Contents

- 1. NaaS Concept
- 2. OpenNaaS Framework
- 3. NaaS Use Cases using OpenNaaS

1

NaaS Concept

NaaS Fundamentals

- NaaS is a management model related to network infrastructure servicing based on resources and capabilities
- The four pillars for NaaS:
 - Decoupled network resource mgmt./ctrl. from services delivered
 - Abstracted mgmt./ctrl. functions for manipulation in the service stratum
 - Coordinated mgmt./ctrl. functions along different strata (x-stratum)
 - Policed resource and capabilities access, depending on different resource access rights and ownership patterns
- The previous characteristics confer NaaS technical flexibility and adaptability to Cloud computing-like workflow/business needs

(Network) Infrastructure Virtualisation

- Nowadays, computer virtualisation is a step ahead of network virtualisation
 - Cloud is built on top of laaS model:
 - With easy-to-use, public interfaces
 - With a number of virtualisation technologies, with remarkable interoperation capabilities
- Cloud essential characteristics to be addressed:
 - On-demand self-service
 - Extended (virtual) resource manipulation rights
 - Resource pooling
 - Flexibility and elasticity
 - Dynamic service management

Simplified NE Model

Vertical Plane Separation

- Where is the application plane?
- Service Plane is normally replaced by human functions in telco environments
- Management Plane abstracts control functions for <u>human interaction</u>
- Control Plane can be:
 - In-box (e.g. MPLS)
 - Mixed (e.g. GMPLS w/PCE)
 - Out-box (e.g. OpenFlow)
- Data/transport Plane or the plethora of network technologies

NaaS Decoupling Points

NaaS Abstraction Levels

Implement high-end connectors to apps, app middlewares or computing/storage managers

Implement high-end network services (e.g. NSI's CS, BoD i/f)

Use embedded network control to offer atomic network services (per NE)

Decouple data from control plane to create low-level abstractions of the resources

Service Delivery

- FI Architectures adopt service-oriented approach
- IT and Network coordination is a must for ensuring:
 - **Full Dynamicity**
 - **Automation**
 - **Optimisation**
 - Elasticity
- How can infrastructure virtualisation help?

Source: GEYSERS Service Delivery Framework, D2.1 (2010)

2

OpenNaaS Framework

OpenNaaS

- On-demand provisioning of network resources using web services (commonly user-triggered)
- Recursive delegation of access rights over managed resources
- Lightweight and abstracted operation model:
 - Decoupled from actual vendor-specific details.
 - Flexible enough to accommodate different designs and orientations
 - Fixed enough so common tools can be build and reused across plugins:
 - Security, Lifecycle, Monitoring, Deployment and Upgrade
- Starting with Layer 3 (IPv4/v6)
 - "Router" resource model
 - "L3 network" resource model
- Complementing with lower layers
 - Layer 2: "GEANT BoD" resource model (AutoBAHN)
 - Layer 1: "ROADM" resource model

OpenNaaS Architecture

OpenNaaS v0.13 available!

Extensions Roadmap

Done	Current	Short-term (<6m)	Mid-Term (>6m)
L1 ROADM			
L2 BoD Domain clientAutoBAHN		BoD Domain ServerPorting Harmony IDB	BoD Domain ServerNSI interface.
	L2 / L3 Router		
	L3 Network		
			Manager GUI
		Security ManagerSAML Idp	
		Cloud Manager connectors • OpenStack	Energy consumption metrics.Infrastructure

Joan A. García-Espín -- ISOD-RG at OGF36 - Chicago (IL)

October 9th, 2012

OpenFlow Controller

Extensions in Project Lifetimes

3

NaaS Use Cases using OpenNaaS

NaaS in NSP interconnection

- Autonomous and uniform management interface do not only reduce costs...
- ... they are the only way to provide services:
 - SLA publication / query / matching / monitoring
 - Service integration
 - User identification and session handling

- Wholesale services can be provided as well by agreements among independent providers
 - No single chain-of-command
 - Automated service description and offer matching become essential

NaaS in Virtual Home-user CPEs

- Virtualise the L3 functionalities within the access network
- A multivendor core enabler for network configuration and provision:
 - Simplify L2/L3 OAM
 - Facilitate new service deployment
 - Enhance reuse of existing infrastructure
 - On-demand user enrolment
- Identity-based services:
 - On-demand provisioning
 - On-demand release
- NaaS itself for advanced users
 - VPN (eGov, eHealth, eScience...)
 - Enhanced OTT services

Virtual CPE – Scenario 1

In pre-production by December 2012

- Providers enforce parts of the CPE configuration:
 - i.e. BGP policies
- Delegation of partial configuration rights to clients
 - i.e. Internal IGP, firewall, ...
- Automated provisioning of new clients
- Reduce need for new hardware deployments

Virtual CPE — Scenario 2.1

In pre-production by December 2012

- Providers enforce parts of the CPE configuration
 - i.e. BGP policies
- Delegation of partial configuration rights to clients
 - i.e. Internal IGP, firewall, ...
- Automated provisioning of access to provider LSP channels
 - Directly or via a VPN
- Reduced need for new hardware deployments
- Reporting to existing accounting infrastructure.

Virtual CPE – Scenario 2.2

In pre-production by December 2012

- Providers enforce parts of the CPE configuration
 - i.e. BGP policies
- Delegation of partial configuration rights to clients
 - i.e. Internal IGP, firewall, ...
- Automatic provisioning of access to provider LSP channels
 - Directly or via a VPN
- Reduce need for new hardware deployments
- Reporting to existing accounting infrastructure.

Thank you! Gràcies!

Joan A. García-Espín jage@i2cat.net

(+34) 93 553 2518

janange **S**

BACK UP

Applying NaaS in a Telco Environment

The Promises

- On-demand, real-time service provision
- Flexible operation
- Cost reduction
- Multi-domain management
- Enhanced quality of experience
- Enabling better SLA management
- Reuse and possible trading of spare resources

The Challenges

- Adapt infrastructures to a virtualized approach
 - Look for compelling use cases
 - Align with required updates
- Shape operations
 - Look for efficiency gains
- Redefine processes
 - The collaborative business

NaaS Lightweigth Abstraction

- On demand (user-triggered)
 provisioning of network resources
- Recursive delegation of access rights over managed resources
- Lightweight Abstracted operational model.
 - Decoupled from actual vendorspecific details.
 - Flexible enough to accommodate different designs and orientations
 - Fixed enough so that common tools can be build and reused across plugins
 - Security
 - Lifecycle
 - Monitoring
 - Deployment and upgrade

Service layer

- Starting with Layer 3 (IPv4/v6)
 - Router resource model
 - L3 network resource model
- Complementing with lower layers
 - Layer 2: GEANT BoD
 - Layer 1: ROADMs
- Virtual Operational Support Service (VOSS):
 - Name it "Management as a Service"
 - OpenNaaS: Configuration and Activation management
 - Other management layers to be included:
 - Quality
 - Trouble
 - Policy and
 - Information

OpenNaaS Platform Details

- For developers:
 - Modern IDEs available
 - Maven based build system and dependency management
 - Plugin howto documentation
 - Several available open source plugins as reference
 - An open OpenNaaS community
 - Comercial support for underlying technologies
- Leverage building blocks, both using existing resources or for creating new ones.
 - Resource Respository and Manager
 - Protocol Session Manager
 - Standard Capabilities
 - Protocol Endpoints for remoting (SOAP, REST, etc).
 - Platform manager
 - *.apache.org deployment ready libraries.
 - While plugins can chose to use technologies like hibernate, spring or ESB, they don't have to.

OpenNaaS Stakeholders

- Network Operators with an interest on NaaS:
 - NREN.
 - Cloud Datacenter.
 - New services for ISP's.
- ISV and integrators
 - Swiss Army Knife for middleware-network integration.
- Developers and network researchers

OpenNaaS Component Architecture

OpenNaaS Bundle Lifecycle

Capabilities Map

Layer3BasicsIPv4

AddStaticRouteCommand
DeleteStaticRouteCommand
ModifyStaticRouteCommand
ConfigureIPv4Command

Layer3BasicsIPv6

AddStaticRouteCommandForIPv6
DeleteStaticRouteCommandForIPv6
ModifyStaticRouteCommandForIPv6
ConfigureIPv6Command

Layer3OSPFIPv4

ConfigureOSPFCommand
DeleteOSPFCommand
ModifyOSPFCommand

Layer3OSPFIPv6

ConfigureOSPFV3Command DeleteOSPFV3Command ModifyOSPFV3Command

Layer3Policies

CreatePolicyCommand
DeletePolicyCommand
ModifyPolicyCommand

Layer3BGPIPv4/IPV6

ConfigureEBGPCommand
DeleteEBGPCommand
ModifyEBGPCommand
ConfigureIBGPCommand
DeleteIBGPCommand
ModifyIBGPCommand

Layer3R(PIPv4

ConfigureRIPCommand DeleteRIPCommand ModifyRIPCommand

Layer3R(PIPv6

ConfigureRIPngCommand
DeleteRIPngCommand
ModifyRIPngCommand

Queue

AddActionCommand ExecuteActionCommand EraseActionCommand

Layer1Chasis

CreateLogicalRouter
DeleteLogicalRouter
GetLogicalRouters

Layer1Information

GetExtraInformation
GetSoftwareInformation
GetInterfacesInformation

Layer2Chasis

CreateSubInterface
DeleteSubInterface
ModifySubInterface
GetPeerUnitParameter
SetVLANTagging