allocation problem. In contrast to classic
shelf algorithm, in which the strip is horizontally split into
shelves and only bottom-left justified packing is possible,the
VSHSH allows top-right justified packing as well. In this
way, the VSHSH keeps unused area of the strip minimum
while increasing application utility. As the goal is to pro-
vide allocations as close to the requested QoS as possible, we
propose top or bottom justification for an allocation depend-
ing on its distance from the requested timeframe. This ap-
proach increases the global utility (more satisfied QoS con-
straints) as probability of wider time-constraint distance is
reduced (see Section 6 for further discussion and measure-
ments). This is logical because

Dshel f(startt) = starttreq−shel fbase

whereas

Dvshsh(startt)= min(starttreq−shel fbase,shel ftop−starttreq)

which clearly shows the higher probability of

Dvshsh< Dshel f.

Furthermore, the VSHSH also vertically splits the strip into
multiple sub-strips so thatW = ∑wi , i.e. the width of all
sub-strips is equals to the width of main strip. This split-
ting is used to protect an appropriate share of the resource
capacity for the different communities or Virtual Organiza-
tions (VO), and may apply different allocation strategies for
each strip, such as different shelf height and cost models. In
this way a sub-strip becomes an independent strip. As de-
picted in Figure 3, a possible capacity management model
for the VSHSH consists of three strips with different capac-
ity shares, shelf heights, and cost models.

Figure 4 depicts an example strip visualizing shelf
1,24,45 with allocations in shaded-solid boxes. We assume
that all other shelves are fully packed. In this situation, an
allocation request arrives for which the VSHSH generates
three allocation offers. As the request is closer to the top of
the shelf 24 therefore the VSHSH generates a top justified
time-constrained offer, i.e. offer 1. The second offer (offer
2) targets the economy class of clients and is generated with
least cost but higher distance of other constraints. The third
offer (offer 3) is more expensive but gives earliest possible

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

5

Mumtaz Siddiqui et. al. 3 NEGOTIATION PROTOCOL

Shelf # = 1
Height = 7 Days
Cost = 48 G$

Shelf # = 2
Height = 7 Days
Cost = 24 G$

Shelf # = 1
Height = 24h
Cost = 36G$

Shelf # = 8
Height = 24h
Cost = 18G$

Shelf # 1, Height = 8h, Cost = 24G$

Shelf # 2, Height = 8h, Cost = 16G$

Shelf # 3, Height = 8h, Cost = 8G$

Shelf # 22, Height = 8h, Cost = 12G$

Shelf # 23, Height = 8h, Cost = 8G$

Shelf # 24, Height = 8h, Cost = 4G$

1 Week

2 Week

Strip 1Strip 2Strip 3
32 Processors16 Processors16 Processors

Figure 3: A possible Capacity Management model for
VSHSH with three Sub-Strips having different Capacity,
Shelf Height, and Cost Models.

Strip Height (Time)

S
trip C

apacity

Shelf−45 (Week 2)

Shelf−24 (Week 1)

Shelf−1 (Week 0)

Offer 1
Offer 2

Request

Offer 3

Reserved

Reserved

R
e
s
e
r
v
e
d

Reserved

Reserved

R
e
s
e
r
v
e
d

Strip

Figure 4: Possible Offers Generated by the VSHSH with a
Strip having Free Space in the three Shelves (1,24 & 45),
Offers are Generated According to the Client-Classes.

result. The allocator will send all three generated offers and
the co-allocator will choose the best offer according to the
client’s overall QoS requirements.

The VSHSH also supports dynamic scaling of the under-
lying sub-strips with a variable width and shelf-height sce-
nario. In a variable shelf height version of VSHSH, a new
shelf is created if:

• an allocation does not fit to any existing shelf found
within the client’s flexible range.

level(ψi) ≤ startta ≤ level(ψ j) ∨ ∃Ai ∈ A(Ai ∩a = a)

In this case a new shelf with

level(ψnew) = max(height(ψlast),startta)

is created. Hereψ refers to a shelf.

• an existing shelf can be split into two shelves so that
the new allocation can be bottom-justified in upper shelf
and there is no overlap with lower shelf.

We also introduce the notion of borrowing space from the
adjacent shelves. For instance, if an allocation request with
longer duration fits in the multiple adjacent shelves, then it
can be honored at higher price, provided that the requested
QoS-constraints are fulfilled.

The VSHSH pseudo code is depicted in Algorithm 1. It
generates alternative offers according to different constraints

such as timeframe, cost, capacity, and client’s flexibilityset
for these constraints. In case of client’s flexibility over height
(duration) and width (capacity), we propose to change the
area of the rectangle according to theisospeed scalability

{i.e.ψ(p, p
′
) = Time

′
.P

Time.P′ } of the system for the requested ap-
plication component (activity in case of workflow). For ex-
ample, if requested capacity is not available, then an offer
with reduced capacity but increased duration might be ac-
ceptable for the client.

Algorithm 1 The Pseudo-Code of the Allocation Offer Gen-
eration Algorithm.

negotiate4Allocation()
Input: Requestr = {p,d,c,st,et,?...}|p = procs,d = duration,c =
cost,st = starttime,et = endtime,? = anyTerm{A requestr with a set
of constraints}
Output : A i.e. a set of allocation offers
h := shel f Height;
sbt := stripBaseTime;
curr := shel f(r) = (str −sbt)/h;{current shelf}
o := ⊘;{offer = null}
for next := curr to curr +etf lex step 1do
{generate bottom justified offer innextshelf, if possible.}
nst := sbt+next∗h;{start time of offer to be generated}
if (o = {p,d,?,nst,nst+d}∨∃a∈ Anext(o = {p,d,?,eta ,eta +d}))∧
Anext∩o = ⊘ then

A := A+{o};{Add time-constrained generated offer inA}
end if

end for
for prev:= curr to curr−stf lex step -1do
{generate top justified offer inprevshelf, if possible.}
net := sbt+ prev∗h+h;{endtime of offer to be generated}
if (o = {p,d,?,net−d,net}∨∃a ∈ Aprev(o= {p,d,?,sta −d,sta}))∧
Aprev∩o = ⊘ then

A := A+{o};{Add time-constrained generated offer inA}
end if

end for
if isEconomyClient(costf lex) then

Generate an offer after 2ndweekor in economystrip;
else

Generate an offer in 1stweekor in expensivestrip;
end if

return A;

The contentions among multiple allocations are propa-
gated to the co-allocation layer instead of handling locally by
the allocators with a limited view. It could be possible that
higher local objective may lower the global utility. There is a
tradeoff between allocator’s objective and application’sutil-
ity that is addressed during the contention elimination foran
optimal compromise.

3.2 Co-allocation

The co-allocation or the 2nd negotiation layer is responsible
for the generation of a set of possible co-allocation offers, i.e.
suitable combinations of allocation offers received from the
underlying allocators, according to the client’s global prefer-
ences or the required QoS parameters.

A co-allocator instantiates aco-allocation manager (CM)
for each request which handles further negotiation between

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

6

Mumtaz Siddiqui et. al. 3 NEGOTIATION PROTOCOL

the client and the underlying allocators, and then performs
ongoing monitoring of the accepted co-allocation. A co-
allocation request corresponds to a Grid application and a
typical Grid application is a workflow that consists of multi-
ple activities [Siddiqui et al. 2005b] which are to be executed
in a well defined order. In such a case, each co-allocation
request consists of multiple allocation requests, each corre-
sponding to an activity of a workflow application. As de-
picted in Figure 1, the request then adds another constraint,
i.e. to ensure the order of the allocations. The co-allocation
layer handles such constraints as well by generating offers
with allocations in requested order. Formally, a co-allocator
receives a co-allocation requestR, where

R= {r1, ..., rk} | k∈ N

and instantiates a CM which then sends each allocation re-
questr i ∈ R to allocators of selected nodes and receives a set
of allocation offersA, where

A =
k

⋃

i=1

(Ai) : Ai = {ai,1, ...,ai,m} | m∈ N

Now the CM generates co-allocation offersΩ =
{Ω1, ...,Ωn}, such that,

Ωi = Ψ(A1, ...,Ak) = {ω1, ...,ωk} | ∀i ∈ k(ωi ∈ Ai)

HereΨ is a set reduction operator whose domain is a set of
all possible sets of allocation offers received for each request
r i from the different allocators. We frame a co-allocation as
an optimization problem, that is similar to CSP, and propose
a new algorithm which is a modified form of an existing min-
conflict local search algorithm [Shang and Wah 1998]. In
contrast to min-conflict local search algorithm, the new algo-
rithm allows to change the resource objective depending on
the number of conflicts, so that, a better compromise could
be found with optimal global utility. The co-allocator logi-
cally considers each allocation offer as a resource and applies
the new solution to these ’resources’ in order to make a set of
acceptable combinations. This is in contrast to the first layer
where resources are actual physical computers. This signifi-
cantly reduces the complexity of the problem, i.e. from 2S+k

to 2S≡ 2A. The co-allocation offer generation Pseudo code
is depicted in Algorithm 2.

A co-allocation manager (CM) returns to the client a set of
co-allocation offersΩ ordered by its utility. The client then
filters again, by eliminating the offers which are not accept-
able and sends back in a preferred orderΩpre f for confirma-
tion. The confirmation process is two phase committable. In
the first phase, the CM tentatively reserves each allocation
offer ω ∈ Ωpre f, and in the second phase, it confirms each
of the reserved allocations provided there is no contention.
Otherwise, it propagates the contentions to the third layer
and rolls back the tentatively reserved allocation offers.

Algorithm 2 The Pseudo code of the Co-Allocation Offer
Generation Algorithm.

negotiate4Coallocation()
Input: R : R= {r1, ...,rn} {Co-allocation request}
Output: Ω a set of co-allocation offers
A {a set of allocation offers to be received}
S{a set of available sites to be discovered for eachr}
done:= f alse;
for ∀r ∈ R do

S:= lookup(r);{Call Grid resource broker to select sites}
{Negotiate with each site by calling negotiate4Allocation algorithm)}
Ar :=

⋃

∀s∈Snegotiate4Allocation(r);
A := A∪Ar ;{A becomes{A1, ...,An}}

end for
while !donedo

if Ωa = {ω1, ...,ωn} and ∀i∈n(ωi ∈ Ai) and U(Ωa) > 0 and
⋂

ωi∈Ωa ωi = ∅ then
Ω := Ω+{Ωa};{Add a co-allocation offer in offer setΩ}
{exclude the used allocation offers from theA}
∀Ai ∈ A do Ai −{Ai ∩Ωa}

else
done= true;

end if
end while

return Ω;

3.3 Coordination

Contentions are unavoidable in an environment such as the
Grid where resources are shared and the clients are the com-
petitors. It is possible that while generating (co)allocation
offers for multiple applications, the same slot is offered to
more than one client. Such contentions reduce the QoS and
lead to unacceptable solutions. The coordination layer deals
with such situations and produces contention-free solutions
by eliminating either conflicting offers from the solution do-
main or by lowering the objective level of some of the un-
derlying allocators. The contention problem is raised by
the allocator and propagated towards the co-allocator. The
notified co-allocator then mediates cooperative negotiation
among the contentious CMs.

First, the notified co-allocator collects all information
needed to generate alternative solutions, including allocation
options offered to the conflicting applications, and then en-
ters in the solution generation process. The solution gen-
eration process starts with ordering the solution domain ac-
cording to application utility. A solution for the highly con-
strained application is generated first, assuming that thiswill
reduce the possibility of further contentions. In order to
accommodate all requests, the mediator may lower the ob-
jective levels of the underlying allocators, depending on the
number of contentions associated with each offer. In this
way, the optimal solutions are generated which satisfy the
required QoS constraints. The process terminates: 1) if all
suitable contention-free co-allocations are generated, 2) or
the objective of any of the allocators cannot be reduced fur-
ther. This is slightly different from the actual constraints sat-
isfaction problem (CSP) [Yokoo et al. 1998] in which the
objective level cannot be changed. In contrast to the clas-

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

7

Mumtaz Siddiqui et. al. 4 CAPACITY PLANNING

sic CSP, we change the objective level in order to address the
same problem but to generate a next suitable solution, mostly
with reduced utility which is better than having no solution
at all.

Second, a mediator enters in the solution evaluation phase
by sending each of the CMs a set of contention-free solu-
tions. The CM then filters out some of the generated solu-
tions and orders the rest of them from best to worst, based
on the application’s overall utilityUi . Once a mediator has
the ordering from the CMs, it generates an overall solution
by choosing the highest ranked alternative from each of the
CMs which lead to a consistent solution. Again, most con-
strained applications are given higher priority while assign-
ing a solution.

Finally, the assigned solutions are sent back to each of the
CMs, which then implement the final solution by confirming
the allocations and sending back the response, in the form
of a ticket, to the client. No further contention arises once
an allocation is confirmed unless the allocation is an open
reservation.

4 Capacity Planning

Capacity management and planning has been addressed in
several other fields, e.g. airline yield management, where
perishable resources are advertised and sold in a way to max-
imize overall profit [Netessine and Shumsky(2002)]. As
computing power of the Grid can be considered perishable,
the capacity management can be performed in a similar way.
Grid capacity planning is a forward looking activity of moni-
toring, understanding, and reacting to the clients’ behavior in
order to maximize the global utility. The advance reservation
of Grid resources cannot be fully exploited without anticipat-
ing adequate needs of its clients so that a proper share of the
resource capacity can be protected for the clients who can be
more profitable in the future.

The VSHSH allocation mechanism for advance reserva-
tion, as introduced earlier, splits resource capacity intomul-
tiple strips and assigns each strip a different capacity, shelf
height, and cost models. We associate each strip to a group
of clients, e.g. a Virtual Organization (VO). Determining and
associating proper capacity share for each strip is an ongoing
process based on monitoring the clients’ demands. Associ-
ating a static share with each strip is impractical, especially
due to dynamic Grid behavior. We extend VSHSH withdy-
namically scalable parameters, such as strip capacity, shelf-
height, and cost, depending on the client’s requirements by
using the history of allocation requests/demands.

In case of a strip with static capacity share, different allo-
cation strategies can be configured for different timeframes.
This is useful for planning a specific time interval or events.
For instance, it is more likely that during off time or vaca-
tions, more nodes join the Grid and less clients come on-
line. In order to avoid wastage of capacity and to attract
more clients, we propose overbooking and offering low cost

during off-times. The overbooking can be possible with the
help of priority provision as described in the next section.

Furthermore, some special events can be considered dur-
ing which a certain user will be more interested in making a
reservation even at a higher price. For instance, a researcher
may pay more for the Grid resources just before the submis-
sion deadline of a high-profile conference. We can also fairly
assign the equal capacity shares to each strip, for example,
in the case of processors,P = ∑i∈stripspi . In this way, each
user-class gets a fair-share. But this strategy is useful only
if the total number of active users in each class is the same,
otherwise it reduces the resource and application utility by
under utilizing one strip and reducing required QoS of the
other strip clients. In such a case, VSHSH with dynamically
scalable strips is more practical.

4.1 Priority Provision

Priority provision is an open reservation with soft allocation
of resources. In open reservations, actual node binding either
can be changed over time or deferred until application run-
time. The resources are allocated to an application, but real
binding is shielded from the client. In this way, a promise
is made that a certain capability will be available at some-
time in the future without assigning a specific node to the
client. That means that a next available node that fulfills the
required QoS constraints is allocated on-demand.

The priority provision is a way of keeping the promise of
advance reservation by dynamically associating physical re-
sources with allocations in an underlying unpredictable and
dynamic Grid environment. Furthermore, it allows reserva-
tion of logical resources as well. This is an important feature,
which according to our understanding, has not been consid-
ered for advance reservation so far in any other Grid com-
puting infrastructure.

4.2 Cost Handling

In order to deal with cost-centric optimization, we introduce
the concept of fictitious money (Grid$) and provide a cost
model for different strips or different shelves of a single strip.
The clients’ account for fictitious money can be maintained
by the co-allocator, and the underlying allocators charge the
cost of their resources to the client’s account. This is simi-
lar to the open resource allocation model applied to mobile
code [Tschudin 1997], which in contrast maintains a ficti-
tious money based on the lottery scheduling [Waldspurger
and Weihl 1994].

Currently, clients are categorized using the value of ne-
gotiation f lexibility set for the cost constraint. We support
three categories of clients: economy, moderate, and wealthy;
these are derived from thecostf lex. Recharging the fictitious
money account can be associated with the lifetime of the
Grid-user’s proxy used to access the resources.

We use the idea of fictitious money for our experiments
in order to demonstrate multiple QoS-constraint-based op-

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

8

Mumtaz Siddiqui et. al. 5 IMPLEMENTATION

AllocationManager

AuthzManager

Allocator

AllocationManager

AuthzManager

Allocator

Coallocation
Manager

Coallocator

Coallocation
Manager
Coallocation

Manager

ClientClient

Figure 5: Advance Reservation System Architecture.

timization of resource allocation, but it can be extended to
real money as well. We are exploring mechanisms such as
those proposed for GridBank [Barmouta and Buyya 2003]
and community authorization service (CAS) [Globus], so
that the clients can be charged properly. They can main-
tain their accounts indirectly through VO administrators with
support of CAS, where account balance can be set depending
on the user’s privileges, VO policy, or actual money. Each
time a client confirms a reservation, the cost of the allocated
resources can be charged. Similarly, a possibility for the re-
imbursement, in case of cancellation can also be considered.

5 Implementation

The proposed reservation system consists of resource and
Grid level components calledallocatorandco-allocator, re-
spectively (see Figure 5). The allocator is responsible for
the provision of advance reservation of a single Grid node,
whereas co-allocator handles reservations of multiple nodes.
Both allocator and co-allocator are implemented as WSRF
Grid services, based on the Globus Toolkit 4 (GT4), and have
been integrated in the GridARM, a GRMS.

An allocator further consists of two sub components: an
allocation manager (AM), that generates offers while opti-
mizing QoS constraints, and anAuthzManagerthat autho-
rizes whether or not a client should be permitted to acquire
the reserved resource (e.g. to submit a job). An AM provides
a mechanism in which different algorithms can be plugged-
in and configured according to the resource usage constraints
and provider’s strategy.

In order to ensure sophisticated integration of the local re-
source management with reservation, we have chosen not
to change the low level mechanism of the Job Submission
service (as proposed in [Elmroth and Tordsson 2005]), but
rather exploit the customizability of the GT4 Job submission
service called WS-GRAM [Czajkowski et al. 1998; Globus],
which allows addition of customized resource authorization
policies. The AuthzManager acts as a special Policy Deci-
sion Point (PDP) for WS-GRAM and ensures client’s autho-
rization, i.e. whether the resource was actually reserved by
the client through AM.

The co-allocator covers a set of allocators (each associated
with a node) and runs on a superpeer node. A superpeer node

C
r
e
a

te
d

O
ff

e
r
e
d

A
c
c
e
p

te
d

A
c
ti

v
e

C
la

im
e
d

Rejected

Completed

Terminated

P
e
n

d
in

g

Figure 6: Possible States of a Reservation Instance.

is one that works as a frontend or root node for a group of
nodes and can reference one or more other superpeer nodes.
In this way, if a GridARM service such as a co-allocator can-
not find an answer within its own group, then it can refer to
the peer services running on the remote superpeer nodes for
the answer.

A co-allocator works as a factory service of co-allocation
managers (CM) and instantiates a separate CM for each re-
quest. The CM then handles further negotiation between
a client and underlying allocators, and performs ongoing
monitoring of the accepted co-allocation. Furthermore, a
co-allocator interacts with a GridARM resource broker for
candidate selection and may filter out nodes for which hard
constraints (i.e. requests withf lexibility = 0) cannot be ful-
filled. It also mediates the contention elimination process.

A reservation can pass through different states during its
lifecycle from negotiation to job execution and can be mon-
itored and managed by using standard WSRF constructs (as
each reservation instance is available as WS-Resource in the
form of WS-Agreement). Figure 6 shows the state sequence
of a reservation instance. A client can register for the event
notification. Each time a reservation changes from one state
to another, a registered client receives a state change notifi-
cation. For example, a client can start re-negotiation witha
TERMINATED state notification or submit a job to the re-
source with an ACTIVE state notification.

After making a successful reservation, the clients can sub-
mit their jobs for execution within the reservation timeframe.
By default, only a client with valid credentials and having a
valid reservation can submit a job. Moreover, a CM also gen-
erates aticket which can be delegated to other clients who
can acquire associated reservations by presenting the ticket.
A client will not be authorized if it fails to provide a valid
ticketor fails to prove itself as an owner of the reservation.

5.1 Agreement Enforcement

A special PDP (Policy Decision Point) for the authorization
of reserved resources is an essential component of our reser-
vation system. It exploits the customizability of the WS-
GRAM in which multiple authorization points (PDPs) can
be configured. We introduce an additionalReservationPDP
for the authorization of clients, it works as part of the chained
authorization points invoked by WS-GRAM. As depicted in
Figure 7, this additional PDP interacts with the AuthzMan-

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

9

Mumtaz Siddiqui et. al. 6 EXPERIMENTS

WS-GRAM

GridmapPDP

Resource (LRM)

WSRF-Authorization Framework

ReservationPDP

Globus-GSI

GridARM
(AuthzManager)

PDP
Chain

Figure 7: A Policy Decision Point (PDP)-chain with a Spe-
cial ReservationPDP for WS-GRAM.

ager and gets verification whether or not the client has ad-
vance reservation at that particular time. The Reservation-
PDP is used for the enforcement of an agreement.

AuthzManager may be configured with a customized pol-
icy, for instance, executions can be performed only when
the resource is reserved by the user, or if the resource is
not reserved at all during the requested timeframe. If an ap-
plication does not finish within the reserved timeframe, the
tasks should be either terminated or suspended. Termina-
tion of an application which is about to complete could be
counter productive, especially when application execution
time is longer. On the other hand, suspension of an applica-
tion requires low-level system interaction, which is an open
research topic.

A reservation made by an allocator is independent
from the underlying Local Resource Manager (LRM), e.g.
PBS [Altair], LSF [Platform], SGE [Sun Microsystems].
This means that a job can be submitted through WS-GRAM
to any of the LRM and is honored only if proper reservation
is made by the client. Each time WS-GRAM is invoked, it in-
teracts with AuthzManager through the special Reservation
PDP for verification of the caller.

In some cases (depending on the Grid node policy and
configuration), it may be possible that a client bypasses WS-
GRAM and submits jobs directly to any of the deployed
LRMs. In such a case the reservation will not be veri-
fied. This is, in fact, a well-known open issue. One possi-
ble enhancement is to provide low-level reservation with the
help of LRMs (e.g. based on Maui [Jackson et al. 2001]).
However, this will break the generality of the solution. As
WS-GRAM aims to provide a higher-level job submission
functionality abstracting from various LRMs, integratingad-
vance reservation mechanisms directly to interact with WS-
GRAM (i.e. making a LRM-independent reservation ser-
vice) is a more portable and practical approach for better ca-
pacity planning of the resources and the agreement enforce-
ment in the environment.

5.2 Standards Adaptation

We adapt WS-Agreement, a proposed Grid Resource Al-
location Agreement Protocol [GRAAP-wg 2006], for con-
tract specification. Allocations or co-allocations are com-

posed as WS-Agreements and maintained in the form of WS-
Resources [WSRF].

JSDL is another proposed standard for job submission
description [JSDL-wg] that consists of a set of constructs
which we use to specify constraints as part of the WS-
Agreement specification. Furthermore, constraints likemax-
imum number of allowed processesandjob termination time
can be specified as part of job description in JSDL, and we
plan to further strengthen the process of agreement enforce-
ment by exploiting these parameters.

6 Experiments

We have implemented a prototype of the proposed system as
a set of cooperative middleware services, in which reserva-
tion instances are maintained as WS-Resources [WSRF] in
the form of WS-Agreements. The reservations then can be
manipulated by using WSRF features, such as lifecycle man-
agement. We tested the system in the Askalon’s Grid envi-
ronment [Fahringer et al.], which is deployed on the Aus-
trian Grid [Consortium]. We performed our experiments on
AMD Opteron 64bit nodes located on a lightly loaded net-
work with a maximum latency between two nodes of less
than 2ms.

We compared our proposed VSHSH algorithm against ex-
isting First Fit (FF), Best Fit (BF), and Next Fit (NF) on-line
strip packing algorithms [Bays 1977]. The experiments were
performed in order to compare the allocation (at node-level)
as well as the co-allocation (at Grid-level) algorithms. The
start time of each allocation request varied from 1-min to
14-days. A set of requests was randomly generated, and the
same set was applied to all the algorithms and tests. The du-
ration of each allocation request was also randomly selected
so that 80% of the requests were smaller than 4 hours, and
20% were between 4-36 hours. These values were chosen
based on our experience running real Grid workflow appli-
cations as described in [Fahringer et al. 2005]. For the co-
allocations, we have generated requests following the struc-
ture of the workflow application composed of 4 sequential
regions with 2 parallel regions. The values corresponding to
the parallel region were randomly selected as a multiple of 6
minutes depending on the problem size.

For the measurements, we used the strip splitting and the
cost model described in Section 3.1, where the cost varies be-
tween strips as well as between shelves, i.e. three strips with
50%, 25% and 25% of the total capacity respectively. Ap-
plication utility, as described in the Section 2.2, is basedon
the client request, and is a function of the distance between
the expected allocation and the actual/real option offeredby
the reservation service. The higher the distance, the lower
the utility. On the other hand, resource utility is calculated
based on the resource utilization and the generated revenue
in the form of fictitious money (see Section 4.2).

Figure 8 and 9 compares the VSHSH with the legacy al-
gorithms. For both resource and application utilties we can

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

10

Mumtaz Siddiqui et. al. 6 EXPERIMENTS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600

R
es

ou
rc

e
U

til
ity

Allocations

Proposed VSHSH
First Fit
Next Fit
Best Fit

Figure 8: Average Resource Utility with Allocations.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 200 400 600 800 1000 1200 1400 1600

A
pp

. U
til

ity

Allocations

Proposed VSHSH
First Fit
Next Fit
Best Fit

Figure 9: Average Application Utility with Allocations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
es

ou
rc

e
U

til
ity

App. Utility

Proposed VSHSH (1450 allocations)
Next Fit (1100 Allocations)
Best Fit (1100 Allocations)

First Fit (550 Allocations)

Figure 10: Resource Utility Compared with Application
Utility.

Concurrent Users 2 4 6 8
Response Time (ms) 96 124 148 168

Table 2: Average response time per transaction.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

D
en

si
ty

 (
pa

ck
ed

A
re

a/
T

ot
al

A
re

a)

Allocations

Proposed VSHSH
First Fit
Next Fit
Best Fit

Figure 11: Resource utilization (density).

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

C
ap

ac
ity

 W
as

ta
ge

Allocations

3 strips with VSHSH-based dynamic scaling
CPS with 3 strips of equal capacity

CPS with 3 strips having 50%,25%,25% capacity for each
CPS with 3 strips having 75%,12.5%,12.5% capacity for each

Figure 12: The Resource Wastage with Different Capacity
Planning Strategies (CPS).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

U
til

ity

Coallocations (Application Instances)

Grid Utility (with proposed CSP min-conflict local search)
Grid Utility (with resource ideal algo)

Grid Utility (with application ideal algo)
Application Utility (with proposed CSP min-conflict local search)

Application Utility (with resource ideal algo)
Application Utility (with application ideal algo)

Figure 13: Comparison of Co-Allocation Algorithm with
Resource-Ideal and Application-Ideal Allocation Algorithms
Showing Expected and Worse Performance.

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

11

Mumtaz Siddiqui et. al. 6 EXPERIMENTS

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 64 128 256 512 1024 2048

R
es

po
ns

e
T

im
e(

m
s)

Number of Allocations (Reservations)

Performance comparison of VSHSH with expected and worse throughput (without middleware overhead)

Worse (clients=2)
Worse (clients=4)
Actual (clients=2)
Actual (clients=4)
Actual (clients=8)

Expected (clients=2)
Expected (clients=4)
Expected (clients=8)

Figure 14: Performance (Response Time per Transaction) of
the VSHSH Compared with Expected and Worse Possible
with Different Concurrent Clients but Without Grid Middle-
ware Overhead.

 32

 64

 128

 256

 512

 1024

 2048

 4096

 64 128 256 512 1024 2048

R
es

po
ns

e
T

im
e(

m
s)

Number of Allocations (Reservations)

Performance comparison of VSHSH with expected and worse throughput (with middleware overhead)

Worse (clients=2)
Worse (clients=4)
Actual (clients=2)
Actual (clients=4)
Actual (clients=8)

Expected (clients=2)
Expected (clients=4)
Expected (clients=8)

Figure 15: Performance of the VSHSH along with middle-
ware overhead compared with expected and worst possible
with different concurrent clients along with Grid middleware
overhead.

 16

 32

 64

 128

 256

 512

 1024

 2048

 64 128 256 512 1024 2048

A
ve

ra
ge

 r
es

po
ns

e
tim

e
pe

r
tr

an
sa

ct
io

n
(m

s)

Number of Allocations (Reservations)

Negotiation (VSHSH)
Negotiation (Best Fit)
Negotiation (Next Fit)
Negotiation (First Fit)

Confirmation
AuthorizationPDP

Figure 16: Response time with different allocations.

observe that VSHSH maximizes the utility function. Inter-
estingly, the behavior of VSHSH is similar to the Best Fit
algorithm, but with higher utility. In addition, we can ob-
serve that resource utility scales well, independently of the
number of allocations.

Figure 10 depicts comparison of resource utility against
application utility. All existing algorithms maintain thera-
tio up to some extent, but after handling a certain number
of allocations (as reported in the Figure), they stop fulfill-
ing further requests. In particular, First Fit has a higher re-
source utility (around 0.9), but only handled a maximum of
550 allocations. The VSHSH remains consistent with grow-
ing number of allocations and continues accepting further
requests.

Figure 11 depicts average density of allocated area,
packed with varying number of allocations. The VSHSH
shows lower density which is due to the capacity planning
strategy in which we get better application and resource util-
ity. We can observe that VSHSH maintains a density of 50%
between 200 and 1300 allocations. In addition, VSHSH con-
tinues accepting more requests but the density grows linearly
after 1300 requests.

Figure 12 compares average capacity wastage, i.e. the un-
used total area using different capacity planning strategies.
We have set different capacity values to the strips in order to
see how wastage can be reduced. We can observe that setting
equal capacity to each strip is worse than our base settings
(50%,25%,25%) used for the previous measurements, and
that increasing the first strip capacity (75%,12.5%,12.5%)
does not reduces the wastage. This is due to the multiple QoS
constraints (cost and capacity) which effects the trade-off be-
tween resource utility and application utility. The strategy
with dynamically scalable strips shows minimum resource
wastage but requires keeping the historic information of the
requests.

Figure 13 depicts comparison of the proposed co-
allocation offer generation algorithm as described in Sec-
tion 3.2 that optimizes overall Grid and application utili-
ties. The measurements were performed using 4 allocator
instances. We compare the proposed algorithm with two
other algorithms: (a) a Grid-ideal that maximizes Grid utility
(i.e. the aggregated resource utilities), and (b) an application-
ideal that maximizes application utility. We can observe
that the application ideal algorithm reduces the resource util-
ity significantly, whereas the resource ideal introduces small
reduction to the application utility. In the case of our ap-
proach, the results are quite encouraging: the Grid utilityis
closer to the Grid-ideal, and application utility is closerto
the application-ideal algorithm. We performed this experi-
ment by using allocation durations according to the average
execution time of each serial and parallel activity of our real-
world workflow application. Dependencies of activities are
also kept while generating coallocation offers.

Table 3 shows average overhead of different operations of
the system for an allocation request. It shows that the ne-

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

12

Mumtaz Siddiqui et. al. 7 RELATED WORK

Function Time (MS)
Negotiation (with FF,NF) 190
Negotiation (with VSHSH) 198
Confirmation 30.5
WS-GRAM (Default) 600
WS-GRAM (with ReservationPDP) 636

Table 3: Average overhead of different operations.

gotiation step, which also involves a compute intensive of-
fer generation, is a bit time-expensive. Confirmation and
authorization do not add any significant overhead, as both
deal with existing reservations available as WS-Resources.
Table 3 (lower row) compares overhead of job submission
with WS-GRAM configured with and without reservation-
PDP. We performed this test by submitting a small job to
WS-GRAM in“quiet” and“batch” mode, which means that
the client did not wait for the completion of the job and re-
turned immediately after successful submission. The aver-
age overhead of the special PDP is 36msper job, which is
just 6.0% of the total submission overhead of WS-GRAM.

Table 2 shows an average response time for a single ne-
gotiation session with varying number of concurrent clients.
Response time increases linearly with the number of users
due to the compute-intensive algorithm. As most of the Grid
applications run for a longer duration, the overhead of the
reservation system is quite negligible, even for time-critical
scientific applications.

Figures 14 and 15 show the response time of the VSHSH
compared with expected and worst possible performance
with different number of concurrent clients, i.e. 2, 4, and
8, with and without Grid middleware overhead, respectively.
The measurements were performed using the same set of re-
quests as described above. The measurements with the mid-
dleware overhead were made calculating the response time
for the client, whereas the measurements without the middle-
ware overhead were calculated only at the server side. The
relative values of worse performance are taken with the first
two weeks are fully packed (reserved), and approximately
23000+ allocations were already made. The values for the
expected performance correspond to the maximum utility,
i.e. minimum response time required to perform the allo-
cation, and to send the result to the client. The actual value
corresponds to the response time of our VSHSH algorithm.

We can observe that the performance of VSHSH is close
to the expected performance, and that response-time grows
linearly after approximately 1024 allocations. This is be-
cause of the increase in number of data structures needed to
store the reservation instances. Furthermore, the Grid mid-
dleware overhead as shown in Figure 15 is much higher due
to communication, WSRF, and container overheads. In addi-
tion, there is an observable startup overhead (until 128 reser-
vations), because of the initialization of the middleware and
the data objects. The possible worse response time can be
reduced by increasing the capacity of the underlying Grid

resources including processors and memory.
Finally, Figure 16 shows an average response time for a

singlenegotiate-reservesession with varying number of al-
locations. Initially all algorithms give the same performance
with similar behavior, but afterward in contrast to existing
algorithms, the VSHSH response time increases linearly in-
stead of exponentially with allocations. Confirmation re-
sponse time is almost consistent as it deals with already gen-
erated reservation. These depictions confirms that the main
overhead is of Grid middleware (including communication
and WSRF part etc.) and not in the proposed algorithm and
the reservation system.

7 Related work

Advance reservation and negotiation-based optimized QoS
delivery has been a subject of numerous studies [Hafid et al.
1998; Wolf and Steinmetz 1997; Wang et al. 2003; Netessine
and Shumsky(2002)]. A few researchers are also investigat-
ing the same mechanisms for the Grid. In this section, we
identify distinguishing features of our approach compared
with existing work.

In the Grid environment, GARA [Foster et al. 1999] and
DUROC [DUROC-team] are the initial works on advance
reservation that define a basic architecture and simple API
for the manipulation of advance reservation of different re-
sources. These two concentrate mainly on the applicability
of resource reservation for job management. Our work fo-
cuses on Grid resource provision with advance reservation
by optimizing multiple and flexible QoS constraints.

SNAP [Czajkowski et al. 2002] proposes a negotiation
protocol for a distributed Grid resource management model
in which resource interactions are mapped onto a set of Ser-
vice Level Agreements (SLAs). This work has been re-
placed by the GGF proposed standard [GRAAP-wg 2006] on
which we based our 3-layered negotiation protocol that gen-
erates optimal allocation offers in order to efficiently reach
an agreement.

The usefulness of advance reservation is presented at
a theoretical level in [McGough et al. 2005]. Modelling
and solving resource allocation problems with soft con-
straint techniques is discussed in [Zhang 2002]. Perfor-
mance impact of advance reservations on workflows is de-
picted in [Singh et al. 2005], and effects of different models
to support advance reservations are presented in [Smith et al.
2000].

An algorithm described by [Roeblitz et al. 2006] supports
fuzziness in a limited set of parameters and applies speedup
models to propose flexible allocations. Co-reservations are
proposed as virtual resources. However, dynamic Grid be-
havior, reservation of logical resources, and optimization
from the perspective of the Grid had not been considered.

ICENI [McGough et al. 2005] uses a two tier system for
reserving resources on the Grid. It exposes reservation ca-
pability of underlying resource managers such as [Sun Mi-

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

13

Mumtaz Siddiqui et. al. REFERENCES

crosystems] without considering dynamic behavior of the
Grid. No flexible negotiation mechanism that considers mul-
tiple QoS parameters other than the timeframe is available.

Gridbus [Buyya and Venugopal 2004] provides a broker
service for the Grid resources that takes into account the fact
that deadline and budget are specified, and then optimizes
the usage of resources only by considering the current state
of the resources but without any planning horizon.

Different reservation-aware schedulers such as [Altair ;
Platform ; Sun Microsystems] do not consider flexibility
of different constraints, thus resulting in lack of negotiabil-
ity. Maui/Silver [Cluster Resources] is a job scheduler for
cluster/Grid systems in which advance reservation scheme
makes it possible to allocate local resources in the future.
On a Grid node, it can be used in combination with the other
LRMs but it requires an extention in the Grid job submission
service in order to make it reservation-aware. Also, it does
not support any negotiation mechanism.

The work described in [Elmroth and Tordsson 2005] intro-
duces a resource broker, developed as part of the NorduGrid
project [NorduGrid-team], that supports advance reserva-
tions. However, in order to make it work, the proposed reser-
vation mechanism requires modifications in the basic Grid
middleware services like GRAM [Czajkowski et al. 1998]
and GridFTP [Allcock et al. 2002]-client/server.

GridSim [Sulistio and Buyya 2004] provides a Grid-
simulated infrastructure that also supports simulation ofad-
vance reservation, but it does not consider negotiation.

In contrast to these existing works, our work focus on a
flexible specification of reservation requests, and a 3-layered
negotiation protocol for the provision of optimal allocation
offers. We consider dynamic Grid behavior by introducing
open reservations that are dynamically mapped to the physi-
cal resources before or during application runtime. Multiple
QoS parameters are optimized. For maximum utility, an op-
timal Grid capacity is protected for different classes of the
clients. Finally, a practical solution for the enforcementof
reservation agreements is introduced, one which can work
with different local resource managers without requiring any
modification in their functionality.

8 Conclusion

Grid resource management systems have been mostly used
for resource brokerage, i.e. the discovery and selection of
resources for the Grid applications. In our work, we focused
on enhancing a GRMS so that it can work as resource pro-
visioner and make resources available on-demand. Advance
reservation of Grid resources can play a key role in enabling
a GRMS to deliver on-demand resource provisioning with
significantly improved QoS. For this purpose, we introduced
a new mechanism for advance reservation of Grid resources.
This mechanism provides a 3-layered negotiation protocol
for flexible resource allocation. The offered allocations are
then used to efficiently reach an agreement with minimal

client interactions.
We propose smart, offer-generation algorithms by fram-

ing (co)allocation as on-line strip packing and constraintop-
timization problems, and by providing solutions that opti-
mize the required QoS constraints and resource utilization.
Our allocation algorithm, called Vertical Split and Horizontal
Shelf-Hanger (WSHSH), introduces a novel approach to op-
timize application utility with improved capacity planning.
Contention elimination and open reservations are supported
to deal with dynamic Grid behaviour, whereas, a practical
solution for agreement enforcement is provided using state-
of-the-art Grid technologies.

A prototype of the proposed system has been imple-
mented to examine the effectiveness of our approach. We
have demonstrated that with proper capacity planning using
negotiation-based advance reservation, the utilization can be
maximized independently of the number of requested allo-
cations. In addition, the proposed approach better deals with
the dynamic nature of the Grid and generates more optimal
allocations compared to existing heuristics used for NP-hard
resource allocation problems. Furthermore, the proposed ap-
proach does not add any significant overhead to the existing
Grid middleware services.

We plan to extend the allocation strategies and capacity
planning with in creased horizon by considering more QoS
parameters, for instance, memory, network, and storage etc.
An enhancement, such as semantics description of alloca-
tions would improve the negotiation process in order to reach
a more flexible but optimal resource allocation agreements.

Acknowledgments

We thank our colleagues especially Otheus for their con-
structive discussions and proof readings, and the anonymous
reviewers for their valuable feedback and pointing us to the
additional related work.

References

ALLCOCK, B., BESTER, J., BRESNAHAN, J., CHERVE-
NAK , A. L., FOSTER, I., KESSELMAN, C., MEDER, S.,
NEFEDOVA, V., QUESNEL, D., AND TUECKE, S. 2002.
Data management and transfer in high-performance com-
putational grid environments.Parallel Computing 28, 5
(May), 749–771.

ALTAIR . Portable batch system (pbs) professional 7.1.
http://www.altair.com/software/pbspro.htm.

BARMOUTA , A., AND BUYYA , R. 2003. Gridbank: A grid
accounting services architecture (gasa) for distributed sys-
tems sharing and integration. InIPDPS ’03: Proceed-
ings of the 17th International Symposium on Parallel and
Distributed Processing, IEEE Computer Society, Wash-
ington, DC, USA, 245.1.

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

14

Mumtaz Siddiqui et. al. REFERENCES

BAYS, C. 1977. A comparison of next-fit, first-fit, and best-
fit. Commun. ACM 20, 3, 191–192.

BUYYA , R., AND VENUGOPAL, S. 2004. The gridbus
toolkit for service oriented grid and utility computing:
An overview and status report. InProceedings of the
First IEEE International Workshop on Grid Economics
and Business Models, IEEE Press, New Jersey, USA, 19–
36.

CLUSTER RESOURCES, I. Super clusters: Center
for hpc cluster resource management and scheduling.
http://www.supercluster.org/projects/.

CONSORTIUM, T. A. G. http://www.austriangrid.at.

COOPER, K., DASGUPTA, A., KENNEDY, K., KOELBEL,
C., MANDAL , A., MARIN , G., MAZINA , M., MELLOR-
CRUMMEY, J., BERMAN, F., CASANOVA , H., CHIEN,
A., DAIL , H., LIU , X., OLUGBILE , A., SIEVERT, O.,
X IA , H., JOHNSSON, L., L IU , B., PATEL , M., REED,
D., DENG, W., MENDES, C., SHI , Z., YARKHAN , A.,
AND DONGARRA, J. 2004. New Grid Scheduling and
Rescheduling Methods in the GrADS Project. InInter-
national Parallel and Distributed Processing Symposium,
Workshop for Next Generation Software, IEEE Computer
Society Press.

CSIRIK, J., AND WOEGINGER, G. J. 1997. Shelf algo-
rithms for on-line strip packing.Inf. Process. Lett. 63, 4,
171–175.

CZAJKOWSKI, K., FOSTER, I., KARONIS, N., MARTIN ,
S., SMITH , W., AND TUECKE, S. 1998. A Re-
source Management Architecture for Metacomputing Sys-
tems. InJob Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph, Eds. Springer Verlag,
62–82. Lect. Notes Comput. Sci. vol. 1459.

CZAJKOWSKI, K., FOSTER, I., KESSELMAN, C.,
SANDER, V., AND TUECKE, S., 2002. Snap: A protocol
for negotiating service level agreements and coordinating
resource management in distributed systems.

DUROC-TEAM , G. The dynamically updated request on-
line coallocator. http://www-fp.globus.org/duroc/.

ELMROTH, E., AND TORDSSON, J. 2005. A Grid
Resource Broker Supporting Advance Reservations and
Benchmark-based Resource Selection. InState-of-the-art
in Scientific Computing., Springer Verlag, vol. 3732 of
Lecture Notes in Computer Science, 1077–1085.

FAHRINGER, T., PRODAN, R., DUAN , R., HOFER, J.,
NADEEM, F., NERIERI, F., PODLIPNIG, S., QIN , J.,
SIDDIQUI , M., TRUONG, H.-L., VILLAZON , A., AND

WIECZOREK, M. Askalon: A development and grid com-
puting environment for scientific workflows.Workflows
for eScience, Scientific Workflows for Grids.

FAHRINGER, T., PRODAN, R., DUAN , R., NERIERI, F.,
PODLIPNIG, S., QIN , J., SIDDIQUI , M., TRUONG,
H.-L., V ILLAZON , A., AND WIECZOREK, M. 2005.
ASKALON: A Grid Application Development and Com-
puting Environment. In6th International Workshop on
Grid Computing (Grid 2005), IEEE Computer Society
Press, Seattle, Washington, USA.

FOSTER, I., KESSELMAN, C., LEE, C., LINDELL , R.,
NAHRSTEDT, K., AND ROY, A. 1999. A distributed
resource management architecture that supports advance
reservations and co-allocation. InProceedings of the In-
ternational Workshop on Quality of Service.

GLOBUS. The globus alliance.
http://www.globus.org/toolkit.

GRAAP-WG, G. G. F., 2006. Grid re-
source allocation agreement protocol.
https://forge.gridforum.org/projects/graap-wg.

HAFID , A., VON BOCHMANN, G., AND DSSOULI, R.
1998. A quality of service negotiation approach with fu-
ture reservations (NAFUR): a detailed study.Computer
Networks and ISDN Systems 30, 8, 777–794.

JACKSON, D. B., SNELL , Q., AND CLEMENT, M. J. 2001.
Core algorithms of the maui scheduler. InJSSPP ’01: Re-
vised Papers from the 7th International Workshop on Job
Scheduling Strategies for Parallel Processing, Springer-
Verlag, London, UK, 87–102.

JSDL-WG, G. G. F. Job submission description language
(jsdl). http://www.ggf.org/documents/GFD.56.pdf.

MCGOUGH, A. S., AFZAL , A., DARLINGTON, J., FUR-
MENTO, N., MAYER, A., AND YOUNG, L. 2005. Making
the grid predictable through reservation and performance
modelling.The Computer Journal 48, 3, 358–368.

NETESSINE, S.,AND SHUMSKY(2002), R. Introduction to
the theory and practice of yield management.INFORMS
Transactions on Education 3, 1.

NORDUGRID-TEAM. NorduGrid project.
http://www.nordugrid.org.

PLATFORM. Lsf. http://www.platform.com/Products/ Plat-
form.LSF.Family.

ROEBLITZ, T., SCHINTKE, F., AND REINEFELD, A. 2006.
Resource reservations with fuzzy requests.Concurrency
and Computation: Practice and Experience.

SHANG, Y., AND WAH , B. W. 1998. A discrete lagrangian-
based global-search method for solving satisfiability prob-
lems.J. of Global Optimization 12, 1, 61–99.

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

15

Mumtaz Siddiqui et. al. REFERENCES

SIDDIQUI , M., AND FAHRINGER, T. 2005. GridARM:
Askalon’s Grid Resource Management System. InAd-
vances in Grid Computing - EGC 2005 - Revised Selected
Papers, Springer Berlin / Heidelberg, ISBN 3-540-26918-
5, vol. 3470 ofLecture Notes in Computer Science, 122–
131.

SIDDIQUI , M., FAHRINGER, T., HOFER, J.,AND TOMA , I.
2005. Grid resource ontologies and asymmetric resource-
correlation. In2nd International Conference on Grid Ser-
vice Engineering and Management (GSEM’05), Lecture
Notes in Informatics, Erfurt, Germany, G. S. of Informat-
ics, Ed.

SIDDIQUI , M., V ILLAZON , A., HOFER, J., AND

FAHRINGER, T. 2005. GLARE: A grid activity regis-
tration, deployment and provisioning framework. InIn-
ternational Conference for High Performance Computing,
Networking and Storage (SuperComputing), SC05, ACM
Press, ISBN 1-59593-061-2/05/0011, Seattle, Washing-
ton, USA, ACM, Ed.

SINGH, G., KESSELMAN, C., AND DEELMAN , E.
2005. Performance impact of resource provisioning
on workflows. Technical report 05-850, Information
Sciences Institute, University of Southern California.
http://www.cs.usc.edu/Research/TechReports/05-850.pdf.

SMITH , W., FOSTER, I., AND TAYLOR , V. 2000. Schedul-
ing with advanced reservations. In14th International Par-
allel and Distributed Processing Symposium (IPDPS’00).

SULISTIO, A., AND BUYYA , R. 2004. A grid simulation in-
frastructure supporting advance reservation. InProceed-
ings of the 16th International Conference on Parallel and
Distributed Computing and Systems, ACTA Press, MIT
Cambridge, Boston, USA.

SUN M ICROSYSTEMS, I. Sun grid engine.
http://www.sun.com/software/gridware/.

TSCHUDIN, C. 1997. Open Resource Allocation for Mobile
Code. InFirst International Workshop on Mobile Agents.

WALDSPURGER, C., AND WEIHL , W. 1994. Lottery
scheduling: Flexible proportionalshare resource manage-
ment. InFirst Symposium on Operating System Design
and Implementation (OSDI), USENIX.

WANG, G., ZHANG, W., MAILLER , R., AND LESSER, V.
2003. Analysis of Negotiation Protocols by Distributed
Search. Kluwer Academic Publishers, 339–361.

WOLF, L., AND STEINMETZ, R. 1997. Concepts for Re-
source Reservation in Advance.Multimedia Tools and Ap-
plications 4, 3 (May), 255–278. Special Issue on State of
the Art in Multimedia Computing.

WSRF, G. A. Web services resource framework.
http://www.globus.org/wsrf.

YOKOO, M., DURFEE, E. H., ISHIDA, T., AND

KUWABARA , K. 1998. The distributed constraint satisfac-
tion problem: Formalization and algorithms.Knowledge
and Data Engineering 10, 5, 673–685.

YU, J., AND BUYYA , R. 2005. A Taxonomy of Workflow
Management Systems for Grid Computing. Technical
report grids-tr-2005-1, Grid Computing and Distributed
Systems Laboratory, University of Melbourne, Australia,
Mar. http://www.gridbus.org/.

ZHANG, W. 2002. Modeling and solving a resource alloca-
tion problem with soft constraint techniques. Technical re-
port wucs-2002-13, Department of Computer Science and
Engineering, Washington University in St. Louis, May.

Super Computing, November 2006, Tampa, USA
SC’06 c© 2006 IEEE 0-7695-2700-0/06

16

