
© 2006 Open Grid Forum

Network Services Interface
Secure Communications with Self Signed
Certificates

John MacAuley, ESnet
18th July 2014

© 2006 Open Grid Forum

The Statement

“TLS provides message integrity, confidentiality
and authentication via the X.509 certificates,
and protects against replay attacks.
Authorization is done at the NSAs application
level.” – Transport Layer Security, NSI CS v2,
Section 9.1, page 96

2

© 2006 Open Grid Forum

Definitions

•  Authentication is the process of confirming
the identity of an entity.

•  Authorization is the function of specifying
access rights to resources for an entity.

3

Authentication is the process of verifying that "you are
who you say you are", authorization is the process of
verifying that "you are permitted to do what you are
trying to do”.

© 2006 Open Grid Forum

TLS authentication

•  TLS uses X.509 certificates and asymmetric cryptography to
authenticate communication between two parties.

•  Certificate authorities and a public key infrastructure are
necessary to verify the relationship between a certificate and its
owner, as well as to generate, sign, and administer the validity
of certificates.

•  Each end of a TLS session authenticates its peer using its
trusted certificate authorities via a public key infrastructure.

4

It is important to note that a successful TLS session can be
established to a peer if that peer’s certificate can be validated using
the PKI. Effectively, the TLS handshake will establish a session if it
can determine "you are who you say you are”, and does not
consider if you have access to the application on the endpoint of the
TLS session.

© 2006 Open Grid Forum

Example signing hierarchy

•  A CA-signed certificate has a chain of Subject and Issuer DNs
leading from the leaf certificate to the root certificate of the CA
(self-signed).
{

Subject: /OU=Domain Control Validated/CN=nsi-aggr-west.es.net
Issuer: /C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc./OU=http://
certs.godaddy.com/repository//CN=Go Daddy Secure Certificate Authority - G2

}
{

Subject: /C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc./OU=http://
certs.godaddy.com/repository//CN=Go Daddy Secure Certificate Authority - G2
Issuer: /C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc./CN=Go Daddy Root
Certificate Authority – G2

}
{

Subject: /C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc./CN=Go Daddy Root
Certificate Authority - G2
Issuer: /C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc./CN=Go Daddy Root
Certificate Authority - G2

}

5

© 2006 Open Grid Forum

TLS negotiation sequence

6

Client Server

Keystore

Truststore

ClientHello

ServerHello

CertificateChain

Truststore CertificateRequest

Validate server
certificate

Keystore

Server certificate
chain

Trusted CA
list

ServerHelloDone

Find appropriate
certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec Truststore

Validate
certificate

1

 3

 4
 5

Finished

ChangeCipherSpec

Finished

 2

© 2006 Open Grid Forum

Steps: TLS handshake protocol

•  The client sends a "Client hello" message to the server, along
with the client's random value and supported cipher suites.

•  The server responds by sending a "Server hello" message to
the client, along with the server's random value.

•  The server sends its certificate to the client for authentication.
•  The server may request a certificate from the client (client

authentication), and if so, sends a list of certificate authorities to
the client, one of which must have signed the client’s certificate.

•  The server sends the "Server hello done" message.
•  If the server has requested a certificate from the client, the client

must send one signed by a listed certificate authority, otherwise
the client aborts the handshake sequence.

•  The client creates a random Pre-Master Secret and encrypts it
with the public key from the server's certificate, sending the
encrypted Pre-Master Secret to the server.

7

© 2006 Open Grid Forum

Steps: TLS handshake protocol

•  The server receives the Pre-Master Secret. The server and
client each generate the Master Secret and session keys based
on the Pre-Master Secret.

•  The client sends "Change cipher spec" notification to server to
indicate that the client will start using the new session keys for
hashing and encrypting messages. Client also sends "Client
finished" message.

•  Server receives "Change cipher spec" and switches its record
layer security state to symmetric encryption using the session
keys. Server sends "Server finished" message to the client.

•  Client and server can now exchange application data over the
secured channel they have established. All messages sent from
client to server and from server to client are encrypted using
session key.

8

© 2006 Open Grid Forum

Notes

1.  The server sends its certificate and the list of certificate authorities that have
signed the certificate from leaf to root.

2.  The client validates the the server certificate and checks its local trust store to
determine if the provided certificate can be trusted. It is important to note that
the client does not require a list of valid CA provisioned locally, but only the
server certificate itself.

3.  The server sends a list of DNs for all certificates within the local trust store (CA
certificates), that the server will accept as valid signing CA. The client must
respond with a certificate signed by one of the DNs. The implication of this
requirement is that the server’s trust store must contain the issuing certificate
of every client certificate used to connect, and depending on the validation
policy configured, could require signing certificates up to the root CA.

4.  The client returns an appropriate certificate signed by one of the CA
certificates listed by the server. If an appropriate certificate cannot be found
the handshake is aborted.

5.  The server validates the supplied client certificate against the local trust store.
If the certificate has a valid CA chain then it is accepted.

9

© 2006 Open Grid Forum

The leaky world of trust

10

Root CA

Intermediate
CA #1

Client
Certificate #1

Client
Certificate #2

Client
Certificate #3

Depth

0

1

2

If we want to allow client certificate #1 to access our NSA, then we must have the Root CA and
Intermediate CA #1 as trusted CA within our server. Unfortunately, this also means we will be able to
verify the identity of Client #2 and #3, allowing for a TLS session to be established.

Use of certificate depth:

•  A verify depth of “0” means only self-signed certificates are allowed.
•  A verify depth of “1” means only certificates directly under a self-signed certificate are

allowed.
•  A verify depth of “2” means at most one intermediate signing certificate is allowed.

© 2006 Open Grid Forum

Issues

•  TLS is based on a trust relationship - I will trust a certificate
signed by a Certificate Authority I also trust.

•  The server side is not provisioned with individual client
certificates, but requires the root signing CA certificate and any
intermediate CA so that any presented client certificate can be
validated.

•  This opens up successful TLS negotiation for any clients signed
by CA certificates provisioned in the server.

11

Unfortunately, after the TLS layer has verified the client certificate,
further access control is required within our NSA applications to
access control clients, granting access to only those certificate DNs
that truly have access.

© 2006 Open Grid Forum

What are self-signed certificates?

•  A self-signed certificate is a certificate signed with its
own private key.

•  If the parties know each other, trust each other to
protect their private keys, and can securely transfer
public keys (e.g. compare the hash out of band), then
self-signed certificates may decrease overall risk
when compared to a certificate authority (CA) signed
certificate.

•  Self-signed certificate transactions may also present
a far smaller attack surface.

12

© 2006 Open Grid Forum

Advantages of self-signed certificates

•  Cost
•  Self-signed certificates can be created for free using a wide variety

of tools.
•  Certificates bought from major CAs can cost from tens to hundreds

dollars per year depending on the level of trust.

•  Speed to Deploy
•  Self-signed certificates require the two parties to interact (e.g. to

securely trade public keys).
•  Using a CA requires only the CA and the certificate holder to

interact; the holder of the public key can validate its authenticity
with the CA's root certificate.

•  Customization
•  Self-signed certificates are easier to customize, for example a

larger key size, contained data, metadata, etc.

13

© 2006 Open Grid Forum

Example signing hierarchy

•  A self-signed certificate has the same Subject and
Issuer DNs.
{

Subject: /C=CA/ST=ON/L=Ottawa/O=US Department of Energy/OU=Energy
Sciences Network/CN=John MacAuley/emailAddress=macauley@es.net
Issuer: /C=CA/ST=ON/L=Ottawa/O=US Department of Energy/OU=Energy Sciences
Network/CN=John MacAuley/emailAddress=macauley@es.net

}

•  This indicates the Certificate Authority used to verify the
authenticity of this certificate is the certificate itself (it is a
root certificate).

14

© 2006 Open Grid Forum

Private certificate authorities

•  Self-signed certificates require each certificate to be
added to the trust store
•  Although manageable for NSA peering into external

domains, it may not be appropriate for all locally deployed
applications requiring access to an NSA.

•  Creating your own private “root” certificate authority
allows for the signing of your own certificates
•  Having the ability to provision a private root CA, and not

worry about installation of individually generated certificates
signed by this CA can provide flexibility.

•  This also allows for a very restricted and controlled
certificate pool to allow only approved clients to
establish a TLS session.

15

© 2006 Open Grid Forum

Recommendation

•  If people are open to making our NSA peering more secure via
TLS then…

•  Switch to the use of self-signed certificates allowing for TLS
verification of only allowed NSA.

•  We already have ad hoc procedures in place to exchange NSA
certificates so this provides a relatively secure solution for the
turn-up of NSA peering.

•  Additional NSA access control mechanisms can be added on
top of TLS as needed by the individual NSA implementations,
however, this base TLS policy will guarantee only the desired
peers will be allowed to establish.

•  Sites can use private root certificate authorities to manage
groups of certificates if needed for larger local client
deployments.

16

