
 13th January 2004

GGF Network Measurements Working Group
Internal Document

Network Measurements Request Schema:

INFORMAL Requirements Document

References

1. GGF NM-WG “Schemas for Exchanging Network Measurements with OGSI”: http://www-

didc.lbl.gov/NMWG/schemas/NM-WG_Schemas_for_OGSI.html
2. GGF NM-WG “A Hierarchy of Network Performance Characteristics for Grid Applications and

Services”: http://www-didc.lbl.gov/NMWG/docs/draft-ggf-nmwg-hierarchy-01.pdf
3. GGF DAMED “An analysis of ”Top N” Event Descriptions”: http://www-

didc.lbl.gov/damed/documents/TopN_Events_final_draft.pdf
4. IETF “RFC 958: Network Time Protocol (NTP)”: http://www.ietf.org/rfc/rfc0958.txt?number=958
5. Iperf: http://dast.nlanr.net/Projects/Iperf/
6. GGF Grid High Performance Networking Research Group (GHPN-RG):

http://forge.gridforum.org/projects/ghpn-rg/

Background

At GGF9 (Chicago, 5-8th September 2003) a possible requirement was identified for a data/test request
schema to complement the existing NM-WG data publishing schema [1]. An informal working group
was subsequently formed, headed by Eric Boyd, to define the requirements for such a schema.

To provide a firmer base for further discussion the group went beyond its original remit, and in
addition to this document of requirements, has produced a sample schema and examples of its possible
use.

Initial group members are given in table 1.

Loukik Kudarimoti
Nicolas Simar

Dante

Mark Leese Daresbury Laboratory
Jeff Boote
Eric Boyd
Matt Zekauskas

Internet2

Paul Mealor University College London

Table 1: Informal “request schema” group members

Overall Requirement

The basic requirement is for an XML schema that can be used to generate messages to be sent to
network monitoring systems, to make requests for historical data and the running of network
monitoring tests (whether immediate or future). We envisage a test request and report mechanism as
shown in figure 1.

XML request message
(new request schema)

XML response message(s)
(existing NM-WG schema[1])

Interim communication

Receiving
System

Client/
Requestor

Editor: m.j.leese@dl.ac.uk

 13th January 2004

Figure 1: test request and report mechanism

Note: If the request is for the running of a test, it is expected that some interim communication may
take place between the requestor and receiving system. For example, the receiving system may
acknowledge a request with “Yes, I will run your test, and will return the results when they are
available”. The request will therefore be the first part of any communication, and the NM-WG
publication schema [1] response the last. These interim communications are, so far, undefined, and are
considered beyond the scope of the request schema.

The schema should allow the specification of the following information for tests that they wish
performed, or test data they wish to retrieve:

What: measurement/metric information
Where: source & destination identifiers
When: time information
How: test parameters

Detailed Requirements

General Requirements:

1. Where possible and appropriate, use should be made of equivalent schema element names and

structures to those contained in the NMWG response schema [1].
2. It should be possible to specify a query (albeit a simple one) with a minimum amount of

information. This would be a test start and end point, a time, and a test type (metric/measurement).
Note: this is a definition of the minimum set of information required to request a test or historic
data, not the minimum set of values to be contained in a message based on the schema. Default
values could be defined for non-specified information.

 Although obviously not a direct requirement of a request schema, it is nevertheless expected that a

minimally specified request should result in a correspondingly minimal response, e.g. containing
time information and a measurement value only.

What - Measurement/Metric Information:

1. The measurement to be made/metric data to provided (characteristic) should be specified using a

dotted textual notation as described in the NM-WG hierarchy of characteristics document [2], and
often referred to as a DAMED style name [3]. Care must be taken however, that characteristic
names cannot cause contention with other areas of the schema. For example, a characteristic name
previously used in the publication schema [1], path.bandwidth.achievable.TCP, could cause
contention if the transmission protocol (TCP) could also be specified elsewhere in schema.

2. To avoid making the schema overly complex, and to avoid overloading the receiving system, it
should only be possible to specify one characteristic in each message based on the schema.

3. In addition to basic metrics, it should also be possible to request statistical data concerning a
characteristic (e.g. min, max and average values).

4. The schema should be extensible to allow requests to be made for statistical data that is currently
unsupported by the NM-WG publication schema [1].

5. To find the minimum value of a statistic over a past period would require a system to look over all
the data from that past period. If the requestor then wanted the maximum value, the process would
have to be repeated. To cut down on receiving system overhead it should be possible to request
multiple statistical analyses in the same request message. These multiple statistical analyses will of
course refer to the same base characteristic over the same time period.

6. A means should be provided to specify a sample interval on which statistical analyses should be
made. For example, if a user required the daily averages for one-way delay over a period of one
month, they would request one-way delay results for that month, with a sample interval of one day.

Editor: m.j.leese@dl.ac.uk

 13th January 2004

 The sample interval should default to the whole time period for which a request has been made,
and use the same units as all other time related parameters, as discussed in a later section.

7. To prevent the requestor being overloaded when a query results in the responder having
“excessive” amounts of data to return, the schema should include a value which sets a limit on the
number of results the responder can return.

 In the event that there are more results to return than the defined maximum, the N values closest to

target time should be returned (see “When” section for definition of target time). Further, by using
the positive and negative time tolerance values (see “When”) to control where target time lies in
relation to the measurement period (start, middle or end), it will be possible to control from which
interval of a measurement period the closest values are taken. This is perhaps best illustrated with
an example. If a query was made for the time period 12:00 to 16:00, the target time and time
values can be set as shown in Table 2 to put target time at the beginning, middle or end of the
period.

Take closest results from…

 …start of period …middle of period …end of period
negative time tolerance 0 2 hours 4 hours
target time 12:00 14:00 16:00
positive time tolerance 4 hours 2 hours 0 hours

Table 2: setting the location of target time in relation to the query period

 Allowed values are all positive real numbers, and the keyword “all”. When not specified, this value

should default to one, which when combined with the defaults for time information (see the
“When” section) result in a sensible default request of “give me your last result for characteristic
X”.

Where - Source & Destination Information:

1. The method of specifying addresses for test source and destination points should be flexible, to

allow IP addresses (both IPv4 and v6), hostnames, and even textual names to be used. As an
example of the latter, a user may want to refer to a test source and destination as “core router” and
“edge router”, thus hiding the IP addresses. This would however require the requestor and receiver
to have prior knowledge of such names. Note that multiple addresses (whether referring to
different devices or different interfaces on the same device) are being excluded to avoid making
the schema unnecessarily complex. Support will only be added if, at a later stage, sufficient use
cases are identified which require them.

2. The schema should reflect the fact that source address information should always be specified in
requests.

When - Time Information:

1. The schema should provide one primary means of specifying the time period for which tests

should be run, or data should retrieved. This should be achieved via:

a. a target time variable, which is either an absolute time, or takes the value “now”, and
b. negative and positive time tolerances, which are relative to the target time, with the negative

time tolerance also able to adopt the value “infinity”

These values delimit a time period, running from (target time – negative time tolerance) to (target
time + positive time tolerance). When combined with the variable restricting the number of results
to be returned (see “What”, point 7), two basic queries against historic data are supported:

i) With the maximum results set to “all”, the query is essentially to supply all matching

measurements in the time period
ii) With the maximum results set to one, the time tolerance values essentially define the period

for which a measurement is considered to be acceptable. For example, if a user is only

Editor: m.j.leese@dl.ac.uk

 13th January 2004

interested in a value if it is within 10 minutes of 14:00, target time can be set to a value
representing 14:00, with the positive and negative time tolerances set to values representing
10 minutes. Preference is always given to “closeness” to target time, whether referring to
matches against historic data, or the running of new tests.

In terms of requesting tests, these time values together with the testing interval described in point
5, define the period over which tests should be run.

Target time defaults to “now” if not specified, with negative time tolerance defaulting to “infinity”
and the positive time tolerances to zero. When combined with the variable restricting the number
of results that can be returned (see “What”, point 7), this provides a sensible default request of
“give me your last result for characteristic X”.

One advantage of the positive time tolerance being relative is that when used with a target time of
“now” it ensures that the query period will always be “positive time tolerance” long, no matter
when the query is processed.

2. For ease of use, and as in the first draft of the requirements, it should also be possible for a time
period to be specified using absolute start and end times, for which all matching results are
returned. Start and end time should be implemented as pseudo variables however, and should be
mapped at the receiver to the primary time type, as shown below:

 target time = start time
 negative time tolerance = 0
 positive time tolerance = end time – start time
 maximum number of results = all

Start and end times must adopt the value “now”, or be absolute times. As with the target time
combination, start and end time can be used to request the scheduling of tests, if the times are at all
in the future.

An additional advantage of the start and end time combination is that, because end time can be
specified as an absolute, it can be used to set a clear cut off time, after which no data is considered
or tests run, no matter what the value of the start time.

3. Absolute times should only be specified:
a. as seconds since midnight on 1st January 1970 UTC, or
b. using an appropriate pre-defined XML type for textual representation of dates and times, or
c. as an NTP timestamp [4]

4. Variables taking the value “now”, if evaluated (converted to a real time), should be done so as late
as possible, in terms of both:
d. time – “now” should be evaluated when a request is about to be processed, not when it

arrives), and
e. location – if the first system to receive a request is not the one to process it (e.g. it is acting as

a proxy or wrapper for another system) it should, where possible, be the final system that
evaluates “now”

It is conceivable that “now” need not be converted to a timestamp. For example, if the following
query was made:

 Characteristic = [any_metric]
 target time = “now”
 negative time tolerance = “infinity”
 positive time tolerance = 0
 maximum number of results = 1

 The receiving system could interpret it as “give me your last result for [any_metric]” without ever

needing to evaluate “now”.
5. It should also be possible to specify a testing interval to control how often future tests should be

run between a beginning and end of a test period. For example, with start time set to 14:00 and end
time at 15:00 with a testing interval of 30 minutes, tests should be run at (or close to) 14:00, 14:30,
and 15:00.

Editor: m.j.leese@dl.ac.uk

 13th January 2004

6. The testing and sample intervals should both be specified in seconds
7. Where times and time periods are given in seconds, accuracy to a least µS must be supported.

How - Test Parameters:

1. To satisfy certain requests, the receiving system can decide to run on-demand tests. There may

instances however, when this is undesirable to the requestor. They may not be prepared to wait for
a test to be run for example, or may not want to run a test which could place extra load on the
network. It should therefore be possible for the requestor to indicate whether a request should ever
result in a test being run. This can be facilitated by a Boolean type, which should be entirely
optional, and default to allowing tests, if not specified.

2. The schema should allow test and tool parameters to be specified in a similar way to the existing
NM-WG publication schema [1], with a pre-defined set of tags, such as:

<packetTypeParam>TCP</packetTypeParam>

The pre-defined list should be a subset of those tags used in the publication schema [1]. To avoid
making the request schema overly complex, tags that add little value to a request (e.g. operating
system and version) should be omitted.

3.
a. In addition to allowing parameters to be specified using separate XML tags, the schema

should also allow test (tool) parameters to be specified with strings of command-line style
parameters. For example, if using the Iperf tool [5], a request could contain elements such as:

 <sourceParameterString>-c -p 5001</sourceParameterString>
 <destParameterString>-s -w 1024K</destParameterString>

Two command-line style “fields” are required, with one for each end of a possible test path.
Further, these elements should be lists of parameters not tool command lines. The tool name
can be specified elsewhere in the schema, and it should be left to the receiving system to
decide on an appropriate executable, including the special case where the executable to be
used differs depending on whether it is to be the source or destination of a test.

b. To avoid possible contention between tool parameters specified using parameter specific tags,
and in command-line style parameter strings, schema users will only be able to specify
parameter values in one or the other, not both. In the event that both are used, the parameter
list string should take preference, and the values in parameter specific tags should be ignored.
It should be possible however, to use the attributes of parameter specific tags in conjunction
with command-line style parameter strings (see point 8).

Contention could also take place between the source and destination address information and
the command-line style parameter strings. To prevent this, the source and destination address
fields should be ignored when a command-line style parameter list is used, for all uses but
populating a response with address information.

c. For situations in which destination parameters make no sense, for example, in the case of
“ping” testing where the remote end should respond automatically, any supplied parameters
should be ignored.

4. The order in which parameters are specified in messages based on the schema must be maintained
between the message and actual system calls to test tools. This is to prevent situations arising
where the behaviour of a tool could be altered by the order in which its parameters are specified
(whether this is the intended operation or through a software bug). This should apply whether the
parameters are specified in parameter specific tags, or in a command-line style list.

If for example, a request message was made for an iperf [5] test using port 5001 and a TCP
window size of 1048576, part of the request could look like …

<toolName>iperf</toolName>
<port>5001</port>
<tcpWindowSize>1048576</tcpWindowSize>

…in which case the resulting system should look something like…

Editor: m.j.leese@dl.ac.uk

 13th January 2004

iperf –p 5001 –w 1048576

…which gives the port first and TCP window size second, as in the request message.

5. When a request is received for the running of an on-demand or future test, any test parameters for
which no value is specified should use the receiving system’s default value for that parameter. If
the request results in a search of historic data, then unspecified parameters should match against
any value of those parameters.

6. The schema should allow measurement parameters given using parameter specific tags to be
specified as being required or optional. If a “required” parameter cannot be supported, then the
request should be rejected. “optional” indicates a requestor’s preference to a particular value or set
of values.

This applies to requests that may result in tests being made in the future and those which are
queries against historical data. In the case of the latter, specified parameters act as a filter for
returned data.

The feature should not be available for command-line style parameter strings, as this would make
it a requirement for the receiver to parse the strings to determine each requested option. The
requirement for parsing would apply to at least the “required” case, as the receiver would need to
identify and then compare the requested values against its known capabilities, before running any
tests.

7. A facility should be provided for requesting that the parameters used to make a measurement are
reported in the response. This applies to requests relating to historic data and on-demand or future
tests. It should be available on a per parameter basis.

In cases where parameter information is unavailable, the receiving system is expected to report
“unknown” for optional parameters, and reject the request completely if any parameters are marked
as required.

The facility should not be available for command-line style parameter strings, as this would make
it a requirement for the receiver to parse the strings to identify each requested option, so that it
could establish which parameters to report.

8. The schema should provide the ability to set ranges and preferential orders for tool parameters.
However, this only applies to parameters specified in parameter specific tags.

This is perhaps best illustrated with two examples, both using entirely fictional XML tags. For a
range, the following …

 <tcpBufferSize range=”max”>4194304</tcpBufferSize>
 <tcpBufferSize range=”min”>1048576</tcpBufferSize>

…could be used to indicate that TCP buffer size should be between 1 and 4 Megabytes. While, for
a preferential order, and by saying that order is significant, the following …

 <tcpBufferSize>4194304</tcpBufferSize>
 <tcpBufferSize>1048576</tcpBufferSize>

…could meaning use 4Mb for TCP buffer size if possible, and 1Mb if not.

9. The specification of range and/or preferential order should work in conjunction with parameters
being required or optional. Again this only applies to parameters specified in parameter specific
tags.

Desirable Features

1. XML is extensible, and so users should be able to add custom tags to messages based on any

schemas resulting from this document. This would be useful if, for example, the pre-defined list of
parameter specific tags did not meet a user’s requirements. However, advice needs to be sought on
the mechanisms for adding custom tags, and where in a request messages this would be

Editor: m.j.leese@dl.ac.uk

 13th January 2004

appropriate. Until this advice has been gained, addition of custom tags has been dropped as a hard
requirement.

Non-Requirements

1. NM-WG contributors have expressed great interest in developing a mechanism by which the

monitoring and data publishing capabilities of receiving systems can be discovered. Examples
include the ability to ask a system such questions as:

i) what network monitoring data do you have available?
ii) what tools are available?
iii) what are their versions?
iv) what parameters can be used with them?

There is no requirement however for the request schema to support this mechanism. Capability
discovery is viewed as a facility to be provided either by technologies under development by the
wider web/Grid services community, or by a separate NM-WG schema.

Use Cases

To be added.

Assumptions

1. It is assumed that this activity does not contradict or duplicate network monitoring schema work

being undertaken by any other GGF groups, such as the GHPN-RG [6].
2. It is also assumed that the schema need not concern itself with aspects of security, such as user

authorisation and authentication, and that this will be carried out by a function of the
communication mechanism.

3. It is expected that systems will record or be aware of the parameters:
a. they have used in the running of tests for which they have stored historic data, and that
b. they will use for tests to be run in the future for which they have been requested to report the

actual parameters used
See also, the “How” section, point 9.

4. As previously mentioned in the Non-Requirements section, it is assumed that the schema need not
provide any support for the discovery of a receiving system’s capabilities.

Outstanding Issues

1. Interim communications, as described in the “Overall Requirement” section, and any associated

schemas are yet to be defined.
2. A possible requirement has been identified, but not yet addressed, for the schema to specify the

return language and transport mechanism for responses to requests. This would allow alternatives
to the NM-WG publication schema [1] to be used.

3. It is a requirement that "Where possible and appropriate, use should be made of equivalent schema
element names and structures to those contained in the NMWG response schema." This will
inevitably lead to both schemas containing some identical, or near identical sections. In the
interests of maintenance and avoiding error-prone duplication, efforts need to be made to share
duplicate components between the request and publication schemas. Indeed, a hierarchy of
components has been suggested, from which relevant components are selected to make up varying
types of NM-WG schemas. This issue requires further study.

4. It is currently a requirement that for simplicity, the schema support one request at a time. There are
concerns, that this will place undue loading on both request producing and request satisfying
systems, in cases were several different metrics are required. These concerns, and their possible
solutions, need to be investigated.

Editor: m.j.leese@dl.ac.uk

 13th January 2004

5. In relation to the previous point, the possibility of using wildcards for characteristic names has
been raised. This would allow matches against more than one characteristic per request. A decision
on whether to include this as a requirement is still to be reached.

6. The pre-defined set of tags for specifying test (tool) parameters is yet to be created.
7. The handling of units for parameters also needs to be defined. In the case of TCP buffer size for

example, for a one Megabyte buffer, should a requestor specify 1048576, 1024K, or 1 with some
form of “units” indicator set to “megabytes”, “megabyte”, “MB” etc.? Reference can be made to
the handling of units in the publication schema [1].

8. Discussion is required as to whether two lists of parameters specific tags are required, with one for
each end of a possible test path (source and destination). Any decision is likely to centre on
whether a majority of the parameters in the pre-defined list of tags (see point 6) are source and
destination specific, or common to the connection between the two. In the latter case, a single list
could be used, including common cases and source and destination specific tags, as exampled
below:

 <protocol>TCP</protocol> <!-- common to source & dest -->
 <sourcePort>5001</sourcePort> <!-- specific to source end -->
 <destPort>5002</destPort> <!-- specific to dest end -->

9. Discussion is required on whether it should be possible to specify source parameters using

parameter specific tags, and destination parameters using a command-line style parameter list, and
vice-versa.

10. By using the attributes of parameter specific tags in conjunction with command-line style
parameter strings, it would be possible to request the reporting of parameters, when those
parameters had been specified using a command-line style parameter string. Currently, this is not
possible (see “How”, point 7). The following example For example however, to use

Parameters contained in command-line style parameter lists can also be specified as required or
optional, using empty parameter specific tags, as shown the fictional XML example below:

<toolName>iperf</toolName>
<port report=”true”></port> <!-- Any value is ignored -->
<sourceParameterList>-p 5001</sourceParameterList>

The questions is whether this should be incorporated into the requirements.

11. Advice needs to be sought on the mechanisms for allowing custom tags to be added to messages.
12. Discuss the inclusion of a field for transaction IDs in both the request and existing publication

schema [1], to allow better tracking of interactions.

Mark Leese,
13th January 2004.

Editor: m.j.leese@dl.ac.uk

