
Data Management in the GridRPC
Among issues

Conclusion

Data Management API within the GridRPC.
Grid Final Draf (GFD)

Y. Caniou, E. Caron, F. Desprez,
G. Le Mahec, H. Nakada, Y. Tanimura

Tuesday 22 March 2011

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (1/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

1 Data Management in the GridRPC
Goal
Proposed Data Management GridRPC API

2 Among issues
Mappings of memory location
Usage of Containers

3 Conclusion

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (2/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management in the GridRPC

Aims of the Data Management API

To avoid useless transfers of data

Generic API unrelated to the data, its location, access protocol, etc.
→ Transparent access to the data from the user point of view

Homogeneous use of different data transfer protocols

To improve interoperability between different implementations

The API should be compliant with Saga API requirements

Constraints

Must be an optional improvement of GridRPC applications

Must be in accordance with the GridRPC API

Should be extensible to existent and future data transfer protocols

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (3/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management in the GridRPC: Example

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (4/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

GridRPC Data Type

The grpc data t type contains the data or a handle on it.

grpc_data_t

data_handle_t handle;

data
0101011010101010111010101010101010101
0101001101010101010101010101010101010
1010101001010101010101010100101010101
0101010101010101010101111000010101010
1010100001010100010001001001000100101
0001010010010010010001000101000101100

char* list_of_URI_input;
char* list_of_URI_output;
grpc_data_type_t data_type;
size_t * data_dimensions;
grpc_data_mode_t * list_of_data_mode;

data information

storage information

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (5/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

GridRPC Data Example

In this example, the grpc data t was initialized to use a matrix
100 × 100 of doubles located on an http server. The matrix is
stored on an external ftp server with the STICKY persistence.

grpc_data_t

http://s1.ens-lyon.../mx1.dat ... NULL● list_of_uri_input :
● list_of_uri_output : ftp://s2.aist.../out.dat ... NULL

● data_type : GRPC_DOUBLE
● data_dimensions : 100 100 NULL
● list_of_data_modes : GRPC_STICKY ... NULL

grpc_data_mode_t

● GRPC_VOLATILE
● GRPC_STRICTLY_VOLATILE
● GRPC_PERSISTENT
● GRPC_STICKY
● GRPC_UNIQUE_STICKY

grpc_data_type_t

● GRPC_DOUBLE
● GRPC_INT
● GRPC_CONTAINER_OF_GRPC_DATA
● GRPC_STRING
● ...

protocol://[user:password@]hostname[:port][/data_path]/data

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (6/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 1/7

The grpc data init() Function

grpc_error_t grpc_data_init(grpc_data_t * data,

const char ** list_of_URI_input,

const char ** list_of_URI_output,

const grpc_data_type_t data_type,

const size_t * data_dimensions,

const grpc_data_mode_t * list_of_storage_mode);

This function initializes the GridRPC data with a specific data.
This data may be available locally or on a remote storage server.
Both identifications can be used.
GridRPC data referencing input parameters must be initialized
with identified data before being used in a grpc call().
GridRPC data referencing output parameters can be initialized to
NULL for an empty list.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (7/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 2/7

The grpc data transfer() Function

grpc_error_t grpc_data_transfer(grpc_data_t * data,

const char ** list_of_input_URI,

const char ** list_of_output_URI,

const grpc_data_mode_t * list_of_output_modes);

A user may want to be able to transfer data while computations
are done. For example, if a computation can begin as soon as
some data are downloaded but needs all of them to finish, the
management of data must use asynchronous mechanisms as
default behavior. Then, this function initiates the call for the
transfers and returns immediately after.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (8/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 3/7

The grpc data wait() Function

grpc_error_t grpc_data_wait(const grpc_data_t ** list_of_data,

grpc_completion_mode_t mode,

grpc_data_t ** returned_data);

Depending on the value of mode (GRPC_WAIT_ALL or
GRPC_WAIT_ANY), the call returns when all or one of the data
listed in list of data is transfered, which means that for a given
data, all transfers involved for the input or output part are finished.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (9/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 4/7

The grpc data unbind() Function

grpc_error_t grpc_data_unbind(grpc_data_t * data);

When the user does not need a handle anymore, but knows that
the data may be used by another user for example, he can unbind
the handle and the GridRPC data by calling this function without
actually freeing the GridRPC data on the remote servers. After
calling this function, data does not reference the data anymore.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (10/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 5/7

The grpc data free() Function

grpc_error_t grpc_data_free(grpc_data_t * data, const char ** URI_locations);

If URI locations is NULL, then the data is erased on all the
locations where it is stored, else it is freed on all the location
contained in the list of URI.
After calling this function, data does not reference the data
anymore.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (11/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 6/7

The grpc data getinfo() Function

grpc_error_t grpc_data_getinfo(const grpc_data_t * data,

grpc_data_info_type_t info_tag,

const char * URI,

char ** info);

The kind of information that the function gets is defined by the
info tag parameter. A server name can be given to get some data
information dependent on the location of where is the data (like
GRPC_STICKY). info is a NULL-terminated list containing the
different available information corresponding to the request.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (12/18)

Data Management in the GridRPC
Among issues

Conclusion

Goal
Proposed Data Management GridRPC API

Data Management Functions – 7/7

The grpc data load() and grpc data save() Functions

grpc_error_t grpc_data_load(const grpc_data_t * data,

const char * URI_input);

grpc_error_t grpc_data_save(const grpc_data_t * data,

const char * URI_output);

These functions are used to load/save the data descriptions. Even
if the GridRPC data contains the data in addition to metadata
management information (data handle, size, type, etc.), only data
information have to be saved in the location. The format used by
these functions is let to the developer’s choice. The way the
information are shared by different middleware is out of scope of
this document and should be discussed in an interoperability
recommendation document.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (13/18)

Data Management in the GridRPC
Among issues

Conclusion

Mappings of memory location
Usage of Containers

1 Data Management in the GridRPC
Goal
Proposed Data Management GridRPC API

2 Among issues
Mappings of memory location
Usage of Containers

3 Conclusion

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (14/18)

Data Management in the GridRPC
Among issues

Conclusion

Mappings of memory location
Usage of Containers

Mappings of memory location to given names

Mapping functions

grpc_error_t grpc_data_memory_mapping_set(const char * key, void * data);

grpc_error_t grpc_data_memory_mapping_get(const char * key, void ** data);

If he wants to use a data which is in memory, the user must
provide some name in the URIs in the input or output fields which
has to be understood by the GridRPC Data Management layer in
the GridRPC system, in addition of the use of the memory
protocol. For this reason, we provide here two functions:
The function grpc_data_memory_mapping_set() is used to
make the relation between a data stored in memory and a
grpc_data_t data when the memory protocol is used: the aim is
to set a keyword that will be used in the URI used for example
during the initialization of the data.

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (15/18)

Data Management in the GridRPC
Among issues

Conclusion

Mappings of memory location
Usage of Containers

A new data type in grpc data t and new access functions

A new label for the grpc data type t

GRPC_BOOL, GRPC_INT, GRPC_DOUBLE, GRPC_COMPLEX, GRPC_STRING, GRPC_FILE and
GRPC_CONTAINER_OF_GRPC_DATA

Access Functions to Elements in a Container of grpc data t

grpc_error_t grpc_data_container_set(grpc_data_t * container, int rank,

grpc_data_t * data);

grpc_error_t grpc_data_container_get(grpc_data_t * container, int rank,

grpc_data_t * data);

container is necessarily a grpc data t of type GRPC_CONTAINER_OF_GRPC_DATA

rank is a given integer which acts as a key index

data is the data that the user wants to add in or get from the container

→ Getting the data does not remove the data from container

→ Container management is free of implementation

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (16/18)

Data Management in the GridRPC
Among issues

Conclusion

1 Data Management in the GridRPC
Goal
Proposed Data Management GridRPC API

2 Among issues
Mappings of memory location
Usage of Containers

3 Conclusion

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (17/18)

Data Management in the GridRPC
Among issues

Conclusion

Conclusion & Future Works

In Brief

Simple API for data management with only 12 functions

Allowing a simple and powerful data management from the
API

Taking into account many use cases (all?)

Next OGF we plan to show how to use and implement these
functions in a couple of examples.
send us your case !

Roadmap

GridRPC data management interoperability

New document
Interoperability testing for the GridRPC data API specification

Implementation into GridRPC compliant midlleware

Caniou, Caron, Desprez, Le Mahec, Nakada Data Management API within the GridRPC (18/18)

	Data Management in the GridRPC
	Goal
	Proposed Data Management GridRPC API

	Among issues
	Mappings of memory location
	Usage of Containers

	Conclusion

