GWD-R-XXXX Editors:

A.Sim

Grid Storage Resource Management A. Shoshani
https://forge.gridforum.org/projects/gsm-wg

9/5/2007

The Storage Resource Manager

Interface Specification
Version 2.2

Status of this Memo
This document provides information to the Grid community regarding the specification of the Storage Resource
Management. Distribution of this document is unlimited.

Copyright Notice
Copyright © Open Grid Forum (2007). All Rights Reserved.

Abstract

Storage management is one of the most important enabling technologies for large-scale scientific investigations.
Having to deal with multiple heterogeneous storage and file systems is one of the major bottlenecks in managing,
replicating, and accessing files in distributed environments. Storage Resource Managers (SRMs), named after their
web services protocol, provide the technology needed to manage the rapidly growing distributed data volumes, as
a result of faster and larger computational facilities. SRMs are Grid storage services providing interfaces to storage
resources, as well as advanced functionality such as dynamic space allocation and file management on shared
storage systems. They call on transport services to bring files into their space transparently and provide effective
sharing of files. SRMs are based on a common specification that emerged over time and evolved into an
international collaboration. This approach of an open specification that can be used by various institutions to
adapt to their own storage systems has proven to be a remarkable success — the challenge has been to provide a
consistent homogeneous interface to the Grid, while allowing sites to have diverse infrastructures. In particular,
one of the main goals to the SRM web service is to support optional features while preserving interoperability.

GWD-R-XXXX 9/5/2007

Table of Contents

QT T [T 4T o T 4

LAY L=E T T = i = s 13PN 4

1. Common Type DefiNitioNscccceeeeiiiiiiiiiiniiiiiiiiiieiiniiirreeseiistiieessssssssietieessssssssssssssssssssssssssasens 6
1.1, File STOTABe TYPEooeiiiieieiiiie ettt ettt ettt e st e e e sttt e s e bt e e s sabaee s s beeessbteeesabeaeesabbeessntaeesbaaeesnsteeesnnsans 6
O = VOO PRSP OUPUPUPOPPPROE 6
1.3, REEENEION POLICYoooeiiiieiei ettt e e e e e et e e e e bt e e e ebaeeesbbeeeessaeessaaaeesteeesnssnen 6
Ji4. ACCESS LatONCYt a et et et e et et e et e et et et e e et et e e eaaeaeeeaeee naann 6
1.5. PermisSion IMIOTEcooiiiiiiiiiieiie ettt ettt e s e e bt e e sae e st esabeesabeesabeesateesabeebeesbaesbeesas 7
B =T s TR o] o T Y 1= PSPPSR 7
1.7, ReQUEST TYPE....oiiiiiee et e e st e e s e s e et e e e s s e r et e e s e e ene seanes 7
1.8. OVEIWIIEE IMMOTE ... ittt ettt ettt rtt e e e s et e s s bbe e e sabeeeesbbeeesstaeesabaaeesnsteeesansneas 7
1.9, File LOCAIIEYeeiiiiiee ittt ettt ettt e e st e e s s bt eessabeeeesabeeesensteessabaaeesnbee shreeennns 7
F.00. ACCESS PAtterneeeeeeciiee ettt e e e st e e e e e e e e e e e e s e e e e e e e e e nnrneeee e 8
I R oY T [Tt f Lo T T N 1T TSP 8
1,22, STALUS COUSeiiuiiiiiieiiee ettt ettt e rb e et e s be e s a b e e sa b e e sate e sa b e e bt e sabeeeabeesabeesabeesabaesabeenateen eenbes 8
1.13. Retention POLICY INFO..........oooiie et e e e e e tae e e ae e e e s e e e e e nneaeeennees 9
1.14. REQUEST TOKEN........oiieiiiiieeetee ettt st s e e st e e s ae e e bt e e bt e st e e sabeesabeesnbeesateesane e 9
115, USEE POIMISSION.iiiiiiiiiiiiiiieee ettt ettt e e e e s sttt e e e s e sssbat e e e e e e s s ntaataaeesssasbstaeeeesssassnnaaeeans 9
1.16. GroUP PEIMISSION........coiiiiiiiiiiiee ittt ettt e st e e s sttt e s bt e e s sabaeessabaeessasaeeesabeeesnnsteesnasees 10
R L= 13 T 23 =T PUPN 10
0 U ol 1T 1T TSRO USPRP 10
1.19. Time in Seconds (Lifetime and ReqUEStTIME)cccceeivieiiieiieeiie ettt e 10
1200 SURL.....neiitteetee sttt ettt ettt st e st e s a b e e s ht e e s h e e e bt e b e e e he e s b e e e bt e sabeenabeenhbeenheeebe nheesbeenree e 10
131 O 0 PN 11
1.22. REEUIN STABUS....coiiiiiiiiiii ettt e e et et e e s s ettt e e e e s e s aasteaeesssasbnteaeeesssansnnneee be 11
1.23. RetUrN STAtUS FOr SURL.........c.coiiiiiiieiiieie ettt ettt tae e saee et e e sbeeebe e sbeessteessaeenseeessaeensens 11
1.24, File IMETaDAtacccouiieiiiiiieeiee ettt ettt e e st e et e e e s ba e e e s bte e e saatee e sbbeeeeate e e e abaeesaareeeeant s 11
1,25, SPACE IMEtaDatao ————————————————tttttararararararae 12
1.26. DIrectory OPLIiONooiiiiiii e e e e e e s e e e e e e et b r e e e e e e e nntaaeeeeeeenanrraaes 12
1.27. EXEFA INTO .o sttt et e e s be e st e st e e nh b e e nateen eebeena 12
1.28. TransSfer PArametersccooviiiiiiiieieiiee et e e ettt e et e e s stae e e s sate e e saeeeeessteeesanseeesnnseeeennsenesnnnns 13
1.29. File Request for SrMPrepar@TOGELcoouiiriiiiiiiiieeite ettt ettt et be e s ne e sab e sneesaees 13
1.30. File Request for STMPrepar@TOPULccccueiriiiiiieite ettt e ere et see e see st e e be e sreesabeesreenaes 13
1.31. File REQUEST fOr SIMOCOPYciiiiieiieiiieiieeitieesteeeiteeesteesteesteeseteesateesbaeessaesbeesseesaseessseessseesssasnses 13
1.32. Return File Status for SrMPrepareTOGEeLcoeeeeiiiiieiiiieecciee et ectee et e e e sae e e setaeeeesaraeeennes 13
1.33. Return File Status for sSrmBringONIINE................ccviiiiiiii e 14
1.34. Return File Status for SrmPrepareTOPULc.c.ceoeiiiiiiciie e e e e s e e e seaeeeees 14
1.35. Return File Status fOr SIMCOPYooiiiiiiiiiiee et e et e e e e s re e e e nae e e snaeeessreeenanes 14
1.36. REQUEST SUMMAIYoeiiiiiiiiiieiee ettt e s s e e st e s e b e e e s esnn e e e saneeesennneesannees 15
1.37. RetUrn STAtUus fOr SURL..........coiiiiiiiiiiiieiie ettt ece et ettt sate e s e e e sba e e steesbeesbeessseesateenseeesssaensens 15
1.38. Return File PErmMIiSSIONS..........c.c.uiiiiiiiiiiiei ettt e ite e e st e e s sta e e ssabaeessabeeesnanee 15
1.39. Return Permissions ON SURL.............cooiiiiiiiiii ettt st e et e e st e s saree e s sbeeessanee 15
1.40. Return REQUESE TOKENSc..viiiiiiieeeee ettt e e et e e e ata e e eeabe e e e abe e e eensaeeesnsaeeesnteeeennnes 16
1.41. Supported File Transfer ProtoCol...............oocuiiiiiiiie it e e ae e e s nre e e eanes 16

2. Space ManagemeNnt FUNCHIONSciiuuiiiiieiiiieniiiiieiiiiiasiiiismsiiemsiiessssiessssssessssssssssssssssssssssssssssans 17
2.1, SIMRESEIVESPACEcoeiiieieiiiieeieeee ettt st e st e e st e s e e e s s b e e e s e b et e s aaneeessbeeesenneeesnneesenneesaans 17
2.2, srmStatusOfReServeSPaCcEREQUESEcc.cioiuiiiiiiiiete ettt s 19
2.3, SIMREICASESPACE. ... eeiieieiiii ettt ettt e sttt e ettt e s sbae e s s bt e e e s bteessabeeeesbeeessataeesbaaeeesteeenan 20
2.4, SIMUPAAtESPACEooi ittt et e e et e e s sbae e s st e e e e s bteeesbeeeesbteeeeataeesbaaeeeateeenan 22
2.5. srmStatusOfUpdateSPaceREQUESToiiiiiiii ettt e e e et e e e are e e e eataeeeeareeaens 23
2.6. srmGetSpaceMetaData..............oooiiiiiiiiii e 24

gsm-wg@ogf.org -2-

GWD-R-XXXX 9/5/2007

2.7. SrmChangeSPACEFOIFII@Scccc.uiiiiiiiiiiei ettt e st e e e s bt e e s saaee e sbaeeeeas 26
2.8. srmStatusOfChangeSpaceFOrFileSReqUESL.................cooeiiiiiiiiiie e e eaae e e 28
2.9. srmExXtendFileLifeTimeEINSPACE.............oei e ee e e st e e e e stre e e e abee e esareeeens 30
2.10. SIMPUIZEFIOMSPACEcooiiiiiiiiii et abebnbnrnbnrnreee 32
2.11. SIMGELSPACETOKENS......cooeiiiie it eceee ettt e e e e e e e ete e e s tte e e e ateeesansaeessnseeeeansaeesanneeeesnenanans 33
3. Permission FUNCHIONS......ccciiiieiiiiiiiiiiiiiiiiiinirrnisisn s rre s s s s e s e e ssassse s s s e e s ssssssssssssnenenes 35
3.1, SIMSEEPEIMISSION. ...cciiiiiiiiiiiiii et e et e e e s s st e e e e s s s s abre e e e e e s e s nbrraeeeeeennnes 35
3.2, SIMCIECKPEIIMISSIONoeiiniiiiiiiiie ettt e e st e e s tae e s sabe e e ssabeeessasaeessabeeeenns 36
3.3, SIMGEEPEIMISSIONc.iiiiiiiiiiie ettt e st e e s st et e s s bte e e sbeeeesbbeessntaeesbaaeesnsteeenans 37
4. Directory FUNCHIONSciieeiiiiieiiiiieiiiieeicsieeeesseneeesrensssssensssessnssssssnnsssssensssssenssssssnssssssnssssssnnsssssnnnes 39
L 0 B 4 1111 [T SRS 39
A2, SEMRMAIT ...ttt st s b e e sa e e s bt e e s b b e s bt e s ba e s beesa b e e sabeesabeesabeen sebeesares 40
0 TR 4 4] 23 o USRI 40
B, SIIMLS....coiiiiiiiiiiiiiiiieteeeee ettt ettt et et e et e et e et e e et eeaaeeteaeaeaeaeaaaeaaaaaaaeaaanaaes serererereaeeraees 42
4.5, SrMSTAtUSOTLSREQUESEc.eeiiiieiiieiie ettt e sa e e e s aa e e be e s beeeabeesabeesaseesaseasseeens 44
B.6. SIMIVMIV.......oi ettt ettt e e e e ettt e e e e e st et e e e e e e e e b beeeeeeeeaaan b e et eeeeseaaasbeeeeeesaaan seeeeannreeeeas 46
5. Data Transfer FUNCHIONS........coiiiiiiiiiiiiiiiiiiiinniisnisssiisssisssnns 48
5. L. SIMPIEPArETOGELo bbb ————————————————a—ararararan 48
5.2, SrMStatUSOfGELREQUESTcooeeiii e e e e et e e et a e e e st e e e e sntaeeeennaeeesneneeans 51
LT O 30T 4T T= 0 T 41 1T =P 54
5.4. srmStatusOfBringONINEREQUESL.............cocuii it 58
5.5, SrMPIrEPar@TOPUL ... bbbt rereaeee 61
5.6. SIMSTAtUSOFPULREQUEST...........oieiiiiiii ettt et e et e e ae e s teeste e sateesaeeessaeessneebeeeseennne 65
D7 SIMIC O PIY .. ————————————————————————————aaaaaaaaes 68
5.8. SrmStatUSOfCOPYREQUESTc.eiiiiiiiie ettt e et e e e te e e e e ba e e e sbaeeeentbeeeesaaeessaeaans 72
5.9. SIMREIEASEFIIESeoiiiiiiiec et sttt e st e e sat e st e bt e be e e b e sbaeeae s 75
5.10. SIMPUETDONE. ...ttt e e e e e s e e e e s e s e e e e e s s nnr e eeeeeeeann eeean 77
5.11. SIMADBOITREGUESTeeiniiiiiie ettt sttt ettt e s bt e e bt e s be e et e st e e saseesareenaneenes 78
5.12. SIMADOITFIIESooiiieiieeeeee e e e e et e e st e e e et e e essaaeeeenseeeesnteeeennseeeeenaeaes oe 79
5.13. SIMSUSPENAREQUESTconiiiiiiiiiii ettt sat e e sttt e e s be e e ssabaeessabeeessabeeessaneeessabeeesnns 81
5.14. SIMRESUMEREQUEST ...ttt ettt e e e e ettt e e e e e e e saaetee e e e e seaanreeeeeeesannneees 81
5.15. SrMGeEtREQUESTSUMMAIY ...t bababababareee 82
5.16. SIMEXEENAFIlELifeTiME.......cocuiiiieeie e et e s e e saeesane 83
5.17. SIMGELREQUESITOKENSooi i eiiiie e eetee e see e ete e e et e e e e sate e e ssataeeesateeeeenseeeesnnneeesnenaanns 85
6. DISCOVEIY FUNCEIONS ..evuuiiiiiniiiiiiniiiiinniiiiinsiiennisiiiassisimssssirssssstresssssiessssssesssssssssssssssssssssassssssansssssans 87
6.1. SrMGetTransferProtOCOIS.ccuii i e e e e e s tee e e s aaeeesaaeeenas 87
6.2, SIMPING ... ittt e ettt e st e e s sa bt e e e s a bt e e e s b eee s sabee e e s bee e e e bbee e e bt e e e ebteeeeaas seataeesnarees 87
7. Appendix : Storage Resource Managers CONCEPLS.....cciiiirrummriiiiiiiiernmssiiiniiiressssssissiieessssssssssssssessaes 89
SUIMMAAIY ..ottt et et et et et et et et aeetaeaeaaaeaeaeaeaeaeeeeeeeeeeeetatetatatetesesesesesesasssasasasasass eseseneneseseeens 89
T.0. OVEIVIBW ..ottt ettt ettt e e ettt ettt e e e a bt e s abe e e s aab e e e e s abe e e e e bt e e e sabeeeeeabbeeeaasbeeesanbeeesnbeeeeansaee aeesnnnes 89
7.2. The BasiC CONCEPLS.........ueeieiiieecciiieecieeeeeteeeeettee e st e e e staeeesaaeeastaeeeassesessseeesnsseeeassesesnsseesanssenennns 90
7.3. Additional concepts introduced With V2.2ccooiiiiiini e 92
7.4. Current SRM Implementations Based on V2.2 specificationccccceeveiiiiiniininnieenceeee 94
8. Security CoONSIdEratioNsSc.cccciiiiiiiiiiiiuiiiiiiiiireiisiiiiiiireeseesssssttresssssssssssirsssssssssssssssssssssssssssssssssnnns 96
L2 TR 000 T4« T o T 926
9.1, Editors iNfOrmMationcoocuiiiiiiiiie e et ba e e saaeenreeen 96
9.2, CONTITBULOLS ..ottt s e s e e s bt e e s bt e e bee e b e e e beesabeesnseesabeesaseenssaen senses 96
9.3, ACKNOWIEAZEMENT ..ot e e e st e e e e e e s ate e e ssteeeesteeesnnseeeennreeenn 96
10. Intellectual Property Stat@meENt.........ccceeeeiiiiiiiiiiiiniiieiiiieeennneeessteeennsssssssssseennsssssssssssssnnssssssssnaes 97
T 0 1T o T T 97
12. Full COPYright NOTICE ..uuuuiiiiiiiiiiiiiiiiiiiietieiiiiiiiinesseesesstssesssssssssssstesssssssssssssssassssssssssssssssnssssssssnans 97
13, REFEIENCES ...uueeeiicciiccssccsiccss s sssnsssnsnnnnnes 97

gsm-wg@ogf.org -3-

GWD-R-XXXX 9/5/2007

Introduction

This document contains the interface specification of SRM 2.2. It incorporates the functionality of SRM 2.0 and
SRM 2.1, but is much expanded to include additional functionality, especially in the area of dynamic storage space
reservation and directory functionality in client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting in May 2006 at Fermilab, which as
followed by a 3-day meeting in September 2006 at CERN, as well as email correspondence and conference calls.
The purpose of this activity is to agree on the functionality and standardize the interface of Storage Resource
Managers (SRMs) — a Grid middleware component.

The document is organized in four sections. The first, called “Defined Structures” contain all the type definitions
used to define the functions (or methods). The next 5 sections contain the specification of “Space Management

Functions”, “Permission Functions”, “Directory Functions”, “Data Transfer Functions” and “Discovery Functions”.
All the “Discovery Functions” are newly added functions.

The Appendix describes the main concepts of SRMs as a standard middleware specification for various storage
systems. It is intended to support the same interface to simple files systems, as well as sophisticated storage
system that include multiple disk caches, robotic tape systems, and parallel file systems. The appendix also lists
several implementations of SRM v2.2 around the world, and their deployment in various sites.

For people not familiar with SRM concepts, It is advisable to read the Appendix first. For people familiar with
previous versions of SRM specifications, it is advisable to read the document SRM.v2.2.changes.doc posted at
http://sdm.lbl.gov/srm-wg before reading this specification.

Meaning of terms

By “https” we mean http protocol with GS| authentication. It may be represented as “httpg”. At this time, any
implementation of http with GSI authentication could be used. It is advisable that the implementation is
compatible with Globus Toolkit 3.2 or later versions.

e Primitive types used below are consistent with XML build-in schema types: i.e.
0 long is 64bit: (+/-) 9223372036854775807

int is 32 bit: (+/-) 2147483647

short is 16 bit: (+/-) 32767

unsignedLong ranges (inclusive): 0 t018446744073709551615

unsignedint ranges (inclusive): 0 to 4294967295

unsignedShort ranges (inclusive): 0 to 65535

OO0 O0OO0Oo

e The definition of the type “anyURI” used below is compliant with the XML standard. See
http://www.w3.org/TR/xmlschema-2/#anyURI. It is defined as: "The lexical space of anyURI is finite-
length character sequences which, when the algorithm defined in Section 5.4 of [XML Linking Language] is
applied to them, result in strings which are legal URIs according to [RFC 2396], as amended by [RFC
2732]".

e In “localSURL”, we mean local to the SRM that is processing the request.

e authorizationID : from the SASL RFC 2222
During the authentication protocol exchange, the mechanism performs authentication, transmits an
authorization identity (frequently known as a userid) from the client to server.... The transmitted
authorization identity may be different than the identity in the client’s authentication credentials. This
permits agents such as proxy servers to authenticate using their own credentials, yet request the access
privileges of the identity for which they are proxying. With any mechanism, transmitting an authorization

gsm-wg@ogf.org -4 -

GWD-R-XXXX 9/5/2007

identity of the empty string directs the server to derive an authorization identity from the client’s
authentication credentials.

e Regarding file sharing by the SRM, it is a local implementation decision. An SRM can choose to share files
by proving multiple users access to the same physical file, or by copying a file into another user’s space.
Either way, if an SRM chooses to share a file (that is, to avoid reading a file over again from the source
site) the SRM should check with the source site whether the user has a read/write permission. Only if
permission is granted, the file can be shared.

e The word “pinning” is limited to the “copies” or “states” of SURLs and the Transfer URLs (TURLs).
e For each function, status codes are defined with basic meanings for the function. Only those status codes

are valid for the function. Specific cases are not stated for each status code. If other status codes need to
be defined for a specific function, send an email to the collaboration to discuss the usage.

gsm-wg@ogf.org -5-

GWD-R-XXXX 9/5/2007

1. Common Type Definitions
Namespace SRM
Notation: underlined attributes are REQUIRED.

1.1. File Storage Type
enum TFileStorageType {VOLATILE, DURABLE, PERMANENT}

0 Volatile file has an expiration time and the storage may delete all traces of the file when it

expires.

Permanent file has no expiration time.

0 Durable file has an expiration time, but the storage may not delete the file, and should raise
error condition instead.

o

1.2. File Type
enum TFileType {FILE, DIRECTORY, LINK}

1.3. Retention Policy
enum TRetentionPolicy { REPLICA, OUTPUT, CUSTODIAL}

0 Quality of Retention (Storage Class) is a kind of Quality of Service. It refers to the probability
that the storage system lose a file. Numeric probabilities are self-assigned.

e Replica quality has the highest probability of loss, but is appropriate for data that
can be replaced because other copies can be accessed in a timely fashion.

e OQutput quality is an intermediate level and refers to the data which can be replaced
by lengthy or effort-full processes.

e Custodial quality provides low probability of loss.

0 The type will be used to describe retention policy assigned to the files in the storage system,
at the moments when the files are written into the desired destination in the storage
system. It will be used as a property of space allocated through the space reservation
function. Once the retention policy is assigned to a space, the files put in the reserved space
will automatically be assigned the retention policy of the space. The assigned retention
policy on the file can be found thought the TMetaDataPathDetail structure returned by the
srmLs function.

1.4. Access Latency
enum TAccessLatency { ONLINE, NEARLINE }

O Files may be Online, Nearline or Offline. These terms are used to describe how latency to
access a file is improvable. Latency is improved by storage systems replicating a file such
that its access latency is online.

e The ONLINE cache of a storage system is the part of the storage system which
provides file with online latencies.

e ONLINE has the lowest latency possible. No further latency improvements are
applied to online files.

e NEARLINE file can have their latency improved to online latency automatically by
staging the file to online cache.

gsm-wg@ogf.org -6-

GWD-R-XXXX 9/5/2007

e For completeness, we also describe OFFLINE here.
e OFFLINE files need a human to be involved to achieve online latency.
e For the SRM we only keep ONLINE and NEARLINE.
0 The type will be used to describe a space property that access latency can be requested at
the time of space reservation. The content of the space, files may have the same or “lesser”
access latency as the space.

1.5. Permission Mode
enum TPermissionMode {NONE, X, W, WX, R, RX, RW, RWX}

1.6. Permission Type
enum TPermissionType {ADD, REMOVE, CHANGE}

1.7. Request Type

enum TRequestType {PREPARE_TO_GET,
PREPARE_TO_PUT,
COoPY,

BRING_ONLINE,
RESERVE_SPACE,
UPDATE_SPACE,
CHANGE_SPACE_FOR_FILES,
LS}

1.8. Overwrite Mode

enum TOverwriteMode {NEVER,
ALWAYS,
WHEN_FILES_ARE_DIFFERENT}

0 Use case for WHEN_FILES ARE_DIFFERENT can be that files are different when the declared
size for an SURL is different from the actual one, or that the checksum of an SURL is
different from the actual one.

0 Overwrite mode on a file is considered higher priority than pinning a file. Where applicable,
it allows to mark a valid Transfer URL to become invalid when the owner of the SURL issues
an overwrite request.

1.9. File Locality

enum TFileLocality { ONLINE,
NEARLINE,
ONLINE_AND_NEARLINE,
LOST,
NONE.
UNAVAILABLE }

0 Files may be located online, nearline or both. This indicates if the file is online or not, or if
the file reached to nearline or not. It also indicates if there are online and nearline copies of
the file.

e The ONLINE indicates that there is a file on online cache of a storage system which is
the part of the storage system, and the file may be accessed with online latencies.

gsm-wg@ogf.org -7-

GWD-R-XXXX 9/5/2007

e The NEARLINE indicates that the file is located on nearline storage system, and the
file may be accessed with nearline latencies.

e The ONLINE_AND_NEARLINE indicates that the file is located on online cache of a
storage system as well as on nearline storage system.

e The LOST indicates when the file is lost because of the permanent hardware failure.

e The NONE value shall be used if the file is empty (zero size).

e The UNAVAILABLE indicates that the file is unavailable due to the temporary
hardware failure.

0 The type will be used to describe a file property that indicates the current location or status
in the storage system.

1.10. Access Pattern
enum TAccessPattern { TRANSFER_MODE, PROCESSING_MODE }

0 TAccessPattern will be passed as an input parameter to the srmPrepareToGet and
srmBringOnline functions. It will make a hint from the client to SRM how the Transfer URL
(TURL) produced by SRM is going to be used. If the parameter value is “ProcessingMode”,
the system may expect that client application will perform some processing of the partially
read data, followed by more partial reads and a frequent use of the protocol specific “seek”
operation. This will allow optimizations by allocating files on disks with small buffer sizes. If
the value is “TransferMode” the file will be read at the highest speed allowed by the
connection between the server and a client.

1.11. Connection Type
enum TConnectionType { WAN, LAN }

0 TConnectionType indicates if the client is connected though a local or wide area network.
SRM may optimize the access parameters to achieve maximum throughput for the
connection type. This will be passed as an input to the srmPrepareToGet, srmPrepareToPut
and srmBringOnline functions.

1.12. Status Codes

enum TStatusCode { SRM_SUCCESS,
SRM_FAILURE,
SRM_AUTHENTICATION_FAILURE,
SRM_AUTHORIZATION_FAILURE,
SRM_INVALID_REQUEST,
SRM_INVALID_PATH,
SRM_FILE_LIFETIME_EXPIRED,
SRM_SPACE_LIFETIME_EXPIRED,
SRM_EXCEED_ALLOCATION,
SRM_NO_USER_SPACE,
SRM_NO_FREE_SPACE,
SRM_DUPLICATION_ERROR,
SRM_NON_EMPTY_DIRECTORY,
SRM_TOO_MANY_RESULTS,
SRM_INTERNAL_ERROR,

gsm-wg@ogf.org -8-

GWD-R-XXXX 9/5/2007

SRM_FATAL_INTERNAL_ERROR,
SRM_NOT_SUPPORTED,
SRM_REQUEST_QUEUED,
SRM_REQUEST_INPROGRESS,
SRM_REQUEST_SUSPENDED,
SRM_ABORTED,
SRM_RELEASED,
SRM_FILE_PINNED,
SRM_FILE_IN_CACHE,
SRM_SPACE_AVAILABLE,
SRM_LOWER_SPACE_GRANTED,
SRM_DONE,
SRM_PARTIAL_SUCCESS,
SRM_REQUEST_TIMED_OUT,
SRM_LAST_COPY,
SRM_FILE_BUSY,
SRM_FILE_LOST,
SRM_FILE_UNAVAILABLE,
SRM_CUSTOM_STATUS

}

O SRM_NOT_SUPPORTED is used, in general
e If aserver does not support a method
e If aserver does not support particular optional input parameters

1.13. Retention Policy Info

typedef struct { TRetentionPolicy retentionPolicy,
TAccessLatency accesslatency

} TRetentionPolicylnfo

0 TRetentionPolicylnfo is a combined structure to indicate how the file needs to be stored.
0 When both retention policy and access latency are provided, their combination needs to
match what SRM supports. Otherwise request will be rejected.

1.14. Request Token

0 The Request Token assigned by SRM is unique and immutable (non-reusable). For example,
if the date:time is part of the request token it will be immutable.

0 Request tokens are case-sensitive.

0 Request token is valid until the request is completed. However, SRM server may choose to
keep the request tokens for a short period of time after the request is completed, and the
time period depends on the SRM servers.

1.15. User Permission
typedef struct { string userlD,
TPermissionMode mode
} TUserPermission

gsm-wg@ogf.org -9-

GWD-R-XXXX 9/5/2007

0 userlD may represent the associated client’s Distinguished Name (DN) instead of unix style
login name. VOMS role may be included.

1.16. Group Permission

typedef struct { string grouplD,
TPermissionMode mode

} TGroupPermission

0 grouplD may represent the associated client’s Distinguished Name (DN) instead of unix style
login name. VOMS role may be included.

1.17. Size in Bytes
0 Size in bytes is represented in unsigned long.
1.18. UTC Time

0 Time is represented in dateTime.

0 Formerly TGMTTime in SRM v2.1

0 date and time in Coordinated Universal Time (UTC, formerly GMT) with no local time
extention.

0 Formatis same as in XML dateTime type, except no local time extension is allowed. E.g.
1999-05-31T13:20:00 is ok (for 1999 May 31st, 13:20PM, UTC) but 1999-05-
31713:20:00-5:00 is not.

1.19. Time in Seconds (Lifetime and RequestTime)

0 Time (lifetime and request time) in seconds is represented in integer.
O “0” (zero) indicates the site defined default time.
0 A negative value (-1) indicates “infinite (indefinite)” time.
0 Exceptions:
= Any “remaining” times may have zero (0) second when no time is left.
= Some special meaning of negative time is defined when needed depending on
the operation. E.g. remainingTotalRequestTime in srmStatusOfGetRequest
1.20. SURL

0 The type definition SURL is represented as anyURI and used for both site URL and the
“Storage File Name” (stFN). This was done in order to simplify the notation. Recall that
stFN is the file path/name of the intended storage location when a file is put (or copied)
into an SRM controlled space. Thus, a stFN can be thought of a special case of an SURL,
where the protocol is assumed to be “srm” and the machine:port is assumed to be local
to the SRM. For example, when the request srmCopy is made as a pulling case, the
source file is specified by a site URL, and the target location can be optionally specified
as a stFN. By considering the stFN a special case of an SURL, a srmCopy takes SURLs as
both the source and target parameters.

gsm-wg@ogf.org -10-

GWD-R-XXXX
1.21. TURL
O TURLis represented in anyURI.

1.22. Return Status

typedef struct {TStatusCode statusCode,
string explanation
} TReturnStatus

1.23. Return Status for SURL

typedef struct {anyURI surl,
TReturnStatus status
} TSURLReturnStatus

1.24. File MetaData

typedef struct {string
TReturnStatus
unsigned long
dateTime
dateTime
TFileStorageType
TRetentionPolicylnfo
TFileLocality
string(]
TFileType
int
int
TUserPermission
TGroupPermission
TPermissionMode
string
string
TMetaDataPathDetail[]

} TMetaDataPathDetail

9/5/2007

path, // absolute dir and file path
status,
size, //O0if directory
createdAtTime,
lastModificationTime,
fileStorageType,
retentionPolicylnfo,
fileLocality,
arrayOfSpaceTokens,
type, // Directory or File
lifetimeAssigned,
lifetimelLeft, // on the SURL
ownerPermission,
groupPermission,
otherPermission,
checkSumType,
checkSumValue,
arrayOfSubPaths

// optional recursive

0 The TMetaDataPathDetail describes the properties of a file. It is used as an output

parameter in srmLs.

o

retentionPolicyinfo indicates the assigned retention policy.

0 fileLocality indicates where the file is located currently in the system.
0 arrayOfSpaceTokens as an array of string indicates where the file is currently located for the
client. Only space tokens that the client has authorized to access to read the file must be

returned.

0 Permissions on the SURL represent unix-like permissions: e.g. rwxr--r--.

o

ownerPermission describes the owner ID and owner permission on the SURL.

0 groupPermission describes the group permission with group identifier on the SURL.

gsm-wg@ogf.org

-11-

GWD-R-XXXX 9/5/2007

o

otherPermission describes the other permission on the SURL.
For ACL-like permissions, srmGetPermission must be used.
lifetimeAssigned is the total lifetime that is assigned on the SURL. It includes all SURL
lifetime extensions if extended.
lifetimeLeft is the remaining lifetime on the SURL from the current time until expiration.
e A negative value (-1) indicates “indefinite” lifetime.
e Zero (0) indicates that the file is expired.

1.25. Space MetaData

typedef

(0]

(0]

struct { string spaceToken,
TReturnStatus status,
TRetentionPolicylnfo retentionPolicylnfo,
string owner,
unsigned long totalSize, // best effort
unsigned long guaranteedSize,
unsigned long unusedSize,
int lifetimeAssigned,
int lifetimelLeft
} TMetaDataSpace

TMetaDataSpace is used to describe properties of a space, and is used as an output
parameter in srmGetSpaceMetaData.

retentionPolicyInfo indicates the information about retention policy and access latency that
the space is assigned. retentionPolicyInfo is requested and assigned at the time of space
reservation through srmReserveSpace and srmStatusOfReserveSpaceRequest.
TMetaDataSpace refers to a single space with retention policy. It does not include the extra
space needed to hold the directory structures, if there is any.

lifetimeAssigned is the total lifetime that is assigned to the space. It includes all space
lifetime extensions if extended.

lifetimeLeft is the remaining lifetime that is left on the space.

1.26. Directory Option

typedef

1.27. Extra Info

typedef

struct { Boolean isSourceADirectory,
Boolean allLevelRecursive, // default = false
int numOfLevels // default =1

} TDirOption

struct { string key,
string value

} TExtralnfo

TExtralnfo is used where additional information is needed, such as for additional
information for transfer protocols of TURLs in srmPing, srmGetTransferProtocols,
srmStatusOfGetRequest, and srmStatusOfPutRequest. For example, when it is used for
additional information for transfer protocols, the keys may specify access speed, available
number of parallelism, and other transfer protocol properties.

gsm-wg@ogf.org -12-

GWD-R-XXXX

9/5/2007

0 ltis also used where additional information to the underlying storage system is needed,
such as for additional information, but not limited to, for storage device, storage login ID,
storage login authorization. Formerly, it was TStorageSystemIinfo.

1.28. Transfer Parameters
typedef struct { TAccessPattern
TConnectionType
string(]
string(]
} TTransferParameters

accessPattern,
connectionType,
arrayOfClientNetworks
arrayOfTransferProtocols

0 TTransferParameters is used where arrayOfTransferProtocols was used previously in SRM

v2.1.

0 TTransferParameters may be provided optionally in the methods such as srmPrepareToGet,
srmBringOnline, srmPrepareToPut and srmReserveSpace. Optional input parameters in
TTransferParameters may collide with the characteristics of the space specified. In this case,
TTransferParameters as an input parameter must be ignored.

O File transfer protocols are specified in a preferred order on all SRM transfer functions.

0 arrayOfClientNetworks is a hint of the client IPs that SRM/dCache can use for optimization
of its internal storage systems based on the client’s accessible IP addresses.

1.29. File Request for srmPrepareToGet
typedef struct { anyURI
TDirOption
} TGetFileRequest

1.30. File Request for srmPrepareToPut
typedef struct { anyURI
unsigned long
} TPutFileRequest

1.31. File Request for srmCopy
typedef struct { anyURI
anyURI

TDirOption

} TCopyFileRequest

1.32. Return File Status for srmPrepareToGet
typedef struct { anyURI

TReturnStatus

unsigned long

int

int

anyURI

TExtralnfo[]

} TGetRequestFileStatus

gsm-wg@ogf.org

sourceSURL,
dirOption,

targetSURL, //local to SRM
expectedFileSize

sourceSURL,

targetSURL
dirOption

sourceSURL,

status,

fileSize,

estimatedWaitTime,

remainingPinTime,

transferURL,
transferProtocolinfo

-13-

GWD-R-XXXX

(0]

o

9/5/2007

transferProtocolinfo of type TExtralnfo is added to the TGetRequestFileStatus. This output
parameter can be used to provide more information about the transfer protocol so that
client can access the TURL efficiently.

estimatedWaitTime to be negative value, -1, for unknown.

remainingPinTime is the lifetime on the TURL, and 0 means it expired. If a TURL has an
indefinite lifetime, then negative value, -1, may be used.

1.33. Return File Status for srmBringOnline

typedef

o

struct { anyURI sourceSURL,
TReturnStatus status,
unsigned long fileSize,
int estimatedWaitTime,
int remainingPinTime,

} TBringOnlineRequestFileStatus

estimatedWaitTime to be negative value, -1, for unknown.
remainingPinTime is the lifetime on the TURL, and 0 means it expired. If a TURL has an
indefinite lifetime, then negative value, -1, may be used.

1.34. Return File Status for srmPrepareToPut

typedef

struct { anyURI SURL,
TReturnStatus status,
unsigned long fileSize,
int estimatedWaitTime,
int remainingPinLifetime // on TURL
int remainingFileLifetime // on SURL
anyURI transferURL,
TExtralnfo[] transferProtocolinfo

} TPutRequestFileStatus

transferProtocolinfo of type TExtralnfo is added to the TPutRequestFileStatus to give clients
more information about the prepared transfer protocol so that client may use the
information to make an efficient access to the prepared TURL through the transfer protocol.
estimatedWaitTime to be negative value, -1, for unknown.

remainingPinTime is the lifetime on the TURL, and 0 means it expired. If a TURL has
indefinite lifetime, then negative value, -1, may be used.

remainingFileLifetime is the lifetime on the SURL, and 0 means it expired. If SURL has an
indefinite lifetime, then negative value, -1, may be used.

1.35. Return File Status for srmCopy

typedef

struct { anyURI sourceSURL,
anyURI targetSURL,
TReturnStatus status,
unsigned long fileSize,
int estimatedWaitTime,
int remainingFileLifetime // on target SURL

} TCopyRequestFileStatus

gsm-wg@ogf.org -14 -

GWD-R-XXXX

9/5/2007

0 estimatedWaitTime to be negative value, -1, for unknown.
0 remainingFilelLifetime is the lifetime on the SURL, and 0 means it expired. If SURL has an
indefinite lifetime, then negative value, -1, may be used.

1.36. Request Summary

typedef struct {string
TReturnStatus
TRequestType
int
int
int
int

} TRequestSummary

requestToken,
status,

requestType,
totalNumFilesInRequest,
numOfCompletedFiles,
numOfWaitingFiles,
numOfFailedFiles

0 numOfWaitingFiles describes the number of files on the queue.

o

numOfFailedFiles describes the number of failed files and aborted files.

0 numOfCompletedFiles describes the number of successfully completed files, number of
failed files and number of aborted files.

0 totalNumfFilesinRequest describes the numOfWaitingFiles, numOfCompletedFiles,
numOfFailedFiles and number of files in progress.

1.37. Return Status for SURL
typedef struct { anyURI
TReturnStatus
int
int
} TSURLLifetimeReturnStatus

surl,

status
fileLifetime,
pinLifetime,

0 fileLifetime describes the file lifetime on SURL.
0 pinLifetime describes the pin lifetime on TURL, if applicable.

1.38. Return File Permissions
typedef struct {anyURI
TReturnStatus
TPermissionMode
} TSURLPermissionReturn

1.39. Return Permissions on SURL

typedef struct {anyURI
TReturnStatus
string
TPermissionMode
TUserPermission[]
TGroupPermission[]
TPermissionMode

} TPermissionReturn

gsm-wg@ogf.org

surl,
status,
permission

surl, //both dir and file
status,

owner,

ownerPermission,
arrayOfUserPermissions,
arrayOfGroupPermissions,
otherPermission

-15-

GWD-R-XXXX 9/5/2007

0 The TPermissionReturn describes the permission properties of a file. It is used as an output
parameter in srmGetPermission.

1.40. Return Request Tokens

typedef struct { string requestToken,
dateTime createdAtTime
} TRequestTokenReturn

1.41. Supported File Transfer Protocol
typedef struct { string transferProtocol,
TExtralnfo[] attributes
} TSupportedTransferProtocol

0 transferProtocol (required): Supported transfer protocol. For example, gsiftp, http.
0 attributes: Informational hints for the paired transfer protocol, such how many number
of parallel streams can be used, desired buffer size, etc.

gsm-wg@ogf.org -16-

GWD-R-XXXX

2. Space Management Functions

summary:
srmReserveSpace
srmStatusOfReserveSpaceRequest
srmReleaseSpace

srmUpdateSpace
srmGetSpaceMetaData

srmChangeSpaceForFiles

srmStatusOfChangeSpaceForFilesRequest

srmExtendFileLifeTimelnSpace
srmPurgeFromSpace
srmGetSpaceTokens

2.1. srmReserveSpace

9/5/2007

This function is used to reserve a space in advance for the upcoming requests to get some guarantee on
the file management. Asynchronous space reservation may be necessary for some SRMs to serve many

concurrent requests.
2.1.1. Parameters

In: string
String
TRetentionPolicylnfo
unsigned long
unsigned long
int
unsigned long []
TExtralnfo[]
TTransferParameters

Out: TReturnStatus
string
int
TRetentionPolicylnfo
unsigned long
unsigned long
int
string

2.1.2. Notes on the Behavior

authorizationlID,
userSpaceTokenDescription,
retentionPolicylnfo,
desiredSizeOfTotalSpace,
desiredSizeOfGuaranteedSpace,
desiredLifetimeOfReservedSpace,
arrayOfExpectedFileSizes,
storageSystemInfo,
transferParameters

returnStatus,
requestToken,
estimatedProcessingTime,
retentionPolicylnfo,

sizeOfTotalReservedSpace, // best effort

sizeOfGuaranteedReservedSpace,
lifetimeOfReservedSpace,
spaceToken

a) Input parameter userSpaceTokenDescription is case-sensitive. SRM server is expected to keep it
as client provides. It can be reused by the client. srmGetSpaceTokens will return all the space
tokens that have the userSpaceTokenDescription.

b) If the input parameter desiredLifetimeOfReservedSpace is not provided, the lifetime of the
reserved space may be set to “infinite (indefinite)” by default.

gsm-wg@ogf.org

-17 -

GWD-R-XXXX 9/5/2007

c)

d)

f)

g)

h)

If particular values of the input parameter retentionPolicylnfo cannot be satisfied by the SRM
server, SRM_NOT_SUPPORTED or SRM_NO_FREE_SPACE must be returned.

Asynchronous space reservation may be necessary for some SRMs to serve many concurrent
requests. In such case, request token must be returned, and space token must not be assigned
and returned until space reservation is completed, to prevent the usage of the space token in
other interfaces before the space reservation is completed. If the space reservation can be done
immediately, request token must not be returned.

When asynchronous space reservation is necessary, the returned status code should be
SRM_REQUEST_QUEUED.

Input parameter arrayOfExpectedFileSize is a hint that SRM server can use to reserve
consecutive storage sizes for the request. At the time of space reservation, if space accounting is
done only at the level of the total size, this hint would not help. In such case, the expected file
size at the time of srmPrepareToPut will describe how much consecutive storage size is needed
for the file. However, some SRMs may get benefits from these hints to make a decision to
allocate some blocks in some specific devices.

Optional input parameter storageSysteminfo is needed in case the underlying storage system
requires additional security information.

SRM may return its default space size and lifetime if not requested by the client. SRM may
return SRM_INVALID_ REQUEST if SRM does not support default space sizes.

If input parameter desiredSizeOfTotalSpace is not specified, the SRM will return its default space
size.

Output parameter estimateProcessingTime is used to indicate the estimation time to complete
the space reservation request, when known.

Output parameter sizeOfTotalReservedSpace is in best effort bases. For guaranteed space size,
sizeOfGuaranteedReservedSpace should be checked. These two numbers may match, depending
on the storage systems.

Output parameter spaceToken is a reference handle of the reserved space.

If an operation is successful (SRM_SUCCESS or SRM_LOWER_SPACE_GRANTED),
sizeOfGuaranteedReservedSpace, lifetimeOfReservedSpace and spaceToken are required to
return to the client.

Optional input parameters in TTransferParameters may collide with the characteristics of the
space specified. In this case, TTransferParameters as an input parameter must be ignored.

2.1.3. Return Status Code

SRM_SUCCESS
= successful request completion. Space is reserved successfully as the client
requested.
SRM_REQUEST_QUEUED
= successful request submission and acceptance. Request token must be returned,
and space token must not be assigned and returned.
SRM_REQUEST_INPROGRESS
= the request is being processed.
SRM_LOWER_SPACE_GRANTED
= successful request completion, but lower space size is allocated than what the client
requested
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

gsm-wg@ogf.org -18 -

GWD-R-XXXX

9/5/2007

= clientis not authorized to reserve space

SRM_INVALID_REQUEST

= |f space size or lifetime is not requested by the client, and SRM does not support
default values for space size or lifetime.
= input parameters are invalid.

SRM_NO_USER_SPACE

= SRM server does not have enough user space for the client for client to request to
reserve.

SRM_NO_FREE_SPACE

= SRM server does not have enough free space for client to request to reserve.
= SRM server does not have enough free space for a particular retentionPolicyInfo

SRM_EXCEED_ALLOCATION

= SRM server does not have enough space for the client to fulfill the request because
the client request needs more than the allocated space quota for the client.

SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.

SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED

® function is not supported in the SRM server

= specific values of the input parameter retentionPolicyinfo is not supported by the
SRM

= anyinput parameter is not supported in the SRM server

= aparticular type of an input parameter is not supported in the SRM server

2.2. srmStatusOfReserveSpaceRequest

This function is used to check the status of the previous request to srmReserveSpace, when
asynchronous space reservation was necessary with the SRM. Request token must have been provided
in response to the srmReserveSpace.

2.2.1. Parameters

In:

Out:

string authorizationlID,

string requestToken

TReturnStatus returnStatus

int estimatedProcessingTime,
TRetentionPolicylnfo retentionPolicylnfo,

unsigned long sizeOfTotalReservedSpace,
unsigned long sizeOfGuaranteedReservedSpace,
int lifetimeOfReservedSpace,

string spaceToken

2.2.2. Notes on the Behavior

gsm-wg@ogf.org

-19 -

GWD-R-XXXX 9/5/2007

a) If the space reservation is not completed yet, estimateProcessingTime is returned when known.
The returned status code in such case should be SRM_REQUEST _QUEUED.

b) See notes for srmReserveSpace for descriptions for output parameters.

c) If an operation is successful (SRM_SUCCESS or SRM_LOWER_SPACE_GRANTED),
sizeOfGuaranteedReservedSpace, lifetimeOfReservedSpace and spaceToken are required to
return to the client.

2.2.3. Return Status Code
SRM_REQUEST_QUEUED
= successful request submission and the request is still on the queue to be served.
SRM_REQUEST_INPROGRESS
= therequest is being processed.
SRM_LOWER_SPACE_GRANTED
= successful request completion, but lower space size is allocated than what the client
requested
SRM_SUCCESS
= successful request completion. Space is reserved successfully as the client
requested.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to reserve space
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
SRM_EXCEED_ALLOCATION
= SRM server does not have enough space for the client to fulfill the request because
the client request needs more than the allocated space for the client.
SRM_NO_USER_SPACE
= SRM server does not have enough user space for the client for the client for client to
request to reserve.
SRM_NO_FREE_SPACE
= SRM server does not have enough free space for the client for client to request to
reserve.
= SRM server does not have enough free space for a particular retentionPolicylnfo
SRM_REQUEST_SUSPENDED
= request is suspended.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM server
= anyinput parameter is not supported in the SRM server
= aparticular type of an input parameter is not supported in the SRM server

2.3. srmReleaseSpace

gsm-wg@ogf.org -20-

GWD-R-XXXX 9/5/2007
srmReleaseSpace() releases an occupied space.

2.3.1. Parameters

In: string authorizationlID,
string spaceToken,
TExtralnfo([] storageSysteminfo,
Boolean forceFileRelease

Out: TReturnStatus returnStatus

2.3.2. Notes on the Behavior

a) forceFileRelease is false by default. This means that the space will not be released if it has files
that are still pinned in the space. To release the space regardless of the files it contains and
their status forceFileRelease must be specified to be true.

b) When space is releasable and forceFileRelease is true, all the files in the space are released, even
in OUTPUT or CUSTODIAL retention quality space.

c) srmReleaseSpace may not complete right away because of the lifetime of existing files in the
space. When space is released, the files in that space are treated according to their types: If file
storage types are permanent, keep them until further operation such as srmRm is issued by the
client. If file storage types are durable, perform necessary actions at the end of their lifetime. If
file storage types are volatile, release those files at the end of their lifetime.

d) If space is being released with forceFileRelease option while SURLs are being created with
srmPrepareToPut or srmCopy, the file is removed and SRM_INVALID PATH must be returned by
the srmPutDone, srmStatusOfPutRequest, or srmStatusOfCopyRequest when the file is volatile.
If the file is permanent type, the file is moved to the default space, and the space would be
successfully released. The subsequent srmPutDone, srmStatusOfPutRequest, or
srmStatusOfCopyRequest would be successful.

e) If space is being released without forceFileRelease option while SURLs are being created with
srmPrepareToPut or srmCopy, SRM_FAILURE must be returned in srmReleaseSpace.

f) When a "replica" quality space is expired on its lifetime, all files inside must be expired (by
definition, file lifetimes are less than and equal to the remaining lifetime of the space). After the
space is expired, the space that is associated with the space token no longer exists, along with
all files inside - meaning their SURLs disappear from the file system or reflect the expired
lifetime.

2.3.3. Return Status Code

SRM_SUCCESS

= successful request completion. Space is successfully released.
SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to release the space that is associated with the spaceToken
SRM_INVALID_REQUEST

= spaceToken does not refer to an existing known space in the SRM server.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.

gsm-wg@ogf.org -21-

GWD-R-XXXX 9/5/2007

SRM_NOT_SUPPORTED
= forceFileRelease is not supported
= function is not supported
SRM_FAILURE
= space still contains pinned files.
= space associated with space is already released.
= any other request failure. Explanation needs to be filled for details.

2.4. srmUpdateSpace

srmUpdateSpace is to resize the space and/or extend the lifetime of a space. Asynchronous operation
may be necessary for some SRMs to serve many concurrent requests.

2.4.1. Parameters

In: string authorizationID,
string spaceToken,
unsigned long newSizeOfTotalSpaceDesired,
unsigned long newSizeOfGuaranteedSpaceDesired,
int newlLifeTime,
TExtralnfo[] storageSysteminfo

Out: TReturnStatus returnStatus
string requestToken,
unsigned long sizeOfTotalSpace, // best effort
unsigned long sizeOfGuaranteedSpace,
int lifetimeGranted

2.4.2. Notes on the Behavior

a) If neither size nor lifetime is provided in the input parameters, then the request will be failed,
and SRM_INVALID_REQUEST must be returned. The existing values must not be changed.

b) newsSize is the new actual size of the space.

c) newlifetime is the new lifetime requested regardless of the previous lifetime. It might even be
shorter than the remaining lifetime at the time of the call. It is relative to the calling time.
Lifetime will be set from the calling time for the specified period.

d) Output parameter, lifetimeGranted is the new lifetime granted regardless of the previous
lifetime. It might even be shorter than the previous lifetime. It is relative to the calling time.

2.4.3. Return Status Code
SRM_SUCCESS
= successful request completion. Space is successfully updated as the client
requested.
SRM_ REQUEST_QUEUED
= successful request submission and acceptance. Request token must be returned.
SRM_LOWER_SPACE_GRANTED
= successful request completion, but lower space size is allocated than what the client
requested

gsm-wg@ogf.org -22-

GWD-R-XXXX

9/5/2007

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE

= clientis not authorized to update the space that is associated with the spaceToken

SRM_SPACE_LIFETIME_EXPIRED

= |ifetime of the space that is associated with the spaceToken is already expired.

SRM_INVALID_REQUEST

= spaceToken does not refer to an existing known space in the SRM server.
® input parameter size or time is not provided.

SRM_EXCEED_ALLOCATION

= SRM server does not have enough space for the client to fulfill the request because
the client request has more than the allocated space for the client.

SRM_NO_USER_SPACE

= SRM server does not have enough space for the client to fulfill the request

SRM_NO_FREE_SPACE

= SRM server does not have enough free space to fulfill the request

SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.

SRM_FAILURE

= New requested size is less than currently used space.
= any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED

= function is not supported

2.5. srmStatusOfUpdateSpaceRequest

This function is used to check the status of the previous request to srmUpdateSpace, when
asynchronous space update was necessary with the SRM. Request token must have been provided in
response to the srmUpdateSpace.

2.5.1. Parameters

In:

Out:

string authorizationlID,

string requestToken

TReturnStatus returnStatus

unsigned long sizeOfTotalSpace, // best effort
unsigned long sizeOfGuaranteedSpace,

int lifetimeGranted

2.5.2. Notes on the Behavior
a) Output parameters for sew sizes are the new actual sizes of the space.
b) Output parameter, lifetimeGranted is the new lifetime granted regardless of the previous
lifetime. It might even be shorter than the previous lifetime. It is relative to the calling time.

2.5.3. Return Status Code
SRM_REQUEST_QUEUED

gsm-wg@ogf.org

-23-

GWD-R-XXXX 9/5/2007

= successful request submission and the request is still on the queue to be served.
SRM_REQUEST_INPROGRESS
= the request is being processed.
SRM_SUCCESS
= successful request completion. Space is successfully updated as the client
requested.
SRM_LOWER_SPACE_GRANTED
= successful request completion, but lower space size is allocated than what the client
requested
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to update the space that is associated with the spaceToken
SRM_SPACE_LIFETIME_EXPIRED
= |ifetime of the space that is associated with the spaceToken is already expired.
SRM_INVALID_REQUEST
= spaceToken does not refer to an existing known space in the SRM server.
® input parameter size or time is not provided.
SRM_EXCEED_ALLOCATION
= SRM server does not have enough space for the client to fulfill the request because
the client request has more than the allocated space for the client.
SRM_NO_USER_SPACE
= SRM server does not have enough space for the client to fulfill the request
SRM_NO_FREE_SPACE
= SRM server does not have enough free space to fulfill the request
SRM_REQUEST_SUSPENDED
= request is suspended.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= New requested size is less than currently used space.
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported

2.6. srmGetSpaceMetaData
This function is used to get information of a space. Space token must be provided, and space tokens are
returned upon a completion of a space reservation through srmReserveSpace or

srmStatusOfReserveSpaceRequest.

2.6.1. Parameters

In: string authorizationlID,
string(] arrayOfSpaceTokens
Out: TReturnStatus returnStatus,

gsm-wg@ogf.org -24 -

GWD-R-XXXX 9/5/2007
TMetaDataSpace(] arrayOfSpaceDetails

2.6.2. Notes on the Behavior
a) Output parameters unusedSize in TMetaDataSpace returns 0 if there is no space left in the
allocated space.
b) When clients use more space than allocated, clients get warned to accommodate their files in
the spaces or update the space before running out. SRM

2.6.3. Return Status Code
For request level return Status,

SRM_SUCCESS

= successful request completion. Information of all requested spaces are returned

successfully.

SRM_PARTIAL_SUCCESS

= Request is completed. Information of some requested spaces are returned

successfully, and some are failed to be returned.

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to request space information
SRM_TOO_MANY_RESULTS

= Request produced too many results that SRM server cannot handle.
SRM_INVALID_REQUEST

= arrayOfSpaceToken is empty.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= All space requests are failed.

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

For space level return Status,
SRM_SUCCESS
= successful request completion for the spaceToken. Space information is successfully
returned.
SRM_AUTHORIZATION_FAILURE
= client is not authorized to request information on the space that is associated with
the spaceToken
SRM_INVALID_REQUEST
= spaceToken does not refer to an existing known space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED
= The life time on the space that is associated with the spaceToken has expired
SRM_EXCEED_ALLOCATION
= Space that is associated with spaceToken has no more space left.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

gsm-wg@ogf.org -25-

GWD-R-XXXX 9/5/2007

2.7. srmChangeSpaceForFiles

This function is used to change the space property of files to another space property by specifying target
space tokens. All files specified by SURLs will have a new space token. SURLs must not be changed. New
space token may be acquired from srmReserveSpace. Asynchronous operation may be necessary for
some SRMs, and in such case, request token is returned for later status inquiry. There is no default
behavior when target space token is not provided. In such case, the request will be rejected, and the
return status must be SRM_INVALID_REQUEST.

2.7.1. Parameters

In: string authorizationlID,
anyURI [] arrayOfSURLs,
string targetSpaceToken,
TExtralnfo[] storageSysteminfo

Out: TReturnStatus returnStatus,
string requestToken,
int estimatedProcessingTime,
TSURLReturnStatus [] arrayOfFileStatuses

2.7.2. Notes on the Behavior

a) When space transition is completed successfully, SRM_SUCCESS must be returned for each
SURL.

b) For any forbidden transition by the SRM implementation, SRM_INVALID REQUEST must be
returned. It includes changing spaces on SURLs that statuses are SRM_FILE_BUSY.

c) Asynchronous operation may be necessary for some SRMs to serve many concurrent requests.
In such case, request token must be returned. If the request can be completed immediately,
request token must not be returned.

d) When asynchronous operation is necessary, the returned status code should be
SRM_REQUEST_QUEUED, and arrayOfFileStatuses may not be filled and returned.

e) Allfiles specified in arrayOfSURLs will be moved to the space associated with targetSpaceToken.

f) When target space token is used, space allocation for a new space token must be done explicitly
by the client before using this function.

g) |If adirectory path is provided, then the effect is recursive for all files in the directory.

h) Space de-allocation may be necessary in some cases, and it must be done by the client explicitly
after this operation completes. The status can be checked by
srmStatusOfChangeSpaceForFilesRequest.

i) When a space is successfully changed for a file from one space to another, it will either retain its
remaining lifetime, or the lifetime will be reduced to that of the target space, whichever is the
lesser.

j) If the target space is only large enough to transfer a subset of the files, the request will continue
taking place until the target space cannot hold any more files, and the request must be failed.
The status of the request must return an error of SRM_EXCEED_ALLOCATION in such case.

2.7.3. Return Status Code

gsm-wg@ogf.org -26-

GWD-R-XXXX 9/5/2007

For request level return status,
SRM_SUCCESS
= All file requests are successfully completed. All SURLs have new targetSpaceToken.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURL requests have new targetSpaceToken, and
some SURL requests are failed to have new targetSpaceToken. Details are on the
files status.
SRM_ REQUEST_QUEUED
= request is submitted and accepted. requestToken must be returned.
= The status can be checked by srmStatusOfChangeSpaceForFilesRequest.
SRM_ REQUEST_INPROGRESS
= The request is being processed. Some files are still queued, and some files are
completed in space transition.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to change the file types
SRM_INVALID_REQUEST
= SURL is empty.
= targetSpaceToken is empty.
= targetSpaceToken does not refer to an existing space in the SRM server.
= targetSpaceToken refers to a forbidden transition by the SRM implementation.
SRM_SPACE_LIFETIME_EXPIRED
= target space that is associated with targetSpaceToken has an expired lifetime.
SRM_EXCEED_ALLOCATION
= target space that is associated with targetSpaceToken is not enough to hold all
SURLs.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM
= any input parameter is not supported in the SRM server
= aparticular type of an input parameter is not supported in the SRM server

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. The SURL has a new targetSpaceToken.
SRM_ REQUEST_QUEUED
= file request is on the queue.
SRM_ REQUEST_INPROGRESS
= file request is being processed.
SRM_INVALID_PATH
= SURL does not refer to an existing file
SRM_AUTHORIZATION_FAILURE
= client is not authorized to change the space for the file that is associated with the
SURL

gsm-wg@ogf.org -27 -

GWD-R-XXXX 9/5/2007

SRM_INVALID_REQUEST
= targetSpaceToken refers to a forbidden transition for the particular SURL by the
SRM implementation.
= The status of SURL is SRM_FILE_BUSY.
SRM_EXCEED_ALLOCATION
= target space that is associated with targetSpaceToken is not enough to hold SURL.
SRM_FILE_LOST
= the requested file with the SURL is permanently lost.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
= The requested file with the SURL is being used by other clients.
SRM_FILE_UNAVAILABLE
= the requested file with the SURL is temporarily unavailable.
SRM_FAILURE
= Allfile requests are failed.
= any other request failure. Explanation needs to be filled for details.

2.8. srmStatusOfChangeSpaceForFilesRequest
This function is used to check the status of the previous request to srmChangeSpaceForFiles, when
asynchronous operation was necessary in the SRM. Request token must have been provided in response

to the srmChangeSpaceForFiles.

2.8.1. Parameters

In: string authorizationlID,
string requestToken

Out: TReturnStatus returnStatus
int estimatedProcessingTime,
TSURLReturnStatus [] arrayOfFileStatuses

2.8.2. Notes on the Behavior

a) When space transition is completed successfully, SRM_SUCCESS must be returned for each
SURL.

b) If changing space is not completed, estimateProcessingTime is returned when known.

c) If all files are still in the queue and none of the files are completed in changing space, the
returned status code should be SRM_REQUEST_QUEUED.

d) If some files are queued, and some files are completed in changing space,
SRM_REQUEST_INPROGRESS must be returned as the return status code. Each file should have
its own status code.

e) If the target space is only large enough to transfer a subset of the files, the request will continue
taking place until the target space cannot hold any more files, and the request must be failed.
The status of the request must return an error of SRM_EXCEED_ALLOCATION in such case.

2.8.3. Return Status Code

gsm-wg@ogf.org -28-

GWD-R-XXXX 9/5/2007

For request level return status,
SRM_SUCCESS
= All file requests are successfully completed. All SURLs have new targetSpaceToken.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURL requests have new targetSpaceToken, and
some SURL requests are failed to have new targetSpaceToken. Details are on the
files status.
SRM_ REQUEST_QUEUED
= Request submission was successful and the entire request is still on the queue.
SRM_ REQUEST_INPROGRESS
= Some files are still queued, and some files are completed in space transition.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to change the file types
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
= targetSpaceToken refers to a forbidden transition by the SRM implementation.
SRM_SPACE_LIFETIME_EXPIRED
= target space that is associated with targetSpaceToken has an expired lifetime.
SRM_EXCEED_ALLOCATION
= target space that is associated with targetSpaceToken is not enough to hold SURLs.
SRM_REQUEST_SUSPENDED
= request is suspended.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= All file requests are failed.
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM
= any input parameter is not supported in the SRM server
= aparticular type of an input parameter is not supported in the SRM server

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. The SURL has a new targetSpaceToken.
SRM_ REQUEST_QUEUED
= file request is on the queue.
SRM_ REQUEST_INPROGRESS
= file request is being processed.
SRM_INVALID_PATH
= SURL does not refer to an existing file request
SRM_AUTHORIZATION_FAILURE
= client is not authorized to change the space for the file that is associated with the
SURL
SRM_INVALID_REQUEST

gsm-wg@ogf.org -29-

GWD-R-XXXX 9/5/2007

= targetSpaceToken refers to a forbidden transition for the particular SURL by the
SRM implementation.
* The status of SURL is SRM_FILE_BUSY.
SRM_EXCEED_ALLOCATION
= target space that is associated with targetSpaceToken is not enough to hold SURL.
SRM_REQUEST_SUSPENDED
= file request is suspended.
SRM_FILE_LOST
= the requested file with the SURL is permanently lost.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
= The requested file with the SURL is being used by other clients.
SRM_FILE_UNAVAILABLE
= the requested file with the SURL is temporarily unavailable.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

2.9. srmExtendFileLifeTimelnSpace

This function is used to extend lifetime of the files (SURLs) in a space.

2.9.1. Parameters

In: string authorizationlID,
string spaceToken,
anyURI [] arrayOfSURLs,
int newlifeTime

Out: TReturnStatus returnStatus,

TSURLLifetimeReturnStatus [] arrayOfFileStatuses

2.9.2. Notes on the Behavior

a)

b)

h)

arrayOfSURLs are optional. When SURLs are not provided, all files in the space must have the
new extended lifetimes.

newlifeTime is relative to the calling time. Lifetime will be set from the calling time for the
specified period.

The new file lifetime, newLifeTime must not exceed the remaining lifetime of the space.

The number of lifetime extensions may be limited by SRM according to its policies.

If original lifetime is longer than the requested one, then the new requested one will be
assigned.

If newLifeTime is not specified, the SRM does not change the lifetime.

If input parameters newlifeTime request exceed the remaining lifetime of the space, then
SRM_SUCCESS is returned at the request and file level, and TSURLLifetimeReturnStatus contains
the remaining lifetime.

Lifetime extension must fail on SURLs when their status is SRM_FILE_BUSY.

gsm-wg@ogf.org -30-

GWD-R-XXXX 9/5/2007

i) This method applied only to SURLs, and output parameter pinLifetime in
TSURLLifetimeReturnStatus must be null.

2.9.3. Return Status Code
For request level return status,

SRM_SUCCESS

= Allrequests are successfully completed. All SURLs have a new extended lifetime.
SRM_PARTIAL_SUCCESS

= All requests are completed. Some SURLs have a new extended lifetime, and some

SURLS have failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= client is not authorized to extend lifetime of files in the space specified by the space

token.

SRM_INVALID REQUEST

= spaceToken is empty.

= spaceToken does not refer to an existing known space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED

= [ifetime of the space that is associated with the spaceToken is already expired.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= All file requests updating lifetimes in a space are failed.

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

= any input parameter is not supported in the SRM server

= aparticular type of an input parameter is not supported in the SRM server

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. The SURL has a new extended lifetime.
SRM_INVALID_PATH
= SURL does not refer to an existing file request
= SURL does not refer to an existing file request that is associated with the space
token
SRM_AUTHORIZATION_FAILURE
= client is not authorized to extend the lifetime for the file that is associated with the
SURL
SRM_FILE_LOST
= the requested file is permanently lost.
SRM_FILE_UNAVAILABLE
= the requested file is temporarily unavailable.
SRM_FILE_LIFETIME_EXPIRED
= the requested file is expired already.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

gsm-wg@ogf.org -31-

GWD-R-XXXX 9/5/2007

2.10. srmPurgeFromSpace

This function is used when removing files from the given space is needed. Difference from
srmReleaseFiles and srmAbortFiles is that srmPurgeFromSpace is not associated with a request. This
function must not remove the SURLs, but only the "copies" or "states" of the SURLs. srmRm must be
used to remove SURLs.

2.10.1. Parameters

In: string authorizationID
anyURI [] arrayOfSURLs
string spaceToken,
TExtralnfo[] storageSysteminfo

Out: TReturnStatus returnStatus,
TSURLReturnStatus[] arrayOfFileStatuses

2.10.2. Notes on the Behavior

a)

b)

c)

d)

If the specified SURL is the only remaining copy of the file in the storage system,
SRM_LAST_COPY must be returned. To remove the last copy of the SURL, srmRm may be used.

If the client has an administers role that SRM server can accept in an understandable form, this
request will forcefully release the pins owned by the group, and remove the “copy” (or “state”)
of the file.

In most cases, all pins on files that are associated with the client will be released. In such cases,
files may still be pinned by others and SRM_FILE_BUSY will be returned.

SRM will remove only the “copies” (or “state”) of the SURLs associated with the space token.

2.10.3. Return Status Code
For request level return status,

SRM_SUCCESS
= All requests are successfully completed. All SURLs are purged from the space
specified by the spaceToken.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURLs are successfully purged from the space
specified by the spaceToken, and some SURLs are failed to be purged from the space
specified by the spaceToken. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to clean up the space that is associated with spaceToken
SRM_INVALID_REQUEST
= arrayOfSURLs is empty.
= spaceToken is empty.
= spaceToken does not refer to an existing known space in the SRM server.
SRM_INTERNAL_ERROR

gsm-wg@ogf.org -32-

GWD-R-XXXX 9/5/2007

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= Allfile requests are failed.

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

For file level return Status,
SRM_SUCCESS
= successful request completion for the SURL. SURL is purged from the space specified
by the spaceToken.
SRM_INVALID_PATH
= SURL does not refer to an existing file
= SURL does not refer to an existing file that is associated with the space token
SRM_AUTHORIZATION_FAILURE
= (Client is not authorized to purge SURL in the space that is associated with
spaceToken
SRM_FILE_LOST
= the request file is permanently lost.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
* The requested file is used by other clients.
SRM_FILE_UNAVAILABLE
= the requested file is temporarily unavailable.
SRM_LAST_COPY
= the requested file is the last copy and will not be purged from the space. srmRm
must be used to remove the last copy.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

2.11. srmGetSpaceTokens
srmGetSpaceTokens() returns space tokens for currently allocated spaces.

2.11.1. Parameters

In: string userSpaceTokenDescription,
string authorizationlD

Out: TReturnStatus returnStatus
string(] arrayOfSpaceTokens

2.11.2. Notes on the Behavior
a) If userSpaceTokenDescription is null, returns all space tokens this user owns.

gsm-wg@ogf.org -33-

GWD-R-XXXX 9/5/2007

b) Input parameter userSpaceTokenDescription is case-sensitive. SRM server is expected to keep it
as client provides. It can be reused by the client. srmGetSpaceTokens will return all the space
tokens that have the userSpaceTokenDescription.

c) If the user assigned the same name to multiple space reservations, he may get back multiple
space tokens.

2.11.3. Return Status Code
SRM_SUCCESS
= Allrequests are successfully completed. Space tokens are returned successfully.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= client is not authorized to request spaceTokens associated with the
userSpaceTokenDescription
SRM_INVALID REQUEST
= userSpaceTokenDescription does not refer to an existing space description.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
® function is not supported in the SRM server

gsm-wg@ogf.org -34 -

GWD-R-XXXX 9/5/2007

3. Permission Functions

summary:

srmSetPermission
srmCheckPermission

srmGetPermission

3.1. srmSetPermission

srmSetPermission is to set permission on local SURL.

3.1.1. Parameters

In: string authorizationlID,
anyURI SURL,
TPermissionType permissionType,
TPermissionMode ownerPermission,
TUserPermission(] arrayOfUserPermissions,
TGroupPermission[] arrayOfGroupPermissions,
TPermissionMode otherPermission,
TExtralnfo([] storageSysteminfo

Out: TReturnStatus returnStatus

3.1.2. Notes on the Behavior

a)
b)
c)

d)
e)
f)
8)

h)
i)

j)

Applies to both dir and file.

Support for srmSetPermission is optional.

User permissions are provided in order to support dynamic user-level permission assignment
similar to Access Control Lists (ACLs).

Permissions can be assigned to set of users and sets of groups, but only a single owner.

In this version, SRMs do not provide any group operations (setup, modify, remove, etc.)

Groups are assumed to be set up before srmSetPermission is used.

If TPermissionType is ADD or CHANGE, and TPermissionMode is null, then it is assumed that
TPermissionMode is READ only.

If TPermissionType is REMOVE, then the TPermissionMode is ignored.

if TPermissionType is CHANGE, but it is being applied to a [user|group] which currently does not
have permissions set up for it, then the request works as ADD. It follows the setfacl: Adds one or
more new ACL entries to the file, and/or modifies one or more existing ACL entries on the file.
If an entry already exists for a specified uid or gid, the specified permissions will replace the
current permissions. If an entry does not exist for the specified uid or gid, an entry will be
created.

srmSetPermission will modify permissions on SURLs even if the statuses of the SURLs are
SRM_FILE_BUSY.

3.1.3. Return Status Code

SRM_SUCCESS
= successful request completion. SURL has a new permission.

gsm-wg@ogf.org -35-

GWD-R-XXXX 9/5/2007

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to set permissions

= clientis not authorized to set permissions on the SURL
SRM_INVALID_PATH

= SURL does not refer to an existing known path
SRM_INVALID_REQUEST

= Permissions are provided incorrectly
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

= any input parameter is not supported in the SRM server

= aparticular type of an input parameter is not supported in the SRM server

3.2. srmCheckPermission

srmCheckPermission is used to check the client permissions on the SURLs. It only checks for the client
for authorization on the SURLs in the local storage.

3.2.1. Parameters

In: anyURI [] arrayOfSURLs,
string authorizationlID,
TExtralnfo([] storageSysteminfo

Out: TReturnStatus returnStatus,
TSURLPermissionReturn(] arrayOfPermissions

3.2.2. Notes on the Behavior
a) SRM will check files in its local online and nearline storage.

3.2.3. Return Status Code
For request level return status,
SRM_SUCCESS
= All requests are successfully completed. Permissions on SURLs are checked and
returned.
SRM_PARTIAL_SUCCESS
= All requests are completed. Permissions of some SURLs are successfully checked and
returned, but some permission of some SURLs are failed to be checked. Details are
on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client

gsm-wg@ogf.org -36-

GWD-R-XXXX 9/5/2007

SRM_AUTHORIZATION_FAILURE

= clientis not authorized to request permission information
SRM_INVALID_REQUEST

= arrayOfSURL is empty.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= All files requests are failed.

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

For file level return status,
SRM_SUCCESS

= successful request completion for the SURL. Permissions on SURL are checked and
returned.
SRM_INVALID_PATH

= SURL does not refer to an existing known path
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to request permission information on the SURL
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

3.3. srmGetPermission

srmGetPermission is used to get the permissions on the SURLs. It only checks for the client for
authorization on the SURLs in the local storage.

3.3.1. Parameters

In: anyURI [] arrayOfSURLs,
string authorizationlID,
TExtralnfo[] storageSysteminfo

Out: TReturnStatus returnStatus,
TPermissionReturn(] arrayOfPermissionReturns

3.3.2. Notes on the Behavior
b) SRM will check files in its local online and nearline storage.

3.3.3. Return Status Code
For request level return status,
SRM_SUCCESS

= Allrequests are successfully completed. Permissions on SURLs are returned.
SRM_PARTIAL_SUCCESS

gsm-wg@ogf.org -37-

GWD-R-XXXX 9/5/2007

= All requests are completed. Permissions of some SURLs are successfully returned,
but some permission of some SURLs are failed to be returned. Details are on the
files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to request permission information
SRM_INVALID_REQUEST
= arrayOfSURL is empty.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
® function is not supported in the SRM server

For file level return status,
SRM_SUCCESS

= successful request completion for the SURL. Permissions on SURL are returned.
SRM_INVALID_PATH

= SURL does not refer to an existing known path
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to request permission information on the SURL
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.

gsm-wg@ogf.org -38-

GWD-R-XXXX

4. Directory Functions

summary:

srmMkdir

srmRmdir

srmRm

srmLs
srmStatusOfLsRequest

srmMv

4.1. srmMkdir

srmMkdir create a directory in a local SRM space.

4.1.1. Parameters

In:

Out:

string authorizationlID,
anyURI SURL,

TExtralnfo([] storageSysteminfo
TReturnStatus returnStatus

4.1.2. Notes on the Behavior
a) Consistent with unix, recursive creation of directories is not supported.

b) SURL is a directory path and can include paths, as long as all directory hierarchy exists.

4.1.3. Return Status Code
SRM_SUCCESS

= All requests are successfully completed. SURL is created.

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE

= clientis not authorized to create a directory
= clientis not authorized to create a directory as SURL

SRM_INVALID_PATH

= SURL does not refer to a valid path
= component of SURL does not refer to an existing path

SRM_DUPLICATION_ERROR

= SURL exists already

SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.

SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.

SRM_NOT_SUPPORTED

® function is not supported in the SRM server

gsm-wg@ogf.org

9/5/2007

-39-

GWD-R-XXXX 9/5/2007

4.2. srmRmdir

srmRmdir removes an empty directory in a local SRM space.

4.2.1. Parameters

In: string authorizationlID,

anyURI SURL,

TExtralnfo([] storageSysteminfo,

boolean recursive // false by default
Out: TReturnStatus returnStatus

4.2.2. Notes on the Behavior

a)
b)
c)
d)

It applies to directory only.

recursive is false by default.

To distinguish from srmRm(), this function is for directories only

When only expired volatile files are in the requested directory, srmRmdir must allow the
removal of the requested directory regardless of the expired files. The SURL of the expired
volatile files must no longer exist in the file system, and may or may not be removed right away
physically depending on the internal server policy.

4.2.3. Return Status Code

SRM_SUCCESS

= Allrequests are successfully completed. SURL is removed.
SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to remove a directory

= clientis not authorized to remove a directory as SURL
SRM_INVALID_PATH

= SURL does not refer to a valid path
SRM_NON_EMPTY_DIRECTORY

= SURL is not empty
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

® function is not supported in the SRM server

® input parameter recursive is not supported in the SRM server

4.3. srmRm

This function will remove SURLs (the name space entries) in the storage system. Difference from
srmPurgeFromSpace is that srmPurgeFromSpace removes only previously requested “copies” (or

gsm-wg@ogf.org -40 -

GWD-R-XXXX 9/5/2007

“state”) of the SURL in a particular space, and srmPurgeFromSpace shall not remove SURLs or the name
space entries.

4.3.1. Parameters

In: string authorizationlID,
anyURI[] arrayOfSURLs,
TExtralnfo([] storageSysteminfo

Out: TReturnStatus returnStatus,
TSURLReturnStatus[] arrayOfFileStatuses

4.3.2. Notes on the Behavior

a) To distinguish from srmRmdir(), this function applies to files only

b) srmRm removes all copies or states on the storage, and removes the entry from the name
space.

c¢) When an SURL is removed, all associated pinned TURLs are all released and removed as well.

d) srmls, srmPrepareToGet or srmBringOnline will not find these removed files any more. It must
set file requests on SURL from srmPrepareToGet as SRM_ABORTED.

e) srmRm aborts the SURLs from srmPrepareToPut requests not yet in SRM_PUT_DONE state, and
must set its file status as SRM_ABORTED.

f) srmRm will remove SURLs even if the statuses of the SURLs are SRM_FILE_BUSY. In this case,
operations such as srmPrepareToPut or srmCopy that holds the SURL status as SRM_FILE_BUSY
must return SRM_INVALID_PATH upon status request or srmPutDone.

4.3.3. Return Status Code
For request level return status,
SRM_SUCCESS
= Allrequests are successfully completed. All SURLs are removed.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURLs are successfully removed, and some SURLs
are failed to be removed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to remove any files
SRM_INVALID REQUEST
= arrayOfSURLs is empty.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED
= function is not supported in the SRM
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS

gsm-wg@ogf.org -41-

GWD-R-XXXX

9/5/2007

= successful request completion for the SURL. SURL is removed.

SRM_INVALID_PATH

= SURL does not refer to an existing known file path

SRM_AUTHORIZATION_FAILURE

= clientis not authorized to remove SURL

SRM_FILE_LOST

= the request file is permanently lost.

SRM_FILE_UNAVAILABLE

= the request file is temporarily unavailable.

SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.

4.4. srmlLs

srmLs() returns a list of files with a basic information. This operation may be asynchronous, and in such

case, requestToken must be returned.
4.4.1. Parameters

In: string
anyURI []
TExtralnfo[]
TFileStorageType
boolean
boolean
int
int
int

Out: TReturnStatus
string
TMetaDataPathDetail[]

4.4.2. Notes on the Behavior
a) Applies to both directory and file
b) fullDetailedList is false by default.

authorizationlID,
arrayOfSURLs,
storageSystemInfo,
fileStorageType,
fullDetailedList,
allLevelRecursive,
numOfLevels,
offset,

count

returnStatus
requestToken
details

0 For directories, only path is required to be returned.
0 Forfiles, path and size are required to be returned.
c) If fullDetailedList is true, the full details are returned.

0 Fordirectories (humOflLevels=0) or a single file, path, size, userPermission,
lastModificationTime, type, fileLocality, and lifetimeLeft are required to be returned,
similar to unix command /s —.

0 Fordirectories (humOflevels=1), path, size, userPermission, lastModificationTime, and
type are required to be returned.

d) If allLevelRecursive is true then file lists of all level below current will be provided as well.

gsm-wg@ogf.org -42 -

GWD-R-XXXX 9/5/2007

e) IfallLevelRecursive is "true" it dominates, i.e. ignore numOfLevels. If allLevelRecursive is "false"
or missing, then do numOfLevels. If numOfLevels is "0" (zero) or missing, assume a single level.
If both allLevelRecursive and numOfLevels are missing, assume a single level.

f) Default value of numOfLevels is 1 when not provided.

g) If numOfLevels is 0, then information about directory itself is returned. Negative value is invalid.

h) If numOfLevels is 1, then information about files in the directory is returned. Negative value is
invalid.

i) Fordirectory path, appending a slash (/) at the end of the path is recommended.

j) When listing for a particular type specified by “fileStorageType”, only the files with that type will
be in the output.

k) Empty directories will be returned.

I) For non-existing or system-prohibited file or directory browsing, SRM_INVALID_PATH must be
returned. For non-supported file or directory browsing, SRM_NOT_SUPPORTED must be
returned. Explanation needs to be filled for details.

m) When browsing the top directory is not supported by the SRM, SRM_NOT_SUPPORTED must be
returned at the file level.

4.4.3. Return Status Code
For request level return status,
SRM_SUCCESS
= All requests are successfully completed. All SURLs are checked and the information
for all SURLs is returned successfully.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURL request is successfully completed, and some
SURL request is failed. Details are on the files status.
SRM_REQUEST_QUEUED
= successful request submission and acceptance. Request token must be returned.
SRM_REQUEST_INPROGRESS
= Some files are completed, and some files are still on the queue. Details are on the
files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to request information
SRM_TOO_MANY_RESULTS
= srmLs request has generated too many results that SRM cannot handle. In most
cases, it needs to be narrowed down with offset and count by the client.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_INVALID_REQUEST
= Negative values for numOfLevels, offset and count are provided.
= Qperation on the path such as browsing the top directory may be prohibited.
Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= Requested fileStorageType is not supported in SRM
= Filtering fileStorageType is not supported in SRM
= Directory operation (directory SURL, allLevelRecursive and numOflLevels) is not
supported in SRM

gsm-wg@ogf.org -43 -

GWD-R-XXXX 9/5/2007

SRM_FAILURE
= Allfiles requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. The information for the SURL is checked
and returned successfully.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_REQUEST_QUEUED
= file request is still on the queue.
SRM_INVALID_PATH
= SURL does not refer to an existing known file path.
SRM_AUTHORIZATION_FAILURE
= client is not authorized to receive the information of the SURL or to access the
directory or sub-directories
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
SRM_FILE_LIFETIME_EXPIRED
= lifetime on SURL is expired. There is no guarantee of the file still in the cache.
SRM_FILE_IN_CACHE
= |ifetime on SURL has expired, but the file is still in the cache.
SRM_NOT_SUPPORTED
= Qperation on the path such as browsing the top directory may be not supported.
Explanation needs to be filled for details.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

4.5. srmStatusOfLsRequest

srmStatusOfLsRequest() returns a list of files with a basic information. This is an asynchronous operation
of srmLs.

4.5.1. Parameters

In: string authorizationlID,
string requestToken
int offset,
int count

Out: TReturnStatus returnStatus
TMetaDataPathDetail[] details

4.5.2. Notes on the Behavior

gsm-wg@ogf.org _44 -

GWD-R-XXXX 9/5/2007

a) Empty directories will be returned.
b) For non-existing file or directory, SRM_INVALID PATH must be returned.

4.5.3. Return Status Code
For request level return status,
SRM_SUCCESS
= All requests are successfully completed. All SURLs are checked and the information
for all SURLs is returned successfully.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURL request is successfully completed, and some
SURL request is failed. Details are on the files status.
SRM_REQUEST_QUEUED
= successful request submission and all files request is still on the queue.
SRM_REQUEST_INPROGRESS
= Some files are completed, and some files are still on the queue. Details are on the
files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to request information
SRM_TOO_MANY_RESULTS
= srmLs request has generated too many results that SRM cannot handle. In most
cases, it needs to be narrowed down with offset and count by the client.
SRM_INVALID_REQUEST
= Negative values for offset and count are provided.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED
= Requested fileStorageType is not supported in SRM
= Filtering fileStorageType is not supported in SRM
= Directory operation (directory SURL, allLevelRecursive and numOfLevels) is not
supported in SRM
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,

SRM_SUCCESS

= successful request completion for the SURL. The information for the SURL is checked

and returned successfully.

SRM_REQUEST_INPROGRESS

= file request is being served.
SRM_REQUEST_QUEUED

= file request is still on the queue.
SRM_INVALID_PATH

= SURL does not refer to an existing known file path
SRM_AUTHORIZATION_FAILURE

gsm-wg@ogf.org -45 -

GWD-R-XXXX 9/5/2007

= client is not authorized to receive the information of the SURL or to access the
directory or sub-directories
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
SRM_FILE_LIFETIME_EXPIRED
= |ifetime on SURL is expired. There is no guarantee of the file still in the cache.
SRM_FILE_IN_CACHE
= |ifetime on SURL has expired, but the file is still in the cache.
SRM_NOT_SUPPORTED
= QOperation on the path such as browsing the top directory may be not supported.
Explanation needs to be filled for details.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

4.6. srmMv
srmMv is to move a file or a directory to destination.

4.6.1. Parameters

In: string authorizationlID,
anyURI fromSURL,
anyURI toSURL,
TExtralnfo([] storageSysteminfo
Out: TReturnStatus returnStatus

4.6.2. Notes on the Behavior

a) Applies to both directory and file, and works like unix mv.

b) Authorization checks need to be performed on both fromSURL and toSURL.

c) srmMv must fail on SURL that its status is SRM_FILE_BUSY, and SRM_INVALID_REQUEST must
be returned.

d) Moving an SURL to itself results in no operation and SRM_SUCCESS will be returned for no
operation.

e) When moving an SURL to already existing SURL, SRM_DUPLICATION_ERROR must be returned.

4.6.3. Return Status Code

SRM_SUCCESS

= All requests are successfully completed. SURL is moved successfully from one local
path to another local path.

SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE
= clientis not authorized to move fromSURL.
= (Client is not authorized to move a file into toSURL

gsm-wg@ogf.org -46 -

GWD-R-XXXX

SRM_

SRM_
SRM_

SRM_

SRM_
SRM_
SRM_

SRM_

gsm-wg@ogf.org

9/5/2007

INVALID_PATH

®* fromSURL does not refer to an existing known path

= toSURL does not refer to a valid path

= status of fromSURL is SRM_FILE_BUSY.
DUPLICATION_ERROR

= toSURL exists already.
FILE_LOST

= the requested file is permanently lost.
FILE_BUSY

= client requests for files which there is an active srmPrepareToPut (no srmPutDone is

not yet called) for.

= The requested file is being used by other clients.
FILE_UNAVAILABLE

= the requested file is temporarily unavailable.
INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
FAILURE

= any other request failure. Explanation needs to be filled for details.
NOT_SUPPORTED

= function is not supported in the SRM server

-47 -

GWD-R-XXXX

5. Data Transfer Functions

summary:

srmPrepareToGet

srmStatusOfGetRequest
srmPrepareToPut

srmStatusOfPutRequest

srmCopy
srmStatusOfCopyRequest

srmBringOnline

srmStatusOfBringOnlineRequest

srmReleaseFiles
srmPutDone

srmAbortRequest
srmAbortFiles
srmSuspendRequest
srmResumeRequest

srmGetRequestSummary

srmExtendFileLifeTime
srmGetRequestTokens

5.1. srmPrepareToGet

9/5/2007

This function is used to bring files online upon the client’s request and assign TURL so that client can
access the file. Lifetime (pinning expiration time) is assigned on the TURL. When specified target space
token which must be referred to an online space, the files will be prepared using the space associated
with the space token. It is an asynchronous operation, and request token must be returned if request is
valid and accepted. The status must be checked through srmStatusOfGetRequest with the returned

request token.
5.1.1. Parameters

In: string
TGetFileRequest(]
string
TExtralnfo[]
TFileStorageType
int
int
string

TRetentionPolicylnfo
TTransferParameters

gsm-wg@ogf.org

authorizationlID,
arrayOfFileRequests,
userRequestDescription,
storageSysteminfo,
desiredFileStorageType
desiredTotalRequestTime
desiredPinLifetime,
targetSpaceToken
targetFileRetentionPolicylnfo
transferParameters

-48 -

GWD-R-XXXX 9/5/2007

Out: TReturnStatus returnStatus
string requestToken,
TGetRequestFileStatus|] arrayOfFileStatuses
int remainingTotalRequestTime

5.1.2. Notes on the Behavior

a)
b)
c)
d)
e)
f)

g)

o)

h)

j)

k)

The default value of “lifetime” for Volatile or Durable files will be the lifetime left in the space of
the corresponding file type. The default value of “fileStorageType” is Volatile.

If input parameter targetSpaceToken is provided, then the target space token must refer to
online space. All requested files will be prepared into the target space.

Input parameter targetFileRetentionPolicyinfo of TRetentionPolicyinfo is to specify the desired
retention policy information on the file when the file is prepared online.

If both input parameters targetSpaceToken and TRetentionPolicyinfo are provided, then their
types must match exactly. Otherwise, the request may be rejected with
SRM_INVALID_REQUEST.

Access latency must be ONLINE always.

Input parameter TAccessPattern is provided at the request-level, and all files will have the same
access pattern.

Optional input parameters in TTransferParameters may collide with the characteristics of the
space specified. In this case, TTransferParameters as an input parameter must be ignored.

The userRequestDescription is a user designated name for the request. It is case-sensitive. SRM
server is expected to keep it as client provides. It can be reused by the client. It can be used in
the srmGetRequestTokens function to get back the system assigned request tokens.
srmGetRequestTokens will return all the request tokens that have the userRequestDescription.
Only pull mode is supported for file transfers that client must pull the files from the TURL within
the expiration time (remainingPinTime).

Input parameter desiredPinLifetime is for a client preferred lifetime (expiration time) on the
prepared TURL.

If request is accepted, SRM assigns the requestToken for asynchronous status checking. In such
case, the returned status code should be SRM_REQUEST_QUEUED.

totalRequestTime means: All the file transfer for this request must be complete within this
totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must be returned as the request
status code with individual file status of SRM_FAILURE with an appropriate explanation.

If desiredTotalRequestTime is unspecified as NULL, the request will be retried for a duration
which is dependent on the SRM implementation.

If input parameter desiredTotalRequestTime is O (zero), each file request will be tried at least
once. Negative value is invalid.

Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

The invocation of srmReleaseFile() is expected for finished files later on.

The returned request token should be valid until all files in the request are released or removed.
Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST_QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime. In the output
parameter of explanation in returnStatus, the server may make explicit that the retry is being
done. If streaming mode is not supported, the server returns SRM_NO_USER_SPACE or

gsm-wg@ogf.org -49 -

GWD-R-XXXX 9/5/2007

SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if some file requests were
successful) or SRM_FAILURE at the request level.
r) Zero length files must not fail on srmPrepareToGet.

5.1.3. Return Status Code
For request level return status,
SRM_REQUEST_QUEUED
= successful request submission and acceptance. All file requests are on the queue.
Request token must be returned.
SRM_REQUEST_INPROGRESS
= some files are completed, and some files are still on the queue. Request token must
be returned.
SRM_SUCCESS
= all file requests are successfully completed. All SURLs are successfully pinned. For
TURLs, file level status needs to be checked.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some file request is successfully pinned, and some file
request is failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
SRM_INVALID_REQUEST
= arrayOfFileRequest is empty
= |f both input parameters targetSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly.
= Access latency is something other than ONLINE.
= targetSpaceToken does not refer to an existing known space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION
= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.
SRM_NO_USER_SPACE
= user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold all requested SURLs for free. When client does not
specify the targetSpaceToken, SRM uses a default space. The default space is not
sufficient to accommodate the request.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.
= Directory operation is not supported in the SRM server.
= Recursive directory operation is not supported in the SRM server.
= None of the file transfer protocols are supported in the SRM server.

gsm-wg@ogf.org -50-

GWD-R-XXXX 9/5/2007

SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= All files requests are failed.

= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_FILE_PINNED
= successful request completion for the SURL. SURL is successfully pinned, and TURL is
available for access.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_FILE_LOST
= the requested file is permanently lost.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
SRM_FILE_UNAVAILABLE
= the requested file is temporarily unavailable.
SRM_INVALID_PATH
= SURL does not refer to an existing known file request that is associated with the
request token
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to retrieve the file that is associated with the SURL
SRM_FILE_LIFETIME_EXPIRED
= SURL is expired
= TURLis expired
= pin lifetime on TURL has expired, but the file is still in the cache.
SRM_NO_USER_SPACE
= user space is not enough to hold requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold requested SURL for free. When client does not
specify the targetSpaceToken, SRM uses a default space. The default space is not
sufficient to accommodate the request.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.

5.2. srmStatusOfGetRequest

gsm-wg@ogf.org -51-

GWD-R-XXXX 9/5/2007

This function is used to check the status of the previously requested srmPrepareToGet. Request token
from srmPrepareToGet must be provided.

5.2.1. Parameters

In: string requestToken,
string authorizationlD
anyURI [] arrayOfSourceSURLs,
Out: TReturnStatus returnStatus,
TGetRequestFileStatus|] arrayOfFileStatuses
int remainingTotalRequestTime

5.2.2. Notes on the Behavior

a)
b)
c)
d)
e)

)
g)

h)
i)

j)

k)

The default value of “lifetime” for Volatile or Durable files will be the lifetime left in the space of
the corresponding file type. The default value of “fileStorageType” is Volatile.

If arrayOfSourceSURLs is not provided, SRM must return status for all file requests in the request
that is associated with the request token.

When the file is ready and TURL is prepared, the return status code should be
SRM_FILE_PINNED.

When the file is ready for the client, the file is implicitly pinned in the cache and lifetime will be
enforced, subject to the policies associated with the underlying storage.

If any of the request files is temporarily unavailable, SRM_FILE_ UNAVAILABLE must be returned
for the file.

If any of the request files is permanently lost, SRM_FILE_LOST must be returned for the file.

The file request must fail with an error SRM_FILE_BUSY if srmPrepareToGet requests for files
which there is an active srmPrepareToPut (no srmPutDone is not yet called) for.

SRM must fail (SRM_FAILURE) only if all files in the request failed.

totalRequestTime means: All the file transfer for this request must be complete within this
totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must be returned as the request
status code with individual file status of SRM_FAILURE with an appropriate explanation.

Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST_QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime from the request.
remainingTotalRequestTime is being returned. In the output parameter of explanation in
returnStatus, the server may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level
and SRM_PARTIAL _SUCCESS (if some file requests were successful) or SRM_FAILURE at the
request level. Clients may need to release files or clean up the target space when target space
token was provided.

Output parameter returnStatus must always refer to the request status of the whole request,
even if a subset of the whole request was specified in the input for specific file statuses.

5.2.3. Return Status Code

gsm-wg@ogf.org -52-

GWD-R-XXXX 9/5/2007

For request level return status,
SRM_SUCCESS
= all file requests are successfully completed. All SURLs are successfully pinned. For
TURLs, file level status needs to be checked.
SRM_REQUEST_QUEUED
= successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS
= some files are completed, and some files are still on the queue
SRM_PARTIAL_SUCCESS
= All requests are completed. Some file request is successfully pinned, and some file
request is failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
SRM_INVALID REQUEST
= requestToken does not refer to an existing known request in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION
= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.
SRM_NO_USER_SPACE
= user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold all requested SURLs for free.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.
= Directory operation is not supported in the SRM server.
= Recursive directory operation is not supported in the SRM server.
= None of the file transfer protocols are supported in the SRM server.
SRM_ABORTED
* The request has been aborted.
SRM_REQUEST_TIMED_OUT
= Total request time is over and the rest of the request is failed.
SRM_REQUEST_SUSPENDED
= request is suspended.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,

gsm-wg@ogf.org -53-

GWD-R-XXXX 9/5/2007

SRM_FILE_PINNED
= successful request completion for the SURL. SURL is successfully pinned, and TURL is
available for access.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_REQUEST_SUSPENDED
= File request is suspended.
SRM_FILE_LOST
* the requested file is permanently lost.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
SRM_FILE_UNAVAILABLE
= the requested file is temporarily unavailable.
SRM_INVALID_PATH
= SURL does not refer to an existing known file request that is associated with the
request token
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to retrieve the file that is associated with the SURL
SRM_FILE_LIFETIME_EXPIRED
= SURL is expired
= TURLis expired
= pin lifetime on TURL has expired, but the file is still in the cache
SRM_NO_USER_SPACE
= user space is not enough to hold requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold requested SURL for free. When client does not
specify the targetSpaceToken, SRM uses a default space. The default space is not
sufficient to accommodate the request.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.

5.3. srmBringOnline

This function is used to bring files online upon the client’s request so that client can make certain data
readily available for future access. In hierarchical storage systemes, it is expected to “stage” files to the
top hierarchy and make sure that the files stay online for a certain period of time. When client specifies
target space token which must be referred to an online space, the files will be brought online using the
space associated with the space token. It is an asynchronous operation, and request token must be

gsm-wg@ogf.org -54 -

GWD-R-XXXX

9/5/2007

returned if asynchronous operation is necessary in SRM. The status may be checked through
srmStatusOfBringOnlineRequest with the returned request token.
This function is similar to srmPrepareToGet, but it does not return Transfer URL (TURL).

5.3.1. Parameters

In: string
TGetFileRequest(]
string
TExtralnfo[]
TFileStorageType
int
int
string
TRetentionPolicylnfo
TTransferParameters
int

Out: TReturnStatus
string
TBringOnlineRequestFileStatus|]
int
int

5.3.2. Notes on the Behavior

authorizationlID,
arrayOfFileRequests,

userRequestDescription,
storageSysteminfo,
desiredFileStorageType
desiredTotalRequestTime
desiredLifetime, // life time on online
targetSpaceToken,
targetFileRetentionPolicylnfo,
transferParameters,

deferredStartTime

returnStatus

requestToken
arrayOfFileStatuses
remainingTotalRequestTime
remainingDeferredStartTime

a)

b)
c)

d)

e)
f)
g)

h)
i)

Input parameter deferredStartTime is to support CE-SE resource co-allocation and tape
mounting efficiency. It means that client does not intent to use the files before that time. If SRM
decides not to bring any files until deferredStartTime is reached, SRM_REQUEST_QUEUED must
be returned. By default deferredStartTime is O (zero) and the request gets queued or processed
upon submission. Negative value is invalid.

Output parameter remainingDeferredStartTime indicates how long the deferredStartTime is left,
if supported. Negative value is not valid.

Input parameter targetFileRetentionPolicyinfo of TRetentionPolicyinfo is to specify the desired
retention policy information on the file when the file is brought online.

If both input parameters targetSpaceToken and TRetentionPolicyInfo are provided, then their
types must match exactly. Otherwise, the request may be rejected, and SRM_INVALID_REQUEST
will be returned.

Optional input parameters in TTransferParameters may collide with the characteristics of the
space specified. In this case, TTransferParameters as an input parameter must be ignored.

If the transfer protocol hints are not specified, default is assumed to be processing mode and
LAN access for the site.

Access latency must be ONLINE always.

It is up to the SRM implementation to decide TConnectionType if not provided.

The userRequestDescription is a user designated name for the request. It is case-sensitive. SRM
server is expected to keep it as client provides. It can be reused by the client. It can be used in
the srmGetRequestTokens function to get back the system assigned request tokens.
srmGetRequestTokens will return all the request tokens that have the userRequestDescription.

gsm-wg@ogf.org -55-

GWD-R-XXXX 9/5/2007

j)

k)

m)

n)
o)

p)

a)

r)

Input parameter desiredLifetime is for a client preferred lifetime (expiration time) on the file
“copies (or “states”) of the SURLs that will be “brought online” into the target space that is
associated with the targetSpaceToken.

This call may be an asynchronous (non-blocking) call, and SRM assigns the requestToken when
the request is valid and accepted. The returned status code should be SRM_REQUEST_QUEUED.
To get subsequent status and results, separate calls should be made through
srmStatusOfBringOnline.

The returned request token should be valid until all files in the request are released, removed or
aborted.

totalRequestTime means: All the file transfer for this request must be complete within this
desiredTotalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must be returned as the
request status code with individual file status of SRM_FAILURE with an appropriate explanation.
If input parameter desiredTotalRequestTime is unspecified as NULL, the request will be retried
for a duration which is dependent on the SRM implementation.

If input parameter desiredTotalRequestTime is O (zero), each file request will be tried at least
once. Negative value is not valid.

Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

When srmAbortRequest is requested for srmBringOnline request, the request gets aborted, but
those files that are brought online will remain in the space where they are brought in, and are
not removed. Clients need to remove those files through srmPurgeFromSpace or srmRm.
Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST_QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime from the request. In
the output parameter of explanation in returnStatus, the server may make explicit that the retry
is being done. If streaming mode is not supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if some file requests were
successful) or SRM_FAILURE at the request level.

5.3.3. Return Status Code
For request level return status,

SRM_REQUEST_QUEUED
= successful request submission and acceptance. All file requests are on the queue.
Request token must be returned.
SRM_REQUEST_INPROGRESS
= some files are completed, and some files are not completed yet. Request token
must be returned.
SRM_SUCCESS
= All requests are successfully completed. All SURLs are successfully brought online.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some files are successfully brought online, and some
files are failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request

gsm-wg@ogf.org -56 -

GWD-R-XXXX 9/5/2007

SRM_INVALID_REQUEST
= arrayOfFileRequest is empty
= Access latency refers to something other than ONLINE.
= |f both input parameters targetSpaceToken and TRetentionPolicyInfo are provided,
then their types must match exactly.
= targetSpaceToken does not refer to an existing known space in the SRM server.
= deferredStartTime is negative.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION
= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.
SRM_NO_USER_SPACE
= user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold all requested SURLs for free.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.
= deferredStartTime is not supported in the SRM server.
= Directory operation is not supported in the SRM server.
= Recursive directory operation is not supported in the SRM server.
= None of the file transfer protocols are supported in the SRM server.
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. SURL is successfully brought online.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to retrieve the file that is associated with the SURL
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_FILE_LOST
= the requested file is permanently lost.
SRM_FILE_BUSY

gsm-wg@ogf.org -57-

GWD-R-XXXX 9/5/2007

= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
SRM_FILE_UNAVAILABLE
= the requested file is temporarily unavailable.
SRM_INVALID_PATH
= SURL does not refer to an existing known file request that is associated with the
request token
SRM_FILE_LIFETIME_EXPIRED
= SURL is expired
= pin lifetime has expired, but the file is still in the cache
SRM_NO_USER_SPACE
= user space is not enough to hold requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold requested SURL for free. When client does not
specify the targetSpaceToken, SRM uses a default space. The default space is not
sufficient to accommodate the request.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.

5.4. srmStatusOfBringOnlineRequest
This function is used to check the status of the previous request to srmBringOnline, when asynchronous
operation is necessary in the SRM. Request token must have been provided in response to the

srmBringOnline.

5.4.1. Parameters

In: string requestToken,
string authorizationID
anyURI [] arrayOfSourceSURLs,

Out: TReturnStatus returnStatus,
TBringOnlineRequestFileStatus|] arrayOfFileStatuses
int remainingTotalRequestTime
int remainingDeferredStartTime

5.4.2. Notes on the Behavior

a) If arrayOfSourceSURLs is not provided, returns status for all files in this request.

b) When the file is ready online, the return status code should be SRM_FILE_IN_CACHE.

c) Output parameter remainingDeferredStartTime indicates how long the deferredStartTime is left,
if supported. Negative value is not valid.

d) When the file is ready for the client, the file is implicitly pinned in the cache and lifetime will be
enforced, subject to the policies associated with the underlying storage.

e) If any of the request files is temporarily unavailable, SRM_FILE_UNAVAILABLE must be returned
for the file.

gsm-wg@ogf.org -58-

GWD-R-XXXX 9/5/2007

f)
g)

h)
i)
j)

k)

m)

If any of the request files is permanently lost, SRM_FILE_LOST must be returned for the file.

The file request must fail with an error SRM_FILE_BUSY if srmBringOnline requests for files
which there is an active srmPrepareToPut (no srmPutDone is not yet called) for.

SRM must fail (SRM_FAILURE) only if all files in the request failed.

totalRequestTime means: All the file transfer for this request must be complete within this
totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must be returned as the request
status code with individual file status of SRM_FAILURE with an appropriate explanation.

Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

If SRM decides not to bring any files until input parameter deferredStartTime is reached,
SRM_REQUEST_QUEUED must be returned.

Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST _QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime from the request.
remainingTotalRequestTime is being returned. In the output parameter of explanation in
returnStatus, the server may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level
and SRM_PARTIAL_SUCCESS (if some file requests were successful) or SRM_FAILURE at the
request level. Clients may need to release files or clean up the target space when target space
token was provided.

Output parameter returnStatus must always refer to the request status of the whole request,
even if a subset of the whole request was specified in the input for specific file statuses.

5.4.3. Return Status Code
For request level return status,

SRM_SUCCESS
= Allrequests are successfully completed. All SURLs are successfully brought online.
SRM_REQUEST_QUEUED
= successful request submission and all files request is on the queue
SRM_REQUEST_INPROGRESS
= some files are completed, and some files are not completed yet.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some files are successfully brought online, and some
files are failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.

gsm-wg@ogf.org -59-

GWD-R-XXXX 9/5/2007

= deferredStartTime is not supported in the SRM server.

= Directory operation is not supported in the SRM server.

= Recursive directory operation is not supported in the SRM server.

= None of the file transfer protocols are supported in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED

= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

= space associated with the targetSpaceToken is not enough to hold all requested

SURLs.

SRM_NO_USER_SPACE

= user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE

= SRM space is not enough to hold all requested SURLs for free.
SRM_ABORTED

= The request has been aborted.
SRM_REQUEST_TIMED_OUT

= Total request time is over and the rest of the request is failed.
SRM_REQUEST_SUSPENDED

= request is suspended.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= Allfiles requests are failed.

= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. SURL is successfully brought online.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to retrieve the file that is associated with the SURL
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_REQUEST_SUSPENDED
= File request is suspended.
SRM_FILE_LOST
= the requested file is permanently lost.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) for.
SRM_FILE_UNAVAILABLE
= the requested file is temporarily unavailable.
SRM_INVALID_PATH

gsm-wg@ogf.org -60 -

GWD-R-XXXX 9/5/2007

= SURL does not refer to an existing known file request that is associated with the
request token
SRM_FILE_LIFETIME_EXPIRED
= SURL is expired
= pin lifetime has expired, but the file is still in the cache
SRM_NO_USER_SPACE
= user space is not enough to hold requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold requested SURL for free. When client does not
specify the targetSpaceToken, SRM uses a default space. The default space is not
sufficient to accommodate the request.

SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.

5.5. srmPrepareToPut

This function is used to write files into the storage. Upon the client’s request, SRM prepares a TURL so
that client can write data into the TURL. Lifetime (pinning expiration time) is assigned on the TURL.
When a specified target space token is provided, the files will be located finally in the targeted space
associated with the target space token. It is an asynchronous operation, and request token must be
returned if the request is valid and accepted to the SRM. The status may be checked through
srmStatusOfPutRequest with the returned request token.

5.5.1. Parameters

In: string authorizationlID,
TPutFileRequest(] arrayOfFileRequests,
string userRequestDescription,
TOverwriteMode overwriteOption,
TExtralnfo[] storageSystemIinfo,
int desiredTotalRequestTime
int desiredPinLifetime, //on TURL
int desiredFileLifetime, //on SURL
TFileStorageType desiredFileStorageType,
string targetSpaceToken
TRetentionPolicylnfo targetFileRetentionPolicylnfo
TTransferParameters transferParameters

Out: TReturnStatus returnStatus
string requestToken,
TPutRequestFileStatus|] arrayOfFileStatuses
int remainingTotalRequestTime

5.5.2. Notes on the Behavior

gsm-wg@ogf.org

-61-

GWD-R-XXXX 9/5/2007

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime left in the space of
the corresponding file type. The default value of “fileStorageType” is Volatile.

b) TURL returned by the srmPrepareToPut may not be used for read access with any protocol. An
explicit srmPrepareToGet or srmBringOnline is required.

c) Optional input parameters in TTransferParameters may collide with the characteristics of the
space specified. In this case, TTransferParameters as an input parameter must be ignored.

d) Input parameter userRequestDescription may be null, and it is case-sensitive when provided.
SRM server is expected to keep it as client provides. It can be reused by the client. It can be used
in the srmGetRequestTokens function to get back the system assigned request tokens.
srmGetRequestTokens will return all the request tokens that have the userRequestDescription.

e) Input parameter targetSpaceToken is provided at the request-level, and all files in the request
will end up in the space that is associated with the target space token if the space is enough for
all files.

f) Input parameter targetFileRetentionPolicylnfo of TRetentionPolicylnfo is to specify the desired
retention policy information on the file when the file is written into the target storage system.

g) If both input parameters targetSpaceToken and TRetentionPolicyinfo are provided, then their
types must match exactly. Otherwise, the request may be rejected and SRM_INVALID_REQUEST
must be returned.

h) Only push mode is supported for file transfers that client must “push” the file to the prepared
TURL.

i) Input parameter targetSURL in the TPutFileRequest has to be local to SRM. If targetSURL is not
specified, SRM will generate a reference SURL for the file request automatically and put it in the
specified user space if provided. This reference SURL will be returned along with the “Transfer
URL”. Some SRM implementation may require targetSURL.

j) srmPutDone() is expected after each file is “put” into the prepared TURL.

k) Input parameter desiredPinLifetime is the lifetime (expiration time) on the TURL when the
Transfer URL is prepared. It does not refer to the lifetime of the SURL. TURLs will not be valid
any more after the desiredPinLifetime is over if srmPutDone or srmAbortRequest is not
submitted on the SURL before expiration. In such case, the server returns SRM_FAILURE at the
file level.

I) Input parameter desiredFileLifetime is the lifetime of the SURL when the file is put into the
storage system. It does not refer to the lifetime (expiration time) of the TURL. Lifetime on SURL
starts when successrul srmPutDone is executed.

m) The lifetime of the SURL starts as soon as SRM receives the srmPutDone(). If srmPutDone() is
not provided, then the files in that space are subject to removal when the lifetime on the TURL
expires or the lifetime on the space expires. The lifetime on the TURL can be found in the status
of the file request as output parameter remainingPinTime in TPutRequestFileStatus.

n) If request is accepted, SRM assigns the requestToken for asynchronous status checking. In such
case, the returned status code should be SRM_REQUEST _QUEUED.

0) totalRequestTime means: All the file transfer for this request must be complete within this
totalRequestTime. Otherwise, SRM_REQUEST TIMED_OUT must be returned as the request
status code with individual file status of SRM_FAILURE with an appropriate explanation.

p) If input parameter desiredTotalRequestTime is unspecified as NULL, the request will be retried
for a duration which is dependent on the SRM implementation.

g) If input parameter desiredTotalRequestTime is O (zero), each file request will be tried at least
once. Negative value is invalid.

r) Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If

gsm-wg@ogf.org -62-

GWD-R-XXXX 9/5/2007

remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

s) Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST_QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime from the request. In
the output parameter of explanation in returnStatus, the server may make explicit that the retry
is being done. If streaming mode is not supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if some file requests were
successful) or SRM_FAILURE at the request level.

t) Upon srmPrepareToPut, SURL entry is inserted to the name space, and any methods that access
the SURL such as srmLs, srmBringOnline and srmPrepareToGet must return SRM_FILE_BUSY at
the file level. If another srmPrepareToPut or srmCopy were requested on the same SURL,
SRM_FILE_BUSY must be returned if the SURL can be overwritten, otherwise
SRM_DUPLICATION_ERROR must be returned at the file level.

u) Input parameter overwriteOption is assumed to be NEVER when not specified.

v) When requested file storage type is VOLATILE, it cannot be promoted to PERMANENT to avoid
complexities in space accounting and other cleanup tasks. SRM_NOT _SUPPORTED must be
returned if the requested file storage type is not supported, or the request must be processed.

w) After TURL is returned, srmMv operation on the corresponding SURL may be requested.
srmPutDone on the original SURL will succeed, and SRM_SUCCESS must be returned at the file
level upon successful srmPutDone.

x) Zero length files must not fail on srmPrepareToPut.

y) When a VOLATILE file is put into an unreserved replica quality space without any space token
being used, and the VOLATILE file gets expired, SRM must remove its SURL from the file system.
The file may or may not be removed physically right away.

5.5.3. Return Status Code
For request level return status,
SRM_REQUEST_QUEUED
= successful request submission and acceptance. All file requests are on the queue.
Request token must be returned.
SRM_REQUEST_INPROGRESS
= some files are completed, and some files are still on the queue. Request token must
be returned.
SRM_SUCCESS
= All requests are successfully completed. For all SURLs, spaces are allocated, and
TURLs are prepared.
SRM_PARTIAL_SUCCESS
= All requests are completed. For some file requests, the spaces are allocated and
TURLs are prepared, but for some file requests, it is failed. Details are on the files
status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
SRM_INVALID_REQUEST
= |f both input parameters targetSpaceToken and TRetentionPolicyinfo are provided,
then their types must match exactly.

gsm-wg@ogf.org -63-

GWD-R-XXXX 9/5/2007

= targetSpaceToken does not refer to an existing known space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION
= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.
SRM_NO_USER_SPACE
= user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold all requested SURLs for free.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.
= None of the file transfer protocols are supported in the SRM server.
SRM_FAILURE
= Allfiles requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SPACE_AVAILABLE
= successful request completion for the “put” request. The space is allocated, and
TURL is prepared.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_FILE_IN_CACHE
= lifetime on SURL has expired, but the file is still in the cache.
SRM_INVALID_PATH
= targetSURL does not refer to a valid path.
SRM_DUPLICATION_ERROR
= targetSURL refers to an existing SURL and overwriting is not allowed.
SRM_FILE_BUSY
= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) or srmCopy for.
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to retrieve the file that is associated with the SURL
SRM_ABORTED
= The requested file has been aborted.
SRM_NO_USER_SPACE
= user space is not enough to hold the requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold the requested SURL for free.

gsm-wg@ogf.org -64 -

GWD-R-XXXX 9/5/2007

SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.
= The file request is not aborted or completed by srmPutDone, and the TURL
(available space allocation for the file) is not valid any more.

5.6. srmStatusOfPutRequest

This function is used to check the status of the previously requested srmPrepareToPut. Request token
from srmPrepareToPut must be provided.

5.6.1. Parameters

In: string requestToken,
string authorizationlD
anyURI [] arrayOfTargetSURLs,
Out: TReturnStatus returnStatus
TPutRequestFileStatus|] arrayOfFileStatuses
int remainingTotalRequestTime

5.6.2. Notes on the Behavior

a)

b)
c)

d)

)
g)

h)
i)

j)

The default value of “lifetime” for Volatile or Durable files will be the lifetime left in the space of
the corresponding file type. The default value of “fileStorageType” is Volatile.

If arrayOfTargetSURLs is not provided, returns status for all the file requests in this request.
When the space is ready for client to “put” data and TURL is prepared, the return status code
should be SRM_SPACE_AVAILABLE.

When the file space is ready for the client, the TURL is available in the cache and pin lifetime on
the TURL will be enforced. TURLs will not be valid any more after the pin lifetime is over if
srmPutDone or srmAbortRequest is not submitted on the SURL before expiration. In such case,
the server returns SRM_FAILURE at the file level.

If a targetSURL is provided with some directory structure, the directory structure must exist, and
SRM will not create the directory structure for the targetSURL. In such case,
SRM_INVALID_PATH must be returned. srmMkdir may be used to create the directory structure.
Lifetime on SURL starts when successrul srmPutDone is executed.

If the space for the requested files is full, and TURL cannot be returned, then
SRM_EXCEED_ALLOCATION, SRM_NO_USER_SPACE, or SRM_NO_FREE_SPACE must be returned
for the files.

SRM must fail (SRM_FAILURE) only if all files in the request failed.

totalRequestTime means: All the file transfer for this request must be complete within this
totalRequestTime. Otherwise, SRM_REQUEST_TIMED_OUT must be returned as the request
status code with individual file status of SRM_FAILURE with an appropriate explanation.

Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

gsm-wg@ogf.org -65 -

GWD-R-XXXX 9/5/2007

k)

m)

n)

o)

Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST _QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime from the request.
remainingTotalRequestTime is being returned. In the output parameter of explanation in
returnStatus, the server may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level
and SRM_PARTIAL _SUCCESS (if some file requests were successful) or SRM_FAILURE at the
request level. Clients may need to clean up the target space when target space token was
provided.

Upon srmPrepareToPut, SURL entry is inserted to the name space, and any methods that access
the SURL such as srmLs, srmBringOnline and srmPrepareToGet must return SRM_FILE_BUSY at
the file level. If another srmPrepareToPut or srmCopy were requested on the same SURL,
SRM_FILE_BUSY must be returned if the SURL can be overwritten, otherwise
SRM_DUPLICATION_ERROR must be returned at the file level.

srmRm may remove SURLs even if the statuses of the SURLs are SRM_FILE_BUSY. In this case,
the status for srmPrepareToPut request must return SRM_INVALID_PATH upon status request
or srmPutDone.

After TURL is returned, srmMyv operation on the corresponding SURL may be requested.
srmPutDone on the original SURL will succeed, and SRM_SUCCESS must be returned at the file
level upon successful srmPutDone.

Output parameter returnStatus must always refer to the request status of the whole request,
even if a subset of the whole request was specified in the input for specific file statuses.

5.6.3. Return Status Code
For request level return status,

SRM_SUCCESS
= All requests are successfully completed. For all SURLs, spaces are allocated, and
TURLs are prepared.
SRM_REQUEST_QUEUED
= successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS
= some files are completed, and some files are still on the queue
SRM_PARTIAL_SUCCESS
= All requests are completed. For some file requests, the spaces are allocated and
TURLs are prepared, but for some file requests, it is failed. Details are on the files
status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
= targetSpaceToken that client provided does not refer to an existing space in the
SRM server.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

gsm-wg@ogf.org - 66 -

GWD-R-XXXX

9/5/2007

= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.

SRM_NO_USER_SPACE

= user space is not enough to hold all requested SURLs.

SRM_NO_FREE_SPACE

= SRM space is not enough to hold all requested SURLs for free.

SRM_REQUEST_TIMED_OUT

= Total request time is over and the rest of the request is failed.

SRM_ABORTED

® The request has been aborted.

SRM_REQUEST_SUSPENDED

= The request is suspended.

SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED

= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.

= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.

= None of the file transfer protocols are supported in the SRM server.

SRM_FAILURE

= Allfiles requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SPACE_AVAILABLE

= successful request completion for the “put” request. The space is allocated, and
TURL is prepared.

SRM_REQUEST_QUEUED

= file request is on the queue.

SRM_REQUEST_INPROGRESS

= file request is being served.

SRM_SUCCESS

= Client’s file transfer into TURL is completed, and srmPutDone on the targetSURL is
completed. The file is now in the cache and lifetime on the targetSURL is started.

SRM_FILE_IN_CACHE

= lifetime on SURL has expired, but the file is still in the cache.

SRM_INVALID_PATH

= targetSURL does not refer to a valid path.

SRM_DUPLICATION_ERROR

= targetSURL refers to an existing SURL and overwriting is not allowed.

SRM_FILE_BUSY

= client requests for files which there is an active srmPrepareToPut (no srmPutDone is
not yet called) or srmCopy for.

SRM_AUTHORIZATION_FAILURE

= client is not authorized to retrieve the file that is associated with the SURL

SRM_ABORTED

gsm-wg@ogf.org -67-

GWD-R-XXXX 9/5/2007

*= The requested file has been aborted.
SRM_REQUEST_SUSPENDED
= File request is suspended.
SRM_NO_USER_SPACE
= user space is not enough to hold the requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold the requested SURL for free.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.
= The file request is not aborted or completed by srmPutDone, and the TURL
(available space allocation for the file) is not valid any more.

5.7. srmCopy

This function is used to copy files from source storage sites into the target storage sites. The source
storage site or the target storage site needs to be the SRM itself that the client makes the srmCopy
request. If both source and target are local to the SRM, it performed a local copy. There are two cases
for remote copies: 1. Target SRM is where client makes a srmCopy request (PULL case), 2. Source SRM is
where client makes a srmCopy request (PUSH case).

1. PULL case: Upon the client’s srmCopy request, the target SRM makes a space at the target
storage, and makes a request srmPrepareToGet to the source SRM. When TURL is ready at the
source SRM, the target SR M transfers the file from the source TURL into the prepared target
storage. After the file transfer completes, srmReleaseFiles is issued to the source SRM.

2. PUSH case: Upon the client’s srmCopy request, the source SRM prepares a file to be transferred
out to the target SRM, and makes a request srmPrepareToPut to the target SRM. When TURL is
ready at the target SRM, the source SRM transfers the file from the prepared source into the
prepared target TURL. After the file transfer completes, srmPutDone is issued to the target SRM.

When specified target space token is provided, the files will be located finally in the targeted space
associated with the space token. It is an asynchronous operation, and request token must be returned.
The status may be checked through srmStatusOfCopyRequest with the returned request token.

5.7.1. Parameters

In: string
TCopyFileRequest[]
string
TOverwriteMode
int
int
TFileStorageType
string
TRetentionPolicylnfo
TExtralnfo[]
TExtralnfo[]

gsm-wg@ogf.org

authorizationlID,
arrayOfFileRequests,
userRequestDescription,
overwriteOption,
desiredTotalRequestTime,
desiredTargetSURLLifeTime,
targetFileStorageType,
targetSpaceToken,
targetFileRetentionPolicylnfo,
sourceStorageSysteminfo,
targetStorageSysteminfo

-68 -

GWD-R-XXXX 9/5/2007

Out: TReturnStatus returnStatus,
string requestToken,
TCopyRequestFileStatus|] arrayOfFileStatuses,
int remainingTotalRequestTime

5.7.2. Notes on the Behavior

a) The default value of “lifetime” for Volatile or Durable files will be the lifetime left in the space of
the corresponding file type. The default value of “fileType” is Volatile.

b) When aborted, target SURLs need to be provided.

c) Input parameter userRequestDescription may be null, and it is case-sensitive when provided.
SRM server is expected to keep it as client provides. It can be reused by the client. It can be used
in the srmGetRequestTokens function to get back the system assigned request tokens.
srmGetRequestTokens will return all the request tokens that have the userRequestDescription.

d) Input parameter targetSpaceToken is provided at the request-level, and all files in the request
will end up in the space that is associated with the target space token.

e) Input parameter targetFileRetentionPolicyinfo of TRetentionPolicyinfo is to specify the desired
retention policy information on the file when the file is written into the target storage system.

f) If both input parameters targetSpaceToken and TRetentionPolicyinfo are provided, then their
types must match exactly. Otherwise, the request may be rejected, and SRM_INVALID_REQUEST
must be returned.

g) If request is accepted, SRM assigns the requestToken for asynchronous status checking. In such
case, the returned status code should be SRM_REQUEST_QUEUED.

h) Pull mode: copy from remote location to the SRM. (e.g. from remote to MSS.)

i) Push mode: copy from the SRM to remote location.

j) Always release files through srmReleaseFiles from the source after copy is done, if source is an
SRM and PULL mode was performed.

k) Always issue srmPutDone to the target after copy is done, if target is an SRM and PUSH mode
was performed.

I) Note there is no protocol negotiation with the client for this request.

m) totalRequestTime means: if all the file transfer for this request must be complete in this
totalRequestTime. Otherwise, the request is returned as failed at the end of the
totalRequestTime, and SRM_REQUEST TIMED_OUT must be returned as the request status
code with individual file status of SRM_FAILURE with an appropriate explanation. All completed
files must not be removed, but status of the files must be returned to the client.

n) If input parameter desiredTotalRequestTime is unspecified as NULL, the request will be retried
for a duration which is dependent on the SRM implementation.

o) If input parameter desiredTotalRequestTime is O (zero), each file request will be tried at least
once. Negative value is invalid.

p) Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

d) When both sourceSURL and targetSURL are local, local copy must be performed.

r) Empty directories are copied as well.

s) If atargetSURL is provided with some directory structure, the directory structure must exist, and
SRM will not create the directory structure for the targetSURL. In such case,
SRM_INVALID_PATH must be returned. srmMkdir may be used to create the directory structure.

gsm-wg@ogf.org -69 -

GWD-R-XXXX 9/5/2007

t) If the sourceSURL and targetSURL are provided as directories (copying directories) when SRM
implementation supports, then all sub directories will be copied over from the source to the
target, and complete sub-directory structure will be created only if TDirOption indicates them.

u) Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST_QUEUED
and keeps trying the request for the duration of desiredTotalRequestTime from the request. In
the output parameter of explanation in returnStatus, the server may make explicit that the retry
is being done. If streaming mode is not supported, the server returns SRM_NO_USER_SPACE or
SRM_NO_FREE_SPACE at the file level and SRM_PARTIAL_SUCCESS (if some file requests were
successful) or SRM_FAILURE at the request level. Clients may need to clean up the target space
when target space token was provided.

v) Upon srmCopy, SURL entry is inserted to the target name space, and any methods that access
the target SURL such as srmLs, srmBringOnline and srmPrepareToGet must return
SRM_FILE_BUSY at the file level. If another srmPrepareToPut or srmCopy were requested on the
same target SURL, SRM_FILE_BUSY must be returned if the target SURL can be overwritten,
otherwise SRM_DUPLICATION_ERROR must be returned at the file level.

w) Input parameter overwriteOption is assumed to be NEVER when not specified.

5.7.3. Return Status Code
For request level return status,
SRM_REQUEST_QUEUED
= successful request submission and acceptance. All file requests are on the queue.
Request token must be returned.
SRM_REQUEST_INPROGRESS
= Some files are completed, and some files are still on the queue. Details are on the
files status. Request token must be returned.
SRM_SUCCESS
= All requests are successfully completed. All source SURLs are copied into the target
destination successfully.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some file request is successfully copied into the target
destination, and some file request is failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
= (Client is not authorized to copy files into the space that client provided with
targetSpaceToken or targetFileRetentionPolicyInfo
SRM_INVALID_REQUEST
= |f both input parameters targetSpaceToken and TRetentionPolicyinfo are provided,
then their types must match exactly.
= targetSpaceToken does not refer to an existing known space in the SRM server.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION
= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.

gsm-wg@ogf.org -70-

GWD-R-XXXX 9/5/2007

SRM_NO_USER_SPACE
= user space is not enough to hold all requested SURLs.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold all requested SURLSs for free.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.
= Directory operation is not supported in the SRM server.
= Recursive directory operation is not supported in the SRM server.
= any input parameter is not supported in the SRM server
= aparticular type of an input parameter is not supported in the SRM server
® function is not supported in the SRM server
SRM_FAILURE
= allfiles requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS
= successful request completion for the file. The source SURL is copied into the target
destination targetSURL successfully, and lifetime on the targetSURL is started.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_FILE_LOST
= the request file (sourceSURL) is permanently lost.
SRM_FILE_BUSY
= client requests for files at the source (sourceSURL) which there is an active
srmPrepareToPut (no srmPutDone is not yet called) for.
= client requests for files at the target (targetSURL) which there is an active
srmPrepareToPut (no srmPutDone is not yet called) or srmCopy for.
SRM_FILE_UNAVAILABLE
= the request file (sourceSURL) is temporarily unavailable.
SRM_FILE_LIFETIME_EXPIRED
= lifetime on targetSURL has expired, but the file is still in the cache.
SRM_INVALID_PATH
= sourceSUR does not exist
= targetSURL does not refer to a valid path.
SRM_DUPLICATION_ERROR
= targetSURL refers to an existing SURL and overwriting is not allowed.
SRM_AUTHORIZATION_FAILURE
= (Client is not authorized to copy files from sourceSURL
= (Client is not authorized to copy files into targetSURL

gsm-wg@ogf.org -71-

GWD-R-XXXX 9/5/2007

= (Client is not authorized to copy files into the space that client provided with
targetSpaceToken or targetFileRetentionPolicyInfo
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_NO_USER_SPACE
= user space is not enough to hold the requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold the requested SURL for free.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.

5.8. srmStatusOfCopyRequest

This function is used to check the status of the previously requested srmCopy. Request token from
srmCopy must be provided.

5.8.1. Parameters

In: string requestToken,
string authorizationlID,
anyURI [] arrayOfSourceSURLs,
anyURI [] arrayOfTargetSURLs,

Out: TReturnStatus returnStatus
TCopyRequestFileStatus(] arrayOfFileStatuses,
int remainingTotalRequestTime

5.8.2. Notes on the Behavior

a)
b)

c)
d)

e)

f)

If arrayOfSourceSURLs and/or arrayOfTargetSURLs are not provided, return status for all file
requests in the request.

If the target space for the requested files is full, then SRM_EXCEED ALLOCATION,
SRM_NO_USER_SPACE, or SRM_NO_FREE_SPACE must be returned.

SRM must fail (SRM_FAILURE) only if all files in the request failed.

totalRequestTime means: All the file transfer for this request must be complete within this
totalRequestTime. Otherwise, SRM_REQUEST TIMED_OUT must be returned as the request
status code with individual file status of SRM_FAILURE with an appropriate explanation.

Output parameter remainingTotalRequestTime indicates how long the desiredTotalRequestTime
is left. If remainingTotalRequestTime is 0 (zero), the request has been timed out. If
remainingTotalRequestTime is a negative value (-1), it would mean that each file request will be
tried at least once.

Streaming mode is allowed. If streaming mode is supported and there is not enough space to
hold the request or partially hold the request, the SRM server returns SRM_REQUEST_QUEUED

gsm-wg@ogf.org -72-

GWD-R-XXXX 9/5/2007

g)

and keeps trying the request for the duration of desiredTotalRequestTime from the request.
remainingTotalRequestTime is being returned. In the output parameter of explanation in
returnStatus, the server may make explicit that the retry is being done. If streaming mode is not
supported, the server returns SRM_NO_USER_SPACE or SRM_NO_FREE_SPACE at the file level
and SRM_PARTIAL SUCCESS (if some file requests were successful) or SRM_FAILURE at the
request level. Clients may need to clean up the target space when target space token was
provided.

Upon srmCopy, SURL entry is inserted to the target name space, and any methods that access
the target SURL such as srmLs, srmBringOnline and srmPrepareToGet must return
SRM_FILE_BUSY at the file level. If another srmPrepareToPut or srmCopy were requested on the
same target SURL, SRM_FILE_BUSY must be returned if the target SURL can be overwritten,
otherwise SRM_DUPLICATION_ERROR must be returned at the file level.

h) srmRm may remove SURLs even if the statuses of the SURLs are SRM_FILE_BUSY. In this case,

i)

the status for srmCopy request must return SRM_INVALID_PATH upon status request.
Output parameter returnStatus must always refer to the request status of the whole request,
even if a subset of the whole request was specified in the input for specific file statuses.

5.8.3. Return Status Code
For request level return status,

SRM_SUCCESS
= All requests are successfully completed. All source SURLs are copied into the target
destination successfully.
SRM_REQUEST_QUEUED
= successful request submission and all files request is still on the queue
SRM_REQUEST_INPROGRESS
= Some files are completed, and some files are still on the queue. Details are on the
files status.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some file request is successfully copied into the target
destination, and some file request is failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to submit the request
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
= targetSpaceToken does not refer to an existing known space in the SRM server.
SRM_TOO_MANY_RESULTS
= Request produced too many results that SRM server cannot handle, and
arrayOfSourceURLs and arrayOfTargetURLs cannot fit the results to return.
SRM_REQUEST_TIMED_OUT
= Total request time is over and the rest of the request is failed.
SRM_REQUEST_SUSPENDED
= The request is suspended.
SRM_SPACE_LIFETIME_EXPIRED
= space associated with the targetSpaceToken is expired.
SRM_EXCEED_ALLOCATION

gsm-wg@ogf.org -73-

GWD-R-XXXX 9/5/2007

= space associated with the targetSpaceToken is not enough to hold all requested
SURLs.
SRM_NO_USER_SPACE
= |nsufficient space left in the space that is associated with spaceToken.
SRM_NO_FREE_SPACE
= When client does not specify the spaceToken, SRM uses a default space. The default
space is insufficient to accommodate the request.
SRM_ABORTED
® The request has been aborted.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED
= SRM server does not support the given input parameters. For example, client
requested bbftp for the only transfer protocol, but SRM cannot support that. Client
requested desiredFileStorageType that is not supported by the SRM server.
= targetFileRetentionPolicylnfo does not refer to a supported retention policy in the
SRM server.
= Qverwrite option is not supported in the SRM server.
= Directory operation is not supported in the SRM server.
= Recursive directory operation is not supported in the SRM server.
= anyinput parameter is not supported in the SRM server
= aparticular type of an input parameter is not supported in the SRM server
® function is not supported in the SRM server
SRM_FAILURE
= all files requests are failed.
= any other request failure. Explanation needs to be filled for details.

For file level return status,
SRM_SUCCESS
= successful request completion for the file. The source SURL is copied into the target
destination targetSURL successfully, and lifetime on the targetSURL is started.
SRM_REQUEST_QUEUED
= file request is on the queue.
SRM_REQUEST_INPROGRESS
= file request is being served.
SRM_FILE_LOST
= the request file (sourceSURL) is permanently lost.
SRM_FILE_BUSY
= client requests for files at the source (sourceSURL) which there is an active
srmPrepareToPut (no srmPutDone is not yet called) for.
= client requests for files at the target (targetSURL) which there is an active
srmPrepareToPut (no srmPutDone is not yet called) or srmCopy for.
SRM_FILE_UNAVAILABLE
= the request file (sourceSURL) is temporarily unavailable.
SRM_FILE_LIFETIME_EXPIRED
= |ifetime on targetSURL has expired, but the file is still in the cache.
SRM_INVALID_PATH
= sourceSUR does not exist

gsm-wg@ogf.org -74 -

GWD-R-XXXX 9/5/2007

= targetSURL does not refer to a valid path.
SRM_DUPLICATION_ERROR
= targetSURL refers to an existing SURL and overwriting is not allowed.
SRM_AUTHORIZATION_FAILURE
= (Client is not authorized to copy files from sourceSURL
= (Client is not authorized to copy files into targetSURL
= (Client is not authorized to copy files into the space that client provided with
targetSpaceToken or targetFileRetentionPolicyInfo
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_REQUEST_SUSPENDED
= File request is suspended.
SRM_NO_USER_SPACE
= user space is not enough to hold the requested SURL.
SRM_NO_FREE_SPACE
= SRM space is not enough to hold the requested SURL for free.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
= The file request would not be able to be completed within the totalRequestTime.
= The requested file has been suspended because the request has timed out.

5.9. srmReleaseFiles

This function is used to release pins on the previously requested “copies” (or “state”) of the SURL. This
function normally follows srmPrepareToGet or srmBringOnline functions.

5.9.1. Parameters

In: string requestToken,
string authorizationlID,
anyURI [] arrayOfSURLs,
Boolean doRemove

Out: TReturnStatus returnStatus,
TSURLReturnStatus[] arrayOfFileStatuses

5.9.2. Notes on the Behavior

a)

b)
c)

d)

doRemove by default is false. If remove is true, the pin on the file is released, the “copy” or
“state” is removed and SRM may release the resource.

Directory is okay for SURL. In such case, it will release all files recursively in the directory.

If requestToken is not provided and SURLs are provided, then the SRM will release all the files
specified by the SURLs owned by the caller, regardless of the requestToken.

If requestToken is provided and SURLs are not provided, then the SRM will release all the files in
the request that is associated with the requestToken.

At least one of requestToken and SURLs must be provided.

gsm-wg@ogf.org -75-

GWD-R-XXXX 9/5/2007

f) If requestToken is not provided, then authorizationID may be needed as an additional
verification method for the client authorization to release files. It may be inferred or provide in
the call.

g) srmReleaseFiles is only valid after srmPrepareToGet or srmBringOnline operations. To release
TURLs after a srmPrepareToPut, srmAbortRequest or srmAbortFiles must be used. If a client
submits srmReleaseFiles after srmPrepareToPut or srmPutDone, then the SRM server returns
SRM_INVALID_REQUEST.

5.9.3. Return Status Code
For request level return status,
SRM_SUCCESS
= Allrequests are successfully completed. All SURLs are released successfully.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURLs are successfully released, and some SURLs
are failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to release files
SRM_INVALID_REQUEST
= arrayOfSURLs is empty.
= requestToken does not refer to an existing known request of srmPrepareToGet or
srmBringOnline in the SRM server.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM
® input parameter doRemove is not supported in the SRM. srmRm must be used.

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. SURL is released successfully.
SRM_INVALID_PATH
= SURL does not refer to an existing file
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to release SURL
SRM_LAST_COPY
= SURL is the last copy when remove flag is on
SRM_FILE_LIFETIME_EXPIRED
= SURL is expired already.
SRM_ABORTED
= The requested file has been aborted.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

gsm-wg@ogf.org -76-

GWD-R-XXXX 9/5/2007

5.10. srmPutDone

srmPutDone() is used to notify the SRM that the client completed a file transfer to the TransferURL in
the allocated space. This call should normally follow srmPrepareToPut.

5.10.1.

5.10.2.

b)

c)

d)

f)

5.10.3.

Parameters

In: string requestToken,
string authorizationlID,
anyURI [] arrayOfSURLs

Out: TReturnStatus returnStatus,
TSURLReturnStatus|] arrayOfFileStatuses

Notes on the Behavior

Called by client after srmPrepareToPut() prepares the TURL and the client completes the file
transfer into the prepared TURL.

srmRm may remove SURLs even if the statuses of the SURLs are SRM_FILE_BUSY. In this case,
SRM_INVALID_PATH must be returned upon srmPutDone request.

If any additional srmPutDone is requested on the same SURL, SRM_DUPLICATION_ERROR must
be returned at the file level.

When srmPutDone is called on a subset of srmPrepareToPut request, the request level status for
the srmPutDone must refer to the subset of the request that srmPutDone was called on.

When srmPutDone is called without any file transfers into the TURL, SRM_INVALID_PATH must
be returned at the file level status.

Before srmPutDone is called, if one of the parent directories is “moved”, srmPutDone on the old
SURL must fail. The SURL must reflect the changes from the directory move.

Return Status Code

For request level return status,

SRM_SUCCESS
= All requests are successfully completed. TURLs contain data, and file lifetimes on the
SURLs start.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some file requests are successfully completed, and
some file requests are failed. Details are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to call the request specified by the requestToken
SRM_INVALID_REQUEST
= arrayOfSURLs is empty.
= requestToken is empty.
= requestToken does not refer to an existing known request in the SRM server.
SRM_REQUEST_TIMED_OUT
= Total request time is over and the request is failed.
SRM_ABORTED

gsm-wg@ogf.org -77 -

GWD-R-XXXX 9/5/2007

= The request has been aborted.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= All files requests are failed.

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM

For file level return status,
SRM_SUCCESS
= successful request completion of the “put done” for the targetSURL
SRM_INVALID_PATH
= SURL does not refer to an existing file request
= o file transfer was performed on the SURL
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to call the request srmPutDone() on the SURL
SRM_DUPLICATION_ERROR
= targetSURL exists already.
SRM_FILE_LIFETIME_EXPIRED
= targetSURL has an expired TURL.
SRM_SPACE_LIFETIME_EXPIRED
= targetSURL has an expired space allocation.
SRM_ABORTED
= The requested SURL file has been aborted.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

5.11. srmAbortRequest

srmAbortRequest() allows clients to prematurely terminate asynchronous requests of any types. It may
involve data transfer requests initiated by a call to srmPrepareToGet(), srmBringOnline(),
srmPrepareToPut() or srmCopy(). The effect of srmAbortRequest() depends on the type of request. For
data transfer request, the SRM will attempt a complete cleanup of running transfers and files in
intermediate state.

5.11.1. Parameters

In: string requestToken,
string authorizationlD
Out: TReturnStatus returnStatus

5.11.2. Notes on the Behavior
a) Terminate all files in the request regardless of the file state. Remove files from the queue, and
release cached files if a limited lifetime is associated with the file.

gsm-wg@ogf.org -78 -

GWD-R-XXXX 9/5/2007

b)

d)

e)

f)

g)

h)

5.11.3.

Those files that are brought online with unlimited lifetime will remain in the space where they
are brought in and are not removed. Clients need to remove explicitly through srmRm or
srmPurgeFromSpace.

Abort must be allowed to all requests with requestToken.

When aborting srmCopy request, the request may contain one source SURL and multiple target
SURLs. If the request is aborted by the source SURL, all file request of the same source SURL
must be aborted. If the request is aborted by the target SURL, a specific target file request must
be aborted, and other file requests from the same source SURL must not be aborted.

When aborting srmPrepareToGet request, all uncompleted files must be aborted, and all
successfully completed files must be released.

When aborting srmPrepareToPut request before srmPutDone and before the file transfer, the
SURL must not exist as the result of the successful abort on the SURL. Any srmRm request on the
SURL must fail.

When aborting srmPrepareToPut request before srmPutDone and after the file transfer, the
SURL may exist, and a srmRm request on the SURL may remove the requested SURL.

When aborting after srmPutDone, it must be failed for those files. An explicit srmRm is required
to remove those successfully completed files for srmPrepareToPut.

When duplicate abort request is issued on the same request, SRM_SUCCESS may be returned to
all duplicate abort requests and no operations on duplicate abort requests are performed.

Return Status Code
SRM_SUCCESS
= successful request completion. Request is aborted successfully.
SRM_PARTIAL_SUCCESS
= All requests are completed. Some SURLs are successfully aborted, and some SURLs
are failed. Some abort may be failed because files were successfully completed
already.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to abort files in the request specified by the requestToken
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM

5.12. srmAbortFiles

srmAbortFiles() allows clients to abort selective file requests from the asynchronous requests of any
type. It may include data transfer requests initiated by a call to srmPrepareToGet(), srmBringOnline(),
srmPrepareToPut(), or srmCopy(). The effect of a srmAbortFiles() depends on the type of the request.

5.12.1.

Parameters

gsm-wg@ogf.org -79-

GWD-R-XXXX 9/5/2007

5.12.2.

b)

c)

d)

f)

g)

h)

5.12.3.

In: string requestToken,
anyURI [] arrayOfSURLs,
string authorizationID

Out: TReturnStatus returnStatus,
TSURLReturnStatus[] arrayOfFileStatuses

Notes on the Behavior

Abort all files in this call regardless of the state.

When aborting srmCopy request, the request may contain one source SURL and multiple target
SURLs. If the request is aborted by the source SURL, all file request of the same source SURL
must be aborted. If the request is aborted by the target SURL, a specific target file request must
be aborted, and other file requests from the same source SURL must not be aborted.

When aborting srmPrepareToGet file requests, all uncompleted files must be aborted, and all
successfully completed files must be released.

When aborting srmPrepareToPut file requests before srmPutDone and before the file transfers,
the SURL must not exist as the result of the successful abort on the SURL. Any srmRm request on
the SURL must fail.

When aborting srmPrepareToPut file requests before srmPutDone and after the file transfer, the
SURL may exist, and a srmRm request on the SURL may remove the requested SURL.

When aborting after srmPutDone, it must be failed for those files. An explicit srmRm is required
to remove those successfully completed files for srmPrepareToPut.

This method must not change the request level status of the completed requests. Once a
request is completed, the status of the request remains the same.

When duplicate abort file request is issued on the same files, SRM_SUCCESS may be returned to
all duplicate abort file requests and no operations on duplicate abort file requests are
performed.

Return Status Code

For request level return status,

SRM_SUCCESS

= successful request completion. All SURLs are aborted successfully.
SRM_PARTIAL_SUCCESS

= All requests are completed. Some SURLs are successfully aborted, and some SURLs

are failed. Details are on the files status.

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to abort files in the request specified by the requestToken
SRM_INVALID_REQUEST

= arrayOfSURLs is empty.

= requestToken is empty.

= requestToken does not refer to an existing known request in the SRM server.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= All files requests are failed.

gsm-wg@ogf.org -80-

GWD-R-XXXX 9/5/2007

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM

For file level return status,
SRM_SUCCESS
= successful abort request completion for the SURL. SURL is aborted successfully.
SRM_INVALID_PATH
= SURL does not refer to an existing file request that is associated with the request
token
SRM_FAILURE
= any other request failure. Explanation needs to be filled for details.

5.13. srmSuspendRequest
srmSuspendedRequest is to suspend a previously submitted active request.

5.13.1. Parameters

In: string requestToken
string authorizationlD
Out: TReturnStatus returnStatus

5.13.2. Notes on the Behavior
a) Suspend all files in this request until srmResumeRequest is issued.

5.13.3. Return Status Code

SRM_SUCCESS

= successful request completion. Request is suspended successfully.
SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to suspend the request specified by the requestToken
SRM_INVALID_REQUEST

= requestToken is empty.

= requestToken does not refer to an existing known request in the SRM server.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

5.14. srmResumeRequest

gsm-wg@ogf.org -81-

GWD-R-XXXX 9/5/2007
srmResumeRequest is to resume previously suspended requestst.

5.14.1. Parameters

In: string requestToken,
string authorizationlD
Out: TReturnStatus returnStatus

5.14.2. Notes on the Behavior
a) Resume the previously suspended request.

5.14.3. Return Status Code

SRM_SUCCESS

= successful request completion. Request is resumed successfully.
SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to resume the request specified by the requestToken
SRM_INVALID_REQUEST

= requestToken is empty.

= requestToken does not refer to an existing known request in the SRM server.
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM server

5.15. srmGetRequestSummary
srmGetRequestSummary is to retrieve a summary of the previously submitted request.

5.15.1. Parameters

In: string [] arrayOfRequestTokens,
string authorizationlD
Out: TReturnStatus returnStatus

TRequestSummary[] arrayOfRequestSummaries

5.15.2. Return Status Code
For request interface level return status,
SRM_SUCCESS

gsm-wg@ogf.org -82-

GWD-R-XXXX

9/5/2007

= All requests are successfully completed. All requests summaries are checked and
returned successfully. Details are on the request status.

SRM_PARTIAL_SUCCESS

= All requests are completed. Summaries of some requests are successfully checked
and returned, but some requests summaries are failed. Details are on the request
status.

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client

SRM_AUTHORIZATION_FAILURE

= clientis not authorized to get summary of the request specified by the requestToken

SRM_INVALID_REQUEST

= arrayOfRequestTokens is empty.

SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.

SRM_NOT_SUPPORTED

= function is not supported in the SRM

SRM_FAILURE

= SRM failed to get summaries of all requests that are associated with request tokens.
= any other request failure. Explanation needs to be filled for details.

For request level return status,
SRM_INVALID_REQUEST

= requestToken does not refer to an existing known request in the SRM server.

SRM_SUCCESS

= The request has been completed successfully.

SRM_REQUEST_QUEUED

= successful request submission and all files request is still on the queue

SRM_REQUEST_INPROGRESS

= some files are completed, and some files are still on the queue

SRM_REQUEST_TIMED_OUT

= Total request time is over and the request is failed.

SRM_REQUEST_SUSPENDED

= The request has been suspended.

SRM_ABORTED

= The request has been aborted.

SRM_PARTIAL_SUCCESS

= All requests are completed. Some request is successfully completed, and some
request is failed.

SRM_FAILURE

= The request is failed. Explanation needs to be filled for details.

5.16. srmExtendFileLifeTime

srmExtendFileLifetime() allows clients to extend lifetime of existing SURLs of volatile and durable file
storage types or lifetime of pinned files (TURLs and those TURLs are of the results of srmPrepareToGet,
srmPrepareToPut or srmBringOnline).

gsm-wg@ogf.org -83-

GWD-R-XXXX 9/5/2007

5.16.1.

5.16.2.

i)
i)

k)

5.16.3.

Parameters

In: string authorizationlID,
string requestToken,
anyURI [] arrayOfSURLs,
int newfFileLifetime,
int newPinLifetime

Out: TReturnStatus returnStatus,

TSURLLifetimeReturnStatus [] arrayOfFileStatuses

Notes on the Behavior

This method allows to change only one lifetime at a time (either SURL lifetime by the
newFileLifetime or pin lifetime by the newPinLifetime), depending on the presence or absence of
the request token. When both newfFileLifetime and newPinLifetime are provided in the same
request, the request is invalid, and SRM_INVALID_ REQUST must be returned. SURL lifetimes are
on SURLs that resulted from the successful srmCopy or srmPrepareToPut followed by
srmPutDone, and pin lifetimes are on TURLs or file copies that resulted from srmPrepareToGet,
srmPrepareToPut or srmBringOnline.

newPinLifetime and newFileLifetime are relative to the calling time. Lifetime will be set from the
calling time for the specified period.

When the requestToken is provided, only pin lifetime is extended with newPinLifetime.

When SURL lifetime is extended with newfFileLifetime, the request token must not be specified.
The number of lifetime extensions maybe limited by SRM according to its policies.

If original lifetime is longer than the requested one, then the requested one will be assigned.
When none of lifetime input parameters (newPinLifetime and newfFileLifetime) is not specified,
the SRM server does not change the lifetimes.

Lifetime cannot be extended on the released files, aborted files, expired files, and suspended
files. For example, pin lifetime cannot be extended after srmPutDone is requested on SURLs
after srmPrepareToPut. In such case, SRM_INVALID_REQUEST at the file level must be returned,
and SRM_PARTIAL_SUCCESS or SRM_FAILURE must be returned at the request level.

Extending file lifetime on SURL is similar to srmExtendFileLifetimelnSpace.

If input parameters newFileLifetime or newPinLifetime request exceeds the remaining lifetime of
the space, then SRM_SUCCESS is returned at the request and file level, and
TSURLLifetimeReturnStatus contains the remaining lifetime.

Lifetime extension must fail on SURLs when their status is SRM_FILE_BUSY.

This method intends to negotiate a request of extension of file or pin lifetime. When new
lifetime request exceeds the remaining lifetime of the space where SURLs are, SRM_SUCCESS is
returned at the request level and at the file level, and TSURLLifetimeReturnStatus includes the
remaining lifetime.

Return Status Code

For request level return status,

SRM_SUCCESS
= All requests are successfully completed. All SURLs or TURLs associated with SURLs in
the specified request have an extended lifetime. Details are on the files status.
SRM_PARTIAL_SUCCESS

gsm-wg@ogf.org -84 -

GWD-R-XXXX 9/5/2007

= All requests are completed. Lifetimes on some SURLs or TURLs are successfully
extended, and lifetimes on some SURLs or TURLs are failed to be extended. Details
are on the files status.
SRM_AUTHENTICATION_FAILURE
= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE
= clientis not authorized to extend file lifetime
SRM_INVALID_REQUEST
= requestToken does not refer to an existing known request in the SRM server.
= requestToken is not provided, and extending pinning lifetime of TURLs associated
with SURLs require requestToken.
SRM_INTERNAL_ERROR
= SRM has an internal transient error, and client may try again.
SRM_FAILURE
= All files requests are failed.
= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED
= function is not supported in the SRM

For file level return status,
SRM_SUCCESS
= successful request completion for the SURL. SURL or TURL associated with the SURL
in the request has an extended lifetime.
SRM_INVALID_PATH
= SURL does not refer to an existing file
= SURL does not refer to an existing file request that is associated with the request
token
SRM_FILE_LIFETIME_EXPIRED
= Lifetime on SURL is expired already.
SRM_ABORTED
= The requested file has been aborted.
SRM_RELEASED
= The requested file has been released.
SRM_INVALID_REQUEST
= Attempt to extend pin lifetimes on TURLs that have been already expired.
SRM_FAILURE
= The requested file has been suspended because the request has timed out.
= any other request failure. Explanation needs to be filled for details.

5.17. srmGetRequestTokens
srmGetRequestTokens retrieves request tokens for the client’s requests, given client provided request
description. This is to accommodate lost request tokens. This can also be used for getting all request

tokens.

5.17.1. Parameters

gsm-wg@ogf.org -85-

GWD-R-XXXX 9/5/2007

In: string userRequestDescription,
string authorizationlD

Out: TReturnStatus returnStatus
TRequestTokenReturn(] arrayOfRequestTokens

5.17.2. Notes on the Behavior
a) If userRequestDescription is null, returns all requests the client has.
b) If the user assigned the same description to multiple requests, the client may get back multiple
request tokens each with the time the request was made.

5.17.3. Return Status Code

SRM_SUCCESS

= successful request completion. Request tokens are returned successfully.
SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= client is notauthorized to get request tokens specified by the

userRequestDescription

SRM_INVALID_REQUEST

= yserRequestDescription does not refer to any existing known requests
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.
SRM_NOT_SUPPORTED

= function is not supported in the SRM

gsm-wg@ogf.org -86 -

GWD-R-XXXX 9/5/2007

6. Discovery Functions

summary:
srmGetTransferProtocols

srmPing

6.1. srmGetTransferProtocols
This function is to discover what transfer protocols are supported by the SRM.
6.1.1. Parameters

In: string authorizationlID,

Out: TReturnStatus returnStatus,
TSupportedTransferProtocol[] protocolinfo

6.1.2. Notes on the Behavior
a) srmGetTransferProtocols() returns the supported file transfer protocols in the SRM with any
additional information about the transfer protocol.

6.1.3. Return Status Code

SRM_SUCCESS

= successful request completion. List of supported transfer protocols are returned

successfully.

SRM_AUTHENTICATION_FAILURE

= SRM server failed to authenticate the client
SRM_AUTHORIZATION_FAILURE

= clientis not authorized to request storage information
SRM_INTERNAL_ERROR

= SRM has an internal transient error, and client may try again.
SRM_NOT_SUPPORTED

= function is not supported in the SRM
SRM_FAILURE

= any other request failure. Explanation needs to be filled for details.

6.2. srmPing
This function is used to check the state of the SRM. It works as an “are you alive” type of call.
6.2.1. Parameters

In: string authorizationID,

Out: string versioninfo

gsm-wg@ogf.org -87-

GWD-R-XXXX 9/5/2007

TExtralnfo[] otherinfo

6.2.2. Notes on the Behavior

a) srmPing() returns a string containing SRM v2.2 version number as a minimal “up and running”
information. For this particular SRM v2.2 version, it must be “v2.2”. Other versions may have
“v1.1”, “v3.0”, and so on.

b)

Any additional information about the SRM can be provided in the output parameter otherinfo.

gsm-wg@ogf.org -88-

GWD-R-XXXX 9/5/2007

7. Appendix : Storage Resource Managers Concepts

Summary

Storage management is one of the most important enabling technologies for large-scale scientific
investigations. Having to deal with multiple heterogeneous storage and file systems is one of the major
bottlenecks in managing, replicating, and accessing files in distributed environments. Storage Resource
Managers (SRMs), named after their web services protocol, provide the technology needed to manage
the rapidly growing distributed data volumes, as a result of faster and larger computational facilities.
SRMs are Grid storage services providing interfaces to storage resources, as well as advanced
functionality such as dynamic space allocation and file management on shared storage systems. They
call on transport services to bring files into their space transparently and provide effective sharing of
files. SRMs are based on a common specification that emerged over time and evolved into an
international collaboration. This approach of an open specification that can be used by various
institutions to adapt to their own storage systems has proven to be a remarkable success — the
challenge has been to provide a consistent homogeneous interface to the Grid, while allowing sites to
have diverse infrastructures. In particular, one of the main goals to the SRM web service is to support
optional features while preserving interoperability. The specification of the version described in this
document, SRM v2.2, was also influenced by needs of a large international High Energy Physics
collaboration, called WLCG, which adapted the SRM standard in order to handle the large volume of
data expected when the Large Hadron Collider (LHC) goes online at CERN. This intense collaboration led
to refinements and additional functionality in the SRM specification, and the development of multiple
interoperating implementations of SRM for various complex multi-component storage systems.

7.1. Overview

Increases in computational power have created the opportunity for new, more precise and complex
scientific simulations leading to new scientific insights. Similarly, large experiments generate ever
increasing volumes of data. At the data generation phase, large volumes of storage have to be allocated
for data collection and archiving. At the data analysis phase, storage needs to be allocated to bring a
subset of the data for exploration, and to store the subsequently generated data products.
Furthermore, storage systems shared by a community of scientists need a common data access
mechanism which allocates storage space dynamically, manages stored content, and automatically
remove unused data to avoid clogging data stores.

When dealing with storage, the main problems facing users today are the need to interact with a variety
of storage systems and to pre-allocate storage to ensure data generation and analysis tasks can take
place. Typically, each storage system provides different interfaces and security mechanisms. There is an
urgent need to standardize and streamline the access interface, the dynamic storage allocation and the
management of the content of these systems. The goal is to present to the users the same interface
regardless of the type of system being used. Ideally, the management of storage allocation should
become transparent.

To accommodate this need, the concept of Storage Resource Managers (SRMs) was devised [SSG02,
SSGO03] in the context of a project that involved High Energy Physics (HEP) and Nuclear Physics (NP).
SRM is a specific set of web services protocols used to control storage systems from the Grid, and should
not be confused with the more general concept of Storage Resource Management as used in industry,
where Storage Resource Management refers to the process of optimizing the efficiency and speed of

gsm-wg@ogf.org -89-

GWD-R-XXXX 9/5/2007

storage devices (primary and secondary) and the efficient backup and recovery of data. By extension, a
Grid component providing an SRM interface is usually called “an SRM.”

After recognizing the value of this concept as a way to interact with multiple storage systems in a
uniform way, several Department of Energy Laboratories (LBNL, Fermilab, and TINAF), as well as CERN
and Rutherford Appleton Lab in Europe, joined forces and formed a collaboration that evolved into a
stable version, called SRM v1.1, that they all adopted. This led to the development of SRMs for several
disk-based systems and mass storage systems, including HPSS [hpss] (at LBNL), CASTOR [castor] (at
CERN), Enstore [enstore] (at Fermilab), and JasMINE [jasmine] (at TINAF). The interoperation of these
implementations was demonstrated and proved an attractive concept. However, the functionality of
SRM v1.1 was limited, since space was allocated by default policies, and there was no support for
directory structures. The collaboration is open to any institution willing and able to contribute. For
example, when INFN, the Italian institute for nuclear physics, started working on their own SRM
implementation they joined the collaboration. The collaboration also has an official standards body, the
Open Grid Forum, OGF, where it is registered as GSM-WG (GSM is Grid Storage Management; SRM was
already taken for a different purpose).

Subsequent collaboration efforts led to advanced features such as explicit space reservations, directory
management, and support for Access Control Lists (ACL) to be supported by the SRM protocol, referred
to as version 2.1. As with many advanced features, it was optional for the implementations to support
them in order to be inclusive of implementations choosing not to support specific features.

Later, when a large international HEP collaboration, WLCG (the World-wide LHC Computing Grid) [wlcg-
collab] decided to adopt the SRM standard, it became clear that many concepts needed clarification,
and new functionality was added, resulting in SRM v2.2. While the WLCG contribution has been
substantial, the SRM can also be used by other Grids, such as those using the EGEE glLite software [glite],
or the Earth System Grid [esg]. There are many such Grids, often collaborations between the EU and
developing countries. Having open source and license-free implementations based on the same
standard is the best way to share this middleware technology.

7.2. The Basic Concepts

The ideal vision of a distributed Grid-based system is to have middleware facilities that give clients the
illusion that all the compute and storage resources needed for their jobs are running on their local
system. This implies that a client only logs in and gets authenticated once, and that some middleware
software figures out where are the most efficient locations to move data to, to run the job, and to store
the results in. The middleware software plans the execution, reserves compute and storage resources,
executes the request, and monitors the progress. The traditional emphasis is on sharing large compute
resource facilities, sending jobs to be executed at remote computational sites. However, very large jobs
are often “data intensive”, and in such cases it may be necessary to move the job to where the data sites
are in order to achieve better efficiency. Alternatively, partial replication of the data can be performed
ahead of time to sites where the computation will take place. Thus, it is necessary to also support
applications that produce and consume large volumes of data. In reality, most large jobs in the scientific
domain involve the generation of large datasets, the consumption of large datasets, or both. Therefore,
it is essential that software systems exist that can provide space reservation and schedule the execution
of large file transfer requests into the reserved spaces. Storage Resource Managers (SRMs) are designed
to fill this gap.

gsm-wg@ogf.org -90-

GWD-R-XXXX 9/5/2007

In addition to storage resources, SRMs also need to be concerned with the data resource (or files that
hold the data). A data resource is a chunk of data that can be shared by more than one client. In many
applications, the granularity of a data resource is a file. It is typical in such applications that tens to
hundreds of clients are interested in the same subset of files when they perform data analysis. Thus, the
management of shared files on a shared storage resource is also an important aspect of SRMs. The
decision of which files to keep in the storage resource is dependent on the cost of bringing files from
remote systems, the size of the file, and the usage level of that file. The role of the SRM is to manage
the space under its control in a way that is most cost beneficial to the community of clients it serves.

In general, an SRM can be defined as a middleware component that manages the dynamic use and
content of a storage resource in a distributed system. This means that space can be allocated
dynamically to a client, and that the decision of which files to keep in the storage space is controlled
dynamically by the SRM. The main concepts of SRMs are described in [SSG02] and subsequently in more
detail in a book chapter [SSG03]. The concept of a storage resource is flexible: an SRM could be
managing one or more disk caches, or a hierarchical tape archiving system, or a combination of these.
In what follows, they are referred to as “storage components”. When an SRM at a site manages multiple
storage resources, it may have the flexibility to store each file at any of the physical storage systems it
manages (referred to as storage components) or even to replicate the files in several storage
components at that site. The SRMs do not perform file transfer, but rather use file transfer services,
such as GridFTP, to get files in/out of their storage systems. Some SRMs also provide access to their files
through Posix or similar interfaces.

SRMs are designed to provide the following main capabilities:

1) Non-interference with local policies. Each storage resource can be managed independently of other
storage resources. Thus, each site can have its own policy on which files to keep in its storage
resources and for how long. The SRM will not interfere with the enforcement of local policies.
Resource monitoring and management of both space usage and file sharing that enforce their local
policies are the responsibility of SRMs.

2) Pinning files. Files residing in one storage component can be temporarily locked in place while used
by an application, before being removed for resource usage optimization or transferred to another
component. We refer to this capability as pinning a file, since a pin is a lock with a lifetime
associated with it. A pinned file can be actively released by a client, in which case the space
occupied by the file is made available to the client. SRMs can choose to keep or remove a released
file depending on their storage management needs.

3) Advance space reservations. SRMs are components that manage the storage content dynamically.
Therefore, they can be used to plan the storage system usage by permitting advance space
reservations by clients.

4) Dynamic space management. Managing shared disk space usage dynamically is essential in order to
avoid clogging of storage resources. SRMs use file replacement policies whose goal is to optimize
service and space usage based on access patterns.

5) Support abstract concept of a file name. SRMs provide an abstraction of the file namespace using
“Site URLs” (SURLs), while the files can reside in any one or more of the underlying storage
components. An example of an SURL is: srm://ibm.cnaf.infn.it:8444/dteam/test.10193, where the
first part “ibm.cnaf.infn.it:8444” is the address and port of the machine where the SRM resides, and
the second part “dteam/test.10193” is the abstract file path, referred to as the Site File Name (SFN).

6) Temporary assignment of transfer file names. When requesting a file from an SRM, an SURL (see
above) is provided. The SRM can have the file in several locations, or can bring it from tape to disk
for access. Once this is done a “Transfer URL” (TURL) is returned for a temporary access to the file
controlled by the pinning lifetime. A similar capability exists when a client wishes to put a file into

gsm-wg@ogf.org -91-

GWD-R-XXXX 9/5/2007

the SRM. The request provides the desired SURL for the file, and the SRM returns a TURL for the
transfer of the file into the SRM. A TURL must have a valid transfer protocol such as:
gsiftp://ibm139.cnaf.infn.it:2811//gpfs/dteam/test.10193. Note that the port 2811 is a GridFTP
port.

7) Directory Management and ACLs. The advantage of organizing files into directories is well known, of
course. However, SRMs provide directory management support to the SURL abstractions and keep
the mapping to the actual files stored in the underlying file systems. Accordingly, Access Control
Lists (ACLs) are associated with the SURLs.

8) Transfer protocol negotiation. When making a request to an SRM, the client needs to end up with a
protocol for the transfer of the files that the storage system supports. In general, systems may be
able to support multiple protocols and clients should be able to use different protocols depending
on the system they are running on. SRM supports protocol negotiation, by matching the highest
protocol they can support given an ordered list of preferred protocols by the client.

9) Peer to peer request support. In addition to responding to clients requests, SRMs are designed to
communicate with each other. Thus, one SRM can be asked to copy files from/to another SRM.

10) Support for multi-file requests. The ability to make a single request to get, put, or copy multiple files
is essential for practical reasons. This requirement is supported by SRMs by specifying a set of files.
Consequently, such requests are asynchronous, and status functions need to be provided to find out
the progress of the requests.

11) Support abort, suspend, and resume operations. These are necessary because requests may be
running for a long time, in case that a large number of files is involved.

The main challenges for a common interface specification are to design the functionality of SRMs and

their interfaces to achieve the goals stated above, and to achieve the interoperation of SRM

implementations that adhere to the common interface specification. More details of the basic
functionality can be found in [SSG03]. The specification of SRM interfaces and their corresponding

WSDL can be found at the SRM collaboration web site [srm-collab].

The functions supported by SRMs in order to get or put files into the SRMs are referred to as
“srmPrepareToGet” and “srmPrepareToPut”. A set of files (or a directory) is provided by the client in
the form of SURLs, and TURLs are returned by the SRM . The TURLs are used by the requesting clients to
get or put files from/into the SRM using the TURL’s transfer protocol. The function srnCopy provides the
capability to replicate files from one SRM to another.

When using the space reservation function srmReserveSpace, the client can specify the desired space
and duration of the reservation. The SRM returns the space and duration it is willing to allocate
according to its policies, and a space token. If the client does not wish to accept that, it can issue
srmReleaseSpace. Otherwise, it can put files into the reserved space by referring to the space token.

Directory functions are very similar to the familiar Unix functions and include srmLs, srmMkdir,
srmRmdir, srmMyv, and srmRm. Since files may have a limited lifetime in the SRM, these functions need
to reflect lifetime status as well.

7.3. Additional concepts introduced with v2.2
Soon after the WLCG collaboration decided to try and adopt version 2.1 of the SRM specification as a
standard for all their storage systems, it became clear that some concepts needed to be clarified, and

perhaps new functionality added. The main issues were: 1) the specification of the storage properties;
2) the clarification of space and the meaning of a space token when it is returned after a space

gsm-wg@ogf.org -92-

GWD-R-XXXX 9/5/2007

reservation is made; and 3) the ability to request that files will be brought from archival storage into an
online disk system for subsequent access. This led to a new SRM specification, referred to as SRM v2.2,
presented in this document. We discuss each of these concepts further next.

Storage component properties

The issue of how to expose expected behavior of a storage component by the SRM was debated at great

length. In the end, it was concluded that it is sufficient to expose two orthogonal properties: Retention

Policy and Access Latency. These are defined below:

1) Retention Policy: REPLICA, OUTPUT, CUSTODIAL

The Quality of Retention is a kind of Quality of Service. It refers to the probability that the storage

system loses a file. The type is used to describe the retention policy assigned to the files in the storage

system at the moment when the files are written into the desired destination in the storage system. It is

used as a property of space allocated through the space reservation function. Once the retention policy

is assigned to a space, the files put in the reserved space will automatically be assigned the retention

policy of the space. The description of Retention Policy Types is:

e REPLICA quality has the highest probability of loss, but is appropriate for data that can be replaced
because other copies can be accessed in a timely fashion.

e OUTPUT quality is an intermediate level and refers to the data which can be replaced by lengthy or
effort-full processes.

e CUSTODIAL quality provides low probability of loss.

2) Access Latency: ONLINE, NEARLINE

Files may be Online or Nearline. These terms are used to describe the latency to access a file. Latency

can be improved by storage systems by replicating a file from nearline to online storage. We do not

include here “offline” access latency, since a human has to be involved in getting offline storage

mounted. For SRMs, one can only specify ONLINE and NEARLINE. The type is used to describe an access

latency property that can be requested at the time of space reservation. The files that are contained in

the space may have the same or lower access latency as the space. The ONLINE cache of a storage

system is the part of the storage system which provides file access with online latencies. The description

of Access Latency types is:

e ONLINE has the lowest latency possible. No further latency improvements can be applied to online
files.

e NEARLINE files can have their latency improved to online latency automatically by staging the files to
online cache.

Storage Areas and Storage Classes

Because of fairly complex storage systems used by the WLCG collaboration, it was obvious that referring
to “storage system” is imprecise. Instead, the concept of a “storage area” is used. A storage system
usually is referred to as a Storage Element, viz. a grid element providing storage services.

A Storage Element can have one or more storage areas. Each storage area includes parts of one or more
hardware components (single disk, RAID, tape, DVD, ...). Any combination of components is permissible.
A storage area is specified by its properties which include the Access Latency and Retention Policy
described above. Explicitly supported combinations are known as Storage Classes: online-replica (e.g. a
common disk space allocated for online access), nearline-custodial (e.g. a high-quality robotic tape
system), or online-custodial (e.g. a highly protected online disk that may keep multiple replicas, or an
online disk with backup on a high-quality robotic tape system). Storage areas that consist of
heterogeneous components are referred to as “composite storage areas” and the storage space in them
as “composite space”. “Composite storage elements” are storage elements serving composite storage

gsm-wg@ogf.org -93-

GWD-R-XXXX 9/5/2007

areas. Storage areas can share one or more storage components. This allows storage components to be
partitioned for use by different user-groups or Virtual Organizations (VOs).

The SRM interface exposes only the storage element as a whole and its storage areas, not their
components. However, a space reservation to a composite storage element can be made requesting
Access Latency-Retention Policy combinations that may determine which storage components are
assigned. Specifically, a space reservation to a composite storage element can request the following
combinations to target the online or nearline storage components: a) online-replica to target the online
storage components; b) nearline-custodial to target the nearline storage components (assuming they
support custodial retention policy); c) online-custodial to target both the online and nearline storage
components.

The function srmBringOnline

When a file is requested from a mass storage system (MSS), it is brought onto disk from tape in case that
the file is not already on disk. The system determines which files to keep on disk, depending on usage
patterns and system loads. However, this behavior is not always acceptable to large projects, since they
need to be in control of what is online in order to ensure efficient use of computing resources. A user
performing a large analysis may need to have all the files online before starting the analysis. Similarly, a
person in charge of a group of analysts may wish to bring all the files for that group online for all of them
to share. Therefore the concept of bringing files online was introduced.

srmBringOnline can be applied only to a composite space that has nearline as well as online
components. When performing this function the SRM is in full control as to where files end up and this
information is not visible to the client. For example, the SRM may have multiple online spaces, and it
can choose which will be used for each file of the request. Similarly, the SRM can choose to keep
multiple online replicas of the same file for transfer efficiency purposes. Once srmBringOnline is
performed, subsequent srmPrepareToGet requests can be issued by clients, and TURLs returned, where
each TURL indicates where the corresponding file can be accessed, and the protocol to be used.

7.4. Current SRM Implementations Based on V2.2 specification

Over the last 5-6 years, there were several implementations of SRMs. The first implementations were
based on the v1.1 specifications (see [srm-collab]), at several institutions in the US and Europe, including
Fermilab, Jlab, LBNL, and CERN. More recently, new implementation emerged that are based on the
richer v2.2 specification described in this document. We mention here five such implementations, in
order to illustrate the ability of SRMs to have the same interface to a variety of storage systems. The
underlying storage systems can vary from a simple disk, multiple disk pools, mass storage systems,
parallel file systems, to complex multi-component multi-tiered storage systems. While the
implementations use different approaches, we illustrate the power of the SRM standard approach in
that such systems exhibit a uniform interface and can successfully interoperate. While they adhere to
the SRM v2.2 specification, some chose not to support some of the functionality. For example, some
implementations do not support ACLs. Other implementation to a variety of systems built on top of
innovative and sophisticated file system capabilities, such as SRB [srb] and L-Store [l-store] are
underway. In addition, two test programs have been developed and are run daily to check the
interoperability of these systems [MD’07, srm-tester]. The SRMs mentioned below (in alphabetical
order) are fully implemented.

BeStMan - Berkeley Storage Manager

gsm-wg@ogf.org -94 -

GWD-R-XXXX 9/5/2007

BeStMan is a java-based SRM implementation from LBNL. Its modular design allows different types of
storage systems to be integrated in BeStMan while providing the same interface for the clients. Based
on immediate needs, two particular storage systems are currently used. One supports multiple disks
accessible from the BeStMan server, and the other is the HPSS storage system. Another storage system
that was adapted with BeStMan is a legacy MSS at NCAR in support of the Earth System Grid project
(www.earthsystemgrid.org).

BeStMan supports space management functions and data movement functions. Users can reserve space
in the preferred storage system, and move files in and out of their space. When necessary BeStMan
interacts with remote storage sites on their behalf, e.g. another gsiftp server, or another SRM. BeStMan
does not support ACLs.

Castor-SRM

The SRM implementation for the CERN Advanced Storage system (CASTOR) is the result of collaboration
between Rutherford Appleton Laboratory and CERN. Like that of other implementations, the
implementation faced unique challenges. These challenges were based around the fundamental design
concepts under which CASTOR operates, which are different from those of other mass storage systems.
CASTOR trades some flexibility for performance, and this required the SRM implementation to have
some loss of flexibility, but with gains in performance.

CASTOR is designed to work with a tape back-end and is required to optimise data transfer to tape, and
also to ensure that data input to front-end disk cache is as efficient as possible. It is designed to be used
in cases where it is essential to accept data at the fastest possible rate and have that data securely
archived. These requirements are what cause differences between the CASTOR SRM implementation
and others.

Space management in the CASTOR SRM is significantly different to those of other implementations.
Since the design of the MSS is to optimise moving data from disk to tape, there is no provision for
allowing dynamic space allocation at a user level. The CASTOR SRM does support space reservation, but
as an asynchronous process involving physical reallocation of the underlying disk servers.

dCache-SRM

dCache [dcache] is a Mass Storage System developed jointly by Fermilab and DESY which federates a
large number of disk systems on heterogeneous server nodes to provide a storage service with a unified
namespace. dCache provides multiple means of file access protocols, including FTP, Kerberos GSSFTP,
GSIFTP, HTTP, and dCap and xrootd [xrootd], POSIX APIs to dCache. dCache can act as a standalone Disk
Storage System or as a front-end disk cache in a hierarchical storage system backed by a tape interface
such as OSM, Enstore [enstore], Tsm, HPSS [hpss], DMF or CASTOR [castor]. dCache storage system has
a highly scalable distributed architecture that allows easy addition of new services and data access
protocols.

dCache provides load balancing and replication across nodes for “hot” files, i.e. files that are accessed
often. It also provides a resilient mode, which guarantees that a specific number of copies of each file
are maintained on different hardware. This mode can take advantage of otherwise unused and
unreliable disk space on compute-nodes. This is a cost-effective means of storing files robustly and
maintaining access to them in the face of multiple hardware failures.

DPM - Disk Pool Manager

The DPM (Disk Pool Manager) aims at providing a reliable and managed disk storage system, including
multiple disk pools. The architecture is based on a database and multi-threaded daemons. It supports
gsiftp, rfio, https and xrootd [xrootd] protocols.

gsm-wg@ogf.org -95-

GWD-R-XXXX 9/5/2007

A database backend (both MySQL and Oracle are supported) is used as a central information repository.
It contains two types of information: 1) Data related to the current DPM configuration (pool and file
system) and the different asynchronous requests (get and put) with their statuses. This information is
accessed only by the DPM daemon. The SRM daemons only put the asynchronous requests and poll for
their statuses. 2) Data related to the namespace, file permissions (ACLs included) and virtual IDs which
allow a full support of the ACLs. Each user DN (Distinguished Name) or VOMS (Virtual Organization
Membership Service) [voms] attribute is internally mapped to an automatically allocated virtual ID.

StoRM - Storage Resource Manager

StoRM (acronym for Storage Resource Manager) is an SRM service designed to manage file access and
space allocation on high performing parallel and cluster file systems as well as on standard POSIX file
systems. The StoRM project is the result of the collaboration between INFN — the Italian National
Institute for Nuclear Physics - and the Abdus Salam ICTP for the EGRID Project for Economics and
Finance research.

StoRM is designed to respond to a set of requests coming from various Grid applications allowing for
standard POSIX access to files in local environment, and leveraging on the capabilities provided by
modern parallel and cluster file systems such as the General Parallel File System (GPFS) from IBM. The
StoRM service supports guaranteed space reservation and direct access (by native POSIX 1/0O calls) to the
storage resource, as well as supporting other standard Grid file access libraries like RFIO and GFAL.

8. Security Considerations

The security requirements are achieved by combining Web Service/Grid standards with configuration description.
For example, descriptions may be signed and encrypted. The deployment service must be allowed to decrypt
configuration descriptions in order to process them.

9, Contributors

9.1. Editors information
Alex Sim
Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS 50B-3238
Berkeley, CA 94720, USA
Email: asim@Ibl.gov

Arie Shoshani

Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS 50B-3238
Berkeley, CA 94720, USA

Email: shoshani@Ibl.gov

9.2. Contributors

We gratefully acknowledge the contributors made to this specification by Timur Perelmutov and Don Petravick
from Fermi National Accelerator Laboratory (FNAL) USA, Ezio Corso from International Centre for Theoretical
Physics (ICTO) Italy, Luca Magnoni from Istituto Nazionale di Fisica Nucleare (INFN) Italy, Junmin Gu from Lawrence
Berkeley National Laboratory (LBNL) USA, Paolo Badino, Olof Barring, Jean-Philippe Baud, Flavia Donno and
Maarten Litmaath from LHC Computing Project (LCG, CERN) Switzerland, Shaun De Witt and Jens Jensen from
Rutherford Appleton Laboratory (RAL) England, Michael Haddox-Schatz, Bryan Hess, Andy Kowalski and Chip
Watson from Thomas Jefferson National Accelerator Facility (TJNAF) USA.

9.3. Acknowledgement

gsm-wg@ogf.org -96 -

GWD-R-XXXX 9/5/2007

This document preparation has been partially supported by the Office of Energy Research, Office of Computational
and Technology Research, Division of Mathematical, Information, and Computational Sciences, of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government.

10. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the technology described in this document or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or permission for the
use of such proprietary rights by implementers or users of this specification can be obtained from the OGF
Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

11. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all
warranties, express or implied, including but not limited to any warranty that the use of the information herein will
not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

12. Full Copyright Notice
Copyright (C) Open Grid Forum (2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF
Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or
assignees.

13. References

[castor] http://castor.web.cern.ch/castor/

[dcache] http://www.dcache.org/

[enstore] http://www-ccf.fnal.gov/enstore/

[esg] http://www.earthsystemgrid.org/

[jasmine] The design and evolution of Jefferson lab’s Jasmine mass storage system, Hess, B.K.; Haddox-
Schatz, M.; Kowalski, M.A., Proceedings of 13th NASA Goddard Conference on Mass Storage Systems,
April 2005.

[glite] http://glite.web.cern.ch/glite/

[hpss] http://www.hpss-collaboration.org/hpss/index.jsp

gsm-wg@ogf.org -97-

GWD-R-XXXX 9/5/2007

[I-store] www.Istore.org/index.php

[MD’07] J. Mencak, F. Donno, The S2 testing suite, http://s-2.sourceforge.net

[srb] http://www.sdsc.edu/srb/index.php/Main_Page

[srm-tester] SRM Storage Tests and Monitoring, http://datagrid.lbl.gov/

[srm-collab] http://sdm.lbl.gov/srm-wg

[SSG02] Arie Shoshani, Alex Sim, Junmin Gu, Storage Resource Managers: Middleware Components for
Grid Storage, Nineteenth IEEE Symposium on Mass Storage Systems, 2002

[SSGO03] Storage Resource Managers: Essential Components for the Grid, Arie Shoshani, Alexander Sim,
and Junmin Gu, in Grid Resource Management: State of the Art and Future Trends, Edited by Jarek
Nabrzyski, Jennifer M. Schopf, Jan weglarz, Kluwer Academic Publishers, 2003

[voms] The Virtual Organization Membership Service,
http://www.globus.org/grid_software/security/voms.php

[wlcg-collab] http://cerncourier.com/cws/article/cern/29856

[xrootd] http://xrootd.slac.stanford.edu/

gsm-wg@ogf.org -98-

