OpenGridForum

OPEN FORUM | OPEN STANDARDS

NSI CS Protocol State Machines
and Message Handler

NSA: uRA, Aggregator and uPA

uRA: Ultimate
Requester Agent

AG: Aggregator

uPA: Ultimate Provider
Agent

NRM: Network
Resource Manager

NSA

State Machines and Message
Handler

Behavior of NSI CS protocol is modeled as state machines and
message handler

State Machines:
— RSM: Reservation State Machine
— PSM: Provision State Machine
— LSM: Lifecycle State Machine
Aggregator:
— can talk to upstream and downstream NSAs
— Has RSM, PSM and LSM

uPA

— Can talk to upstream NSAs only
— Has RSM, PSM, ASM and LSM

Aggregator

n

NSI message

-

Message

_

N
~

)
/.(a Resv.

N

SM

SR
Prov.

Handler

J

7)

SM

e/

Lifecycle

SM

NSA

NSI message

L L

uPA

NSI message

N

R
= L i3 i
L €1 ' Al
oz | e B
! J /hlﬂ.lll\
v v v \ 4
Q j
o @
5 o
v o
UV ©
= T)

>rsv.rq

>rsv.rq

<rsv.cf

<rsv.cf

Reserving

<rsv.fl

<rsv.fl

Reserve
Failed

Reserved

RSM: Reservation State Machine

>mdfychk.rg

>mdfychk.rq

Modify

Checking

<modify.cf

<modify.cf

<mdfychk.cf

Modifyin

8

;>modify.rq

: *1:Modify Checking,

Smodity.rq Modify Checked,
Modify Failed,
Modify Timeout

<mdfychk.cf

<mdfychk 1

<mdfychk 1

<mdfycncl .cf

<mdfycncl .cf

Modify
Failed

Modify
Canceling

>mdfycncl .rq

>mdfycncl.rq

and Reserved

(modify_timeout)

<modifyTimeout.nt k

Modify timeout transitions

Modify back to Reserved. (This
Timeout transition will only happen
in UPA)
‘ Initial State

‘ Transitional States

NB: Requests* received in this state is queued and
processed only when it transitions to a Stable
State. *NB: Exceptions are term.rq and
unexpected messages (e.g. illegal sequence)

‘ Stable States

. Final State

Created

PSM : Provision State Machine

Schedule
d

>prov.rq

>prov.rq

<prov.cf
<prov.cf

>prov.rq
>prov.rq

‘ Initial State

‘ Transitional States
NB: Requests* received in this state is queued and
processed only when it transitions to a Stable
State. *NB: Exceptions are term.rq and
unexpected messages (e.g. illegal sequence)

‘ Stable States

‘ Final State

07/03/2013

<term.cf

<term.cf

LSM : Lifecycle State Machine

Terminati

ng

>term.rq

>term.rq

@ nitial State

@ Transitional States

O stable States

@ rinal state

NSA: uRA, Aggregator and uPA

eeeeeeeeee

Message
Handler

D NSA
ssssssssss
L
[3
NSImessage
Message NRM
Handler T
"R
..DB
~— NSA

N

I\A:'F\l
IVIUUII

Yy

Modify operations modify reservation
Currently, following two changes are supported

— Change end time of a reservation
— Change bandwidth

Modify is a 2-phase operation
— 1: check availability (ModifyCheck.rq)

lad . e ttamom o o osam

* Note: resources are IIEIU

— 2: Commit (Modify.rq) or Abort (ModifyCancel.rq)
When committed, the reservation is updated

— Reservation has a version number assigned by uRA, and the
version number is updated when committed (uniformly
increasing)

SION aRAagRretrease

\ 7

nV'f\
rouvuyv

e Provision state machine is independent from the
reservation state machine

e Provision state:

— Data plane should be activated if the PSM is in “Provisioned”
state AND start_time < current_time < end_time

— Data plane shall not be activated before the start_time

: . | N . |
ahdreleased

\ 7

4 ~AtiAn
LiIvadlivll

n V\ -\ ™~
Udld Pid dC

Data plane should be activated if the PSM is in “Provisioned”
state AND start_time < current_time < end_time

Activation is done at the timing of following events (if the above
condition is met), using the latest reservation information

— PSM transits to “Provisioned”

— At the start_time

— Reservation is updated (by commit of modify)

N an error

_‘i

— Data plane is recovered fro
Data plane activation/deactivation are notified by
DataPlaneStateChange.nt notification messages.

Errors are notified by a generic error message

+AaDlAN
Lari

~C+
dliCol

Udld d\,ls.l\}

 PA and aggregator has DataPlaneStatus information

— (Boolean) Active: True if data plane is active. For an aggregator, this
flag is true when data plane is activated in all participating children

— (Int) Version: For a uPA, current (latest) reservation version number.
For an aggregator, the largest version number of the participating
children. This field is valid when Active is true.

— (Boolean) VersionConsistent: Always true for uPA. For an aggregator, If
version numbers of all children are the same, This flag is true. This
field is valid when Active is true.

e When a valid filed of DataPlaneStatus is changed,
DataPlaneStatusChange.nt is sent up.

DataPlaneStatus

Active
Version
VersionConsistent

NAa+raAaDIlAnRACH+A+r-Ar
LJdeI'IdI ICToLlLdltT U

Chaca ntl(D)
Chage.nt{Z)

 An aggregator keeps an array of statuses of its children,
ChildrenDataPlaneStatus[1..n]

e Aggregator’s DataPlaneStatus is determined by the following rule
if all of ChildrenDataPlaneStatus[1..n].Active are true

then
{

DataPlaneStatus.Active = true

DataPlaneStatus.Version =
maximum_ of(ChildrenDataPlaneStatus[1..n].Version)

If all ChildrenDataPlaneStatus[1..n].Version are the same, and all
of ChildrenDataPlaneStatus[1..n].VersionCosistent are true

then DataPlaneStatus.VersionConsistent = true

else DataPlaneStatus.VersionConsistent = false

ChildrenDataPlaneStatus

}
Active | Active
Ver. Ver.
VC VC
Child 1 Child 2

Active

Ver.

VC

Child n

DataPlaneStatus

Active
Ver.
VC

\ 7

+:f +1iAance N A~+ AtiAan rala+taAd
| LIVIIS. ALLIVALIVUIT 1TIdLCU

Cd

Not

e There are no activateComplete.nt nor
deactivateComplete.nt

e A general error message is used to notify following
events. Those error are sent up the tree to uRA
immediately

— activateFailed: Activation failed at the time when uPA should
activate its data plane

— deactivateFailed: Deactivation failed at the time when uPA
should deactivate its data plane

— dataplaneError: Data plane is deactivate when deactivation is
not expected. The error is recoverable.

— forcedEnd: Something unrecoverable is happened in uPA/NRM

'aYa B I \A'L\ L‘\ 'ale ¥ a) 'F"\:I
cyu VWViliCill Call 1all

e Operations which can functionally fail are:
— Reserve.rq
— ModifyCheck.rq
— Those requests fail when requested resources are not

available.

 Other operation cannot fail. However, they can
timeout in MTL/MH, or can be denied because they
are invalid requests.

— If a SM is at a state in which the request cannot be
received, the request is denied.

 * na (not applicable) message is returned.

Message Handler (MH) and

Message Transport Layer (MTL)

NSI stack

Message Handler

~

U4

Message Transport
Layer

I—M,\.—

MH is a part of NSl stack, and uses MTL to
send/receive messages

MH is primarily responsible for keeping track
of messaging state, e.qg.
 Who was the message sent to

 Was the message received (i.e. ack’ed or MTL
timeout)

 Who has not replied to the message (e.g. *.cf,
*fl, etc)

« MTL is primarily responsible for sending and receiving messages, and
notifying MH if the message was received, or if a (MTL) timeout occurs
« MTL interface (to MH) has 2 simple operations:

» Send: blocks until ack is returned by destination MTL, or timeout happens.
Timeout value is implementation dependent. NB: The MTL may be
implemented to retry sending messages, but this is opaque to the MH

 Receive: a thread in MH is invoked when a message is received

Message ack, reply and timeouts

O . MTL timeout may happen

 Requester ﬂ Provider (O : MH timeout may happen
MH MTL TL MH .
 Ackissent by MTL for each
| request
thread (n@fﬁ request MESSage
blocked ack — Ifackis not returned in a
return reply certain period of time, MTL
Mmessage | thread timeout occurs
™ < (D nblocked . .
~ _reply — [ack - e Reply is sent by MH (via
return MTL) and is either confirm,
fail or not_applicable
notification _ _
— MH can timeout if expected
message h : :
Notificatione——) btlorc?lifld reply is not received from a
— || aek child
! e

\ / _ /

Tirman~iide
FITTITUULD

Message transport layer (MTL) timeout
— Underlying MTL (http/tcp) initiates a MTL timeout
— Happens when an ack is not returned for a message.

Message Handler (MH) timeout

— MH can timeout if a reply message is not returned in a certain period
of time

MH notifies both MTL and MH timeouts to the parent RA

When a MTL/MH timeout is notified, uRA can either retry or
terminate the connection.

— Retry is requested by NSI_messageRetry.rg, which has the original
request message's id (correlation id) as a parameter

— MH keeps not-yet-replied requests in a table, so that it can re-send the
request.

Tables an aggregator MH maintains for
each reservation (connection)

FAIL_FLAG(cor)

CON A z Parameters €
A
CL(con)
—>1 NSA1 | C_CON1 | A1 | Z1 | Parametersl | RSM1 | PSM1 | ASM1 | LSM1 |&=
—>] NSA2 | C_CON2 | A2 | Z2 | Parameters2 | RSM2 | PSM2 | ASM2 | LSM2 |&=
—> €
—> <
——1 NSAn | C_.CONn | An | Zn | Parametersn | RSMn | PSMn | ASMn | LSMn €=

Generated for each reservation (connection)

Expected states of children
including version info.
(for non-recursive queries)

]

A 4

COR |€>| FAIL_FLAG

1: RCV_LIST(cor)

C_COR1 | STATUS1

C_COR2 | STATUS2

biidy

C_CORn | STATUSNn

]

Flags to indicate:

- Areply has been received

- AMTL timeout has occurred
- A MH timeout has occurred

Generated for

each request

v\

I\A:'F\l @Y
1HTTUUI

("~ ~Al AFf+Av +
Y\.«d ICLCI AlILCI] LU

v\

' A1
IH1ITUUL

e

o After modifying operations, if a NSA is already
In RESERVED state, it can receive

NSI_modifyCancel.rq and reply
NSI_modifyCancel.cf, but the modification is
not rolled back. The system may be in an
inconsistent state (different versions across
the system) after those operations.

Notifications: modify timeout and
MTL failure

 NSI_modifyTimeout.nt

* NSI genericEvent.nt
— Message delivery failure will be notified by this
message (to be defined)
e When a MTL/MH timeout is notified, uRA can
either retry or terminate the connection.

— Retry is requested by NSI_messageRetry.rg, which
has the original request message's id (correlation
id) as a parameter

Tt\rm

1C

[

' -~ 4
1111 iadl

N

U Lolvl

lon an
* A connection lifecycle is terminated when
NSI terminate.rq is received.

e LSM (Lifecycle State Machine) handles the
terminate request.

— Terminate request will delete the RSM, PSM and
ASM, but the LSM should be there to send/receive
terminate request and confirm messages

— uPA may delete RSM, PSM and ASM when it
isseues fcd_end, but LSM cannot be deleted.

