
GWD-C (draft-ggf-ogsa-usecase-1) Editors:
Open Grid Services Architecture Use Cases

 I. Foster, Argonne & U. Chicago
http://www.ggf.org/ogsa-wg D. Gannon, Indiana U.
 H. Kishimoto, Fujitsu Labs

 June 5, 2003

ogsa-wg@ggf.org

Open Grid Services Architecture Use Cases

Status of this Memo
This document provides information to the community regarding the Grid use case
scenarios used in the definition of Open Grid Services Architecture (OGSA) Platform
components. Distribution of this document is unlimited. This is a DRAFT document
and continues to be revised.

Abstract
Successful realization of the Open Grid Services Architecture (OGSA) vision
of a broadly applicable and adopted framework for distributed system
integration requires definition of a wide variety of Grid use case scenarios of
both e-science and e-business applications. Use cases described in this
document cover infrastructure topics (Commercial Data Center, IT
Infrastructure and Management, Workflow), as well as scientific or
commercial applications (National Fusion Collaboratory, Severe Storm
Prediction, Collaborative Grid, Service-Based Distributed Query Processing,
Online Media and Entertainment). The list of Grid use cases presented here
is necessarily preliminary and incomplete. Also use cases are not described
at the detail required for formal requirements.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 2

GLOBAL GRID FORUM

office@gridforum.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2003). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for
copyrights defined in the GGF Document process must be followed, or as required to
translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by the
GGF or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis
and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation or
use of the technology described in this document or the extent to which any license
under such rights might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be
obtained from the GGF Secretariat.
The GGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 3

technology that may be required to practice this recommendation. Please address
the information to the GGF Executive Director (see contact information at GGF
website).

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 4

Contents
1 Introduction..7
2 Commercial Data Center ...8

2.1 Summary ...8
2.2 Customers..8
2.3 Scenarios..9

2.3.1 Multiple in-house systems support within enterprise10
2.3.2 Time limit commercial campaign..10
2.3.3 Disaster recovery ...10
2.3.4 Global load balancing ..10

2.4 Involved resources...10
2.5 Functional requirements for OGSA platform11
2.6 OGSA platform services utilization..12
2.7 Security considerations...13
2.8 Performance considerations..14
2.9 Usecase situation analysis..14
2.10 References..14

3 IT Infrastructure and Management ..15
3.1 Two Scenarios..15
3.2 Key Capabilities ..16
3.3 Key Capabilities ..19
3.4 Resources and Services ...20

4 National Fusion Collaboratory ..22
4.1 Summary ...22
4.2 Customers..22
4.3 Scenarios..24
4.4 Involved resources...24
4.5 Functional requirements for OGSA platform25
4.6 OGSA platform services utilization..26
4.7 Security Considerations..26
4.8 Performance Considerations...26
4.9 Usecase situation analysis..26
4.10 References..27

5 Severe Storm Prediction ..28
5.1 Customer ...28
5.2 Resources involved and the services that are being delivered..........28
5.3 Security considerations: environment and threats............................29
5.4 Performance considerations..29
5.5 Lifetime and evolution ..29
5.6 Situation analysis ...29

6 Virtual Organization Grid Portal ..30
6.1 Summary ...30
6.2 Customers..30
6.3 Scenarios..30

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 5

6.4 Involved resources...31
6.5 Functional requirements for OGSA platform31
6.6 OGSA platform services utilization..31
6.7 Security considerations...31
6.8 Performance considerations..31
6.9 Usecase situation analysis..31
6.10 References..32

7 Online Media and Entertainment ...33
7.1 Summary ...33
7.2 Customer and their need ..33
7.3 Scenario ...33
7.4 Resources and Services ...35
7.5 Functional Requirements ...36

7.5.1 Discovery..36
7.5.2 Instantiate new services..36
7.5.3 Service Level Management ...36
7.5.4 Metering and Accounting ..36
7.5.5 Monitoring ...36
7.5.6 Policy ..36
7.5.7 Grouping / Aggregation of Services -- based on policy and
functional requirements...37
7.5.8 Security ..37
7.5.9 Certification ...37
7.5.10 Lifecycle / Change management..37
7.5.11 Failure Management ...37
7.5.12 Provisioning Management...38
7.5.13 Workload Management..38
7.5.14 Application Specific (e.g. multimodal input)...............................38

7.6 OGSA Service Mapping ..39
7.7 Security Considerations..39
7.8 Performance Considerations...39
7.9 Situation Analysis...39
7.10 Reference ...39

8 Service-Based Distributed Query Processing using OGSA and OGSA-DAI
 40

8.1 Summary ...40
8.2 Customers..41
8.3 Scenarios..41

8.3.1 Service Discovery and Instance Creation.......................................42
8.3.2 Setting up the GDQS instance..42
8.3.3 Collecting Computational Resource Metadata...............................43
8.3.4 Query (Request) Submission...44
8.3.5 Query Execution and Result Delivery ..45

8.4 Involved resources...47

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 6

8.5 Functional requirements for OGSA platform47
8.6 OGSA platform services utilization..48
8.7 Security considerations...49
8.8 Performance considerations..49
8.9 Use case situation analysis...49
8.10 References..51

9 Grid Workflow ..52
9.1 Summary ...52
9.2 Customers..52
9.3 Scenarios..53

9.3.1 Application deployment scenario ..53
9.4 Involved resources...53
9.5 Functional requirements for OGSA platform53
9.6 OGSA platform services utilization..54
9.7 Security considerations...55
9.8 Performance considerations..55
9.9 Usecase situation analysis..55
9.10 References..55

10 Grid Resource Reseller...56
10.1 Summary ...56
10.2 Actors...56
10.3 Scenarios..57

10.3.1 Computational Chemistry Reseller...57
10.4 Involved resources...58
10.5 Functional requirements for OGSA platform59
10.6 OGSA platform interfaces utilization ..60
10.7 Security considerations...61
10.8 Performance considerations..61
10.9 Usecase situation analysis..61
10.10 References ..61

11 HP use case by Jeffrin Von Reich..63
12 Security Considerations ...64
13 Editor Information ...64
14 Contributors ...64
15 Acknowledgements...64
References..64

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 7

1 Introduction
One component of the OGSA-WG’s charter is

“To produce and document the use cases that drive the definition and
prioritization of OGSA Platform components, as well as document the
rationale for our choices.”

This document is a collection of the use case scenarios contributed by OGSA-WG
participants or solicited from others. It is a companion to “The Open Grid Services
Architecture Platform.”
Based on this document the OGSA-WG will (a) specify, in broad but somewhat
detailed terms, the scope of important services required, (b) identify a core set of
such services that are viewed as essential for many Grid systems and applications,
and (c) specify at a high-level the functionalities required for these core services and
the interrelationships among those core services.
While these use cases have certainly not been defined with a view to expressing
formal requirements (and do not contain the level of detail that would be required
for formal requirements), they have provided useful input to the definition process.
We expect to expand the number of use cases in future revisions of this document.

Table 1: Use cases and contributors in this document
Chapter Title Contributor

2 Commercial Data Center Hiro Kishimoto, Andreas
Savva, David Snelling

3 IT Infrastructure and Management Ravi Subramaniam
4 National Fusion Collaboratory Kate Keahey

5 Severe Storm Prediction Dennis Gannon

6 Collaborative Grid Scenarios Charles Severance
7 Online Media and Entertainment Tan Lu, Boas Betzler

8 Service-Based Distributed Query
Processing

Nedim Alpdemir, Norman
Paton

9 Grid Workflow Takuya Araki

10 Grid Resource Reseller Jon MacLeren

11 HP use case Jeffrin Von Reich

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org

2 Commercial Data Center
2.1 Summary
In these days, many enterprises consolidate a huge number of servers into Data
Center in order to reduce the total cost of ownership. In addition to that,
sophisticated enterprises are going to out-source their IT resource management to
focus on their own core business competence. Consequently, such Data Center
should manage several thousands of IT resources (servers, storages, and networks).
In order to decrease the complexity of the management and to increase utilization of
these resources, an innovative GRID based resource management software, a
Commercial GRID system, is expected.
An IT system integrator can develop a controllable IT system on top of single solid
homogeneous platform in good old mainframe days. The current IT system
integrator, however, should use tens of different APIs of OSes and middlewares and
has no means to detect a fault or identify underlying bottleneck of performance
decrement. A GRID based meta-OS functionalities, provided by the Commercial
GRID system, could ease the burden of IT system integrator and expected to enable
end-to-end QoS.

2.2 Customers
A “GRID administrator” is an important actor of the Commercial GRID system. In
the strict sense, the GRID administrator is not a customer but provider. However,
one of the significant benefits of the Commercial GRID system is increase
manageability of IT infrastructure of the Commercial Data Center. This is one of the
key motivations to create the Commercial GRID system. Since hardware and
software management of the Commercial Data Center takes a lot of trouble and
costs a lot of money, the administrator demands automation of provisioning,
monitoring, tuning, maintenance, error diagnosis, and repair components of the IT
infrastructure.
The administrator also demands to increase the utilization ratio of the IT
infrastructure. According to several annalists’ report, actual utilization ratio is often
less than 20%. Some resources are reserved for failover and provisioning; in other
words they are not put to productive use. It should be possible to share such
resources among multiple systems, with physical location not being the single
determining factor whether sharing is possible or not.
Since reducing management cost is major objective of the Data Center, only few
(ideally one) administrators work per Data Center.
Additionally, multiple remote Data Centers could work together to improve
scalability and availability. Undisrupted operation must be ensured even in the
event of disasters such as earthquakes, fires, or acts of terrorism. Independent, but
networked, Data Centers can be used to provide the necessary physical
infrastructure.
An “IT System Integrator” is also customer of the Commercial GRID system. “IT
System Integrator” constructs heterogeneous systems, a very difficult task.
Problems include making end-to-end performance predictions and guarantees,

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 9

ensuring 24/7 availability, provisioning so as to avoid the internet spike problem,
while at all time responding to frequent service specification changes.
The “IT System Integrator” expects to reduce complexity of distributed and
heterogeneous systems by means of an OGSA based Commercial GRID system,
which provides standard and QoS enabled meta-OS functionalities.
The IT system integrator does not use the Commercial GRID system directly. The
number of the IT system integrator is not issue.
An “IT business activity manager” is another customer of a Data Center. The IT
business activity manager, for example, runs a “Ticketing service” which sells tickets
to “End Users.” The end users are actors of commercial GRID system but are not
customers.
Typically a few IT business activity managers use the Data Center but up to
hundred of managers expect to use single Data Center.
The following figure depicts the Data Centers (= Real Organizations), VOs, the IT
business activity managers, and the GRID administrators. The IT business activity
managers create VOs and run their service expecting that the VOs are reliable,
scalable, secure, and deliver QoS. On the other hand, the GRID administrators
manage ROs and the Commercial GRID system alleviates their works.

Data Center A

Data Center B

VO RO

IT System #1

IT System #2

IT System #3

IT business activity
managers

GRID administrator

Figure 1. RO, VO, and customers for the Commercial GRID system

2.3 Scenarios
There are four scenarios for Commercial GRID system.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 10

2.3.1 Multiple in-house systems support within enterprise
Current in-house systems; e.g. personnel management system, finance and
accounting system, order-receiving system, and CRM are mostly isolated. Each in-
house system runs on its own IT resources and also keeps extra IT resources for high
availability or in preparation for increase workload. Since peak workload are all
different, there are a lot of idle IT resources.
If the Commercial GRID system could manage all IT resources in the enterprise and
could provide necessary resources to each in-house system on demand, IT resource
utilization averages in low proportions. Thus more in-house system could run on less
IT resources.
For each in-house system, the Commercial GRID system makes reservation in
advance, allocation hardware, deploy necessary software and data, and start
application. All these procedures are automated.
The Commercial GRID system also provides autonomous management including
failover and provisioning. Many defects are handled by the Commercial GRID
system autonomously.

2.3.2 Time limit commercial campaign
A corporate marketing often plans time limit campaign; e.g. a concert ticket sales,
international conference booking, or sales promotion campaign. Current application
system for these campaigns require fixed IT resources. Thus it needs high initial and
maintenance cost.
The Commercial GRID system could provide necessary IT resources on demand and
charge price based on usage.
IT business activity manager can chose most inexpensive Data Center or use
multiple Data Centers for scalability.

2.3.3 Disaster recovery
Social matrix IT systems including banking system and air traffic control system
enables disaster recovery. They are, however, very high cost and delicate art work.
Popularization of the Internet drives many application systems, popular web page
like Google, indispensable.
The Commercial GRID system could provide standard disaster recovery framework
across remote Data Centers to these application systems at low cost.

2.3.4 Global load balancing
Geographically separated Data Centers can share high workload and provide
scalability for application system.

2.4 Involved resources
A Data Center is equipped with all sorts of IT resources including servers, storage,
data, and networks.
The Commercial GRID system should manage at least several hundreds of resources.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 11

2.5 Functional requirements for OGSA platform
For scenario #1, the following functions are required:
1. Discovery

At first, a customer should pick out a reference to a Commercial GRID system,
which the customer will use. One or more well-known discovery functions are
used as square one.

2. Authentication, Authorization, and Accounting 1
When the customer submits a request, the Grid authenticates the customer and
authorizes the submitted request. The Grid also identifies his/her policies
(includes but not limited to SLA, security, scheduling, and brokering policies).

3. Advanced Reservation 2
Based on the customer’s scheduling policy, the GRID decides when to start the
request processing. 3 The GRID interprets a job specification description
language in which request is written. The GRID checks if the customer has a
right to perform the request.

4. Brokering
Assume the request asks advanced reservation, the GRID match-makes most
suitable resources for the requested time period. The brokering should comply
with the task request and customer’s brokering policy. Access-control to the
resources and quota limitation are also applied. The reservation is made and its
reference is returned to the customer.

5. Data Sharing
In most cases, required user data (databases and/or files) is also specified in the
task request. Data accessibility should be considered for the above match-
making.

6. Provisioning
Little before the reserved time, the GRID begins Java program deployment. The
GRID discovers designated java program (jar file) and deploys it into the
reserved resource. The deploy feature for Java is already well-defined and most
hosting environments equipped.

7. Scheduling 4
When the reserved time comes, the GRID ignites the task.

8. Metering and Accounting

1 This function should be added to OGSA platform functionality.
2 This function should be added to OGSA platform functionality.
3 “Request process” and “task process” are different. In case of advanced reservation, the
request process books resources instantly for future use and task process is actual task
execution at the reserved time.
4 This function should be added to OGSA platform functionality.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 12

During task execution, the accounting service meters, measure, and accounts
the resource usage and the resource service monitors the task and related
resources. If any failure occurs, an event is issued.

9. Fault Handling 5
Assume that the customer only needs “failure notification” in case his/her task
encounters any error and cannot complete successfully (required fault handling
is designated as fault management policy).

10. Policy
Several attributes should be handled as policy. A brokering policy is the quote
control of resource usage per customer. An error and event policy is for
autonomous management including provisioning and failover.

11. Security
Isolation of costumes on the same Data Center is crucial requirement. The
Commercial GRID system should provide not only access control but also
performance isolation.

For scenario #2 “time limit commercial campaign,” the following functions are
required in addition to the above:
12. Virtual Organization

The customer creates VO in remote Data Center which provides IT resources to
him/her. The customer may creates VO across Data Centers to achieve
necessary scalability.

13. Monitoring
The customer wants to monitor remote his/her application on remote Data
Center.

For scenario #3 “disaster recovery,” the following functions are required in addition
to the above:
14. Disaster Recovery

In case of the Data Center is unavailable due to earthquake or fire, the remote
backup Data Center takes over the application systems.

For scenario #4 “Global load balancing,” no additional function is required.

2.6 OGSA platform services utilization
The following services are necessary to provide functions in the previous section.
1. Name resolution and discovery service

This service is used for the Commercial GRID system as discovery function.
2. Security service

This service is necessary for AAA.

5 This function is called “Fault Tolerant” in [1]. In order to cover more generic functionality,
the function is renamed to “Fault Handling” in this document.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 13

3. Reservation service 6
This service is used for advanced reservation.

4. Brokering service 7
This service is used for resource brokering.

5. Data management service
This service is used for data sharing within Data Center and across them. It is
also used for disaster recovery.

6. Provisioning and resource management service
This service is used for provisioning and also creating VO on remote site.

7. Scheduling service 8
This service is used for start and stop job scheduling based on its priority.

8. Metering and accounting service
This service is used for metering and accounting.

9. Fault handling service 9
This service is used for fault handling. It is a part of autonomous management.
In case of disaster recovery, remote Data Center fault is recovered in local Data
Center.

10. Policy service 10
This service is used for policy function.

11. Security service 11
This service is used for security function.

12. Monitoring service 12
This service is used for monitor function.

2.7 Security considerations
Each Commercial IT system (corresponding to a VO) should be securely isolated
from each other since competing companies may be hosted in the same Data Center
(RO). Before starting commercial systems, VOs should be divided using Virtual LAN
or equivalent technology. When workload increases, IT resources (e.g. servers) will
be reallocated to another system by rearranging network but no information should
leak out.

6 This function should be added to OGSA platform service.
7 This function should be added to OGSA platform service.
8 This function should be added to OGSA platform service.
9 This function should be added to OGSA platform service.
10 The explanation of policy service in [1] is very vague and is not clear what it is.
11 The explanation of policy service in [1] is very vague and is not clear what it is.
12 This function should be added to OGSA platform service.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 14

WS-security is the starting point and some extension may necessary for the
Commercial Grid.
A VO may sit in a single Data Center or across multiple Data Centers. For disaster
recovery and wide area load balancing, VOs should spread across multiple Data
Centers.

2.8 Performance considerations
Differing from the Science GRID, execution speed is not the highest priority
requirement for the Commercial GRID. Instead, several Quality of Service matrixes
should be considered. At first, best effort scheme cannot satisfy the Commercial
GRID requirements. Since each job request should be done before specified date and
time, deadline scheduling by means of advanced resource reservation is the base-line
assumption.
To avoid the Internet spike problem, adaptive resource allocation (i.e. provisioning)
enables scalability of the requests throughput.
Each IT system administrator expresses their requirement by Service Level
Agreement (SLA). Based on the SLA, each job demands additional resource under
heavy load or substitute resource when failure occurs. In case all requests cannot be
satisfied, low priority ones are rejected based on SLA.

2.9 Usecase situation analysis
Several cutting-edge technologies13 14 and products15 already in the market attempt
to solve one or more issues described above. Such attempts take a proprietary
approach and have limited scope. The OGSA, however, is an open, extensible, and
comprehensive architecture, which can be used to address these problems.
We are now in research phase [5]. After research completion, we would like to
prototype OGSA base Commercial GRID system.

2.10 References
1. Foster, I and Gannon, D. The Open Grid Services Architecture Platform,

2003.
www-unix.gridforum.org/mail_archive/ogsa-wg/doc00016.doc

2. Kishimoto, H., Savva, A., Snelling, D. OGSA Fundamental Services:
Requirements for Commercial GRID Systems, OGSA-WG document, 14
October 2002
www-unix.gridforum.org/mail_archive/ogsa-wg/pdf00002.pdf

13 Océano Project, IBM. www.research.ibm.com/oceanoproject
14 N1, Sun Microsystems. wwws.sun.com/software/solutions/n1
15 Jareva, http://www.jareva.com

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 15

3 IT Infrastructure and Management
3.1 Two Scenarios
Since the scenarios for IT infrastructure and management are many, a couple of
possible scenarios are chosen for a first/initial set of capabilities determination.
More such scenarios can be added in future. The two chosen are:
1. Cycle sharing and job execution (batch and interactive)
2. Provisioning (OS selection, software distribution (on-demand) to satisfy license

requirements, apps availability, create Web service example, convert the
capabilities and primary focus, limits that are triggered). Will focus specifically
on software distribution

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 16

Table 1: Typical scenario for cycle sharing in the grid

Seq.
No.

Operations 3.2 Key Capabilities OGSA Service
Mapping

1. User submits job;
job specifies a type
and set of
resources

Discovery: Discover the queue to
submit to
Authentication: System authenticates
the user
Authorization: Queue manager
validate authority of user to queue job
Resource specification Language: to
specify the resources
Fault Tolerance: Faults in locating
queue, transmission errors,
automated routing.
Encryption: Encrypt the
communication at the very least the
payload

Services
• Registry
• Authentication
• Authorization
Schemas, Protocols
• Resource

Specification
Language or
Framework

Horizontal
capabilities (required
in all participating
services)
• Fault tolerance
• Encryption

2. Job is queued Queue: To store the job
Notification/Messaging: Status of
submission communicated to “user”
Logging: log status

Services
• Generalized

Queuing
• Notification
• Messaging

services (reliable
delivery)

• Logging
Schemas, Protocols
• Event schema
• Message schema
Horizontal
capabilities (required
in all participating
services)
• Fault tolerance
• Encryption

3. Job is scheduled Resource selection: Resources
matching requirements are
determined
Brokering and arbitration: Multiple
requests for resources and managed
and conflicts resolved using defined
policy.
Scheduler: matches job to resources
Reservation: All resource determined
are reserved
Data staging and provisioning:
Ensure that data required for
computation is available in the
highest performance repository. Data
storage space for temporary of storage
of intermediate computation made

Services
• Registry
• Resource selector
• Broker

o Reservation
• Scheduler
• Common

Resource Model
services

• Data
management
services

• Logging services
Schemas, Protocols
• Policy schema
• Resource

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 17

available.
Logging: log status

specification
• Resource

description
• Reservation
Horizontal
capabilities (required
in all participating
services)
• Policy framework
• Fault tolerance
• Encryption

4. Job dispatched to
“consume” the
resources and
begins execution

Hosting environment: Ensure that
hosting environment is available and
initialized.
Validate user and enable execution
environment:
Staging: Make sure that all entities
for job execution available (app, data,
credentials, authority)
Data Migration: Data is migrated to
the hosting environment that will
execute the job (or made available in
or via a high performance
infrastructure)
Fault tolerance: Ensure that
collaterals available. Handle
exceptions.
Monitoring: Reporting job status and
resource consumption
Quota management: Watch and
manage the resource consumption of
job. Enforces SLA or contract between
consumer and provider.

Services
• Registry
• Authentication
• Authorization
• Caching services
• Data services
• Hosting services

(or provisioning
services)

• SLA manager
Schemas, Protocols
• SLA schema
Horizontal
capabilities (required
in all participating
services)
• Fault tolerance
•

5. Job executes Hosting environment: Job executes in
environment
Single application: Standard
execution profile
Flow i.e. multiple applications: Many
applications can be wrapped in scripts
or process that requires licenses and
other resource from multiple sources.
Applications co-ordinate using the file
system or based on events.

Services
• Services co-

ordination
• Data grids
Schemas, Protocols
• Event schema
• Logging schema
Horizontal
capabilities (required
in all participating
services)
• Fault tolerance

6. Job completes Logging: Log completion/error status Services
• Logging
Schemas, Protocols
• Event schema
• Logging schema
Horizontal

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 18

capabilities (required
in all participating
services)
• Fault tolerance
• Encryption

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 19

Table 2: Typical scenario for software provisioning

Seq.
No.

Operations 3.3 Key Capabilities OGSA Service
Mapping

1. User needs to
execute
application (could
be a need for a
proxy i.e. a batch
job or done
interactively)

Authentication: System authenticates
the user
Authorization: User obtains the
credentials in the local VO and
possibly remote VO if the application
is remote.
Fault Tolerance: Faults in locating
queue, transmission errors,
automated routing.

Services
• Registry
• Authentication
• Authorization
Schemas, Protocols

Horizontal
capabilities (required
in all participating
services)
• Fault tolerance

2. A set of servers
that can serve the
applications is
found; server can
be a peer that is
near in network
segment or a
dedicated server.

Registry: Lookup the registry to
determine location and handle to
available application. Determine if it
is local or remote
Resource specification: To provide
inventory of applications on machine
and record in the registry
Notification/Messaging: Registry
notified of application inventory and
changes to inventory
Fault Tolerance: Manage alternative
application servers or .

Services
• Registry
• Notification
• Messaging

services (reliable
delivery)

Schemas, Protocols
• Resource

specification
language

• Message schema
Horizontal
capabilities (required
in all participating
services)
• Fault tolerance

3. License
requirements are
evaluated

Resource selection: Resources
matching requirements are
determined; available licenses are
determined
Policy schema: Specify policy
Brokering and arbitration: License
scheme is evaluated against policy
(this is only if there are multiple
license types are supported for the
same application)
Reservation: All licenses required by
application are reserved
Logging: log status

Services
• Resource selector
• Broker

o Reservation
• Model services
• Logging services
Schemas, Protocols
• Policy schema
• Resource

specification
• Resource

description
• Reservation
Horizontal
capabilities (required
in all participating
services)
• Policy framework
• Fault tolerance

4. Application is
copied to required

Hosting environment: Ensure that
hosting environment is available and

Services
• Registry

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 20

workstation and
installed

initialized.
Data Migration: Application is
migrated to the computer that will
execute the application
Fault tolerance: Ensure that
collaterals available. Handle
exceptions.
Monitoring: Reporting installation
resource.

• Authentication
• Authorization
• Data services
• Hosting services

(or provisioning
services)

Schemas, Protocols
• SLA schema
Horizontal
capabilities (required
in all participating
services)
• Fault tolerance

5. Monitor
application usage
for auditing and
billing

Monitoring: Reporting job status and
resource consumption
Metering: Record the usage and
duration; especially meter the usage
of licenses.
Auditing: Audit usage and application
profile on machine
Billing: Based on metering bill the
user.

Services
• Monitoring and

Logging
• Metering
• Billing
Schemas, Protocols
•
Horizontal
capabilities (required
in all participating
services)
• Fault tolerance

3.4 Resources and Services
Infrastructure should support:
• Geographically distributed environment with both varied usage, management

and administration policies across organizations and government/civil policies
that need to be honored and managed.

• A high level of security and management of multiple security infrastructures.
• Heterogeneous platforms and varied hosting environments
• A global, cross-organizational and consistent view of resources and assets for

project and fiscal planning
• Usage models that provide batch and interactive access to resources.
• Applications that can be single process, multi-process (local and distributed) and

flows (i.e. multiple applications stitched together with intermediate processing
and automated provisioning for data and/or resources).

• Support to enable, manage and monitor data usage (spatially, temporally and
quantity (for example: disk space management), email management).

• Automated provisioning to meet peak demand. For example: bring more Web
servers on line as demand exceeds a threshold. Permit multi-use environment
that can be flexibly transitioned to the different tasks as required.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 21

• Need to optimize resource usage while meeting cost targets (i.e. deal with finite
resources). Mechanism to manage conflicting demands from various
organizations, groups, projects and users and implementing a fair sharing of
resource and access to grid.

• Need an environment that can represent policy at multiple stages in the
hierarchies to automate the policies that are implemented as organizational
processes or managed manually.

• Need a high degree of fault-tolerant environment (fail-over, redistribution of
load).

• The self-healing capabilities of resources, services and systems are required.
Significant manual effort should not be required to monitor, diagnose and repair
faults. Ability to integrate intelligent self-aware hardware such as disks,
networking devices etc.

• Need strong monitoring the environment for defects and ability to identify
misuses including virus/worm attacks. Ability to migrate attacks away from
critical areas.

• Mechanisms to self-organize and self-describe so that configuration of the
environment is manageable. (System should automatically manage low level
configuration based on administrator set higher-level configurations and
management. Reduce personnel headcount)

• Be able to “codify” and “automate” the normal practices used to manage the
environment.

• A requirements definition language or schema to specify and identify resources.
• SLA or contract violations by all available parties should be tracked and flagged.
• Applications and schemas for metering, auditing and billing.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 22

4 National Fusion Collaboratory
4.1 Summary
The National Fusion Collaboratory (NFC) project [2] defines a virtual
organization devoted to fusion research and addresses the needs of codes
developed and executed by this community. Up to now, these developers of these
codes would typically port their software to a standard set of platforms;
community users would then install and use this software on their machines.
This process was found to be complex from the provider’s as well as user’s
viewpoint. The user would have to go through the (usually complex) process of
installing the code and its dependencies, would then have to maintain that code
and also update the installation whenever a new version comes out. This process
is made especially difficult by the fact that scientific codes are typically developed
and refined over decades and result in very complex systems which need to be
updated frequently in order to reflect the latest improvements in modeling and
simulation techniques. From the provider’s point of view, the necessity of
supporting the code on even a limited set of platforms can require significant cost
and effort. In addition, maintaining and debugging a community code on an
unfamiliar platform can mean that a significant amount of effort is spent simply
in reproducing, let alone fixing, a problem.
Due to these problems, the fusion community recently decided to adopt the
application service provider (ASP) model, also known as the “network services
model”. In the “network services” model, a code, as well as a set of familiar
platforms is provided or contracted by a service provider and made accessible
remotely to clients. The service provider undertakes not only to maintain a
reasonable set of versions of the code, but also to debug and otherwise manage
client’s runs to ensure that they achieve their objective. This might include
executing the code as efficiently as possible, executing it within a certain time
bound, or producing results of certain accuracy (see next section for details). The
clients specify those objectives and execute the codes remotely thus avoiding
maintenance costs. This sharing paradigm is new to the Fusion community, but
is rapidly gaining acceptance as it encourages sharing of software and hardware
resources and frees the researcher from needing to know about software
implementation details and allowing a sharper focus on the physics.
4.2 Customers
The customers of this use case are fusion scientists. Of those, service providers
defined above seek to reduce maintenance costs by providing a service on a
familiar set of platforms, while service clients seek to obtain remote execution of
a code satisfying certain objectives, specifically capable of executing within
certain timebounds during fusion experiments. Two principal issues arise in this
environment: (1) issues of trust and (2) issues of control. Issues of trust address
questions such as: will my code run get priority when I need it? How do I enter
into contract with code/hardware resource provider? What guarantees do I have
that this contract will be observed? And, on the provider’s side: how can I ensure
that my deployment is secure and yet deal with a dynamically changing
community of users? The issues of control deal with questions like: how do I
provide reliable execution in this environment? How can I meet client’s demands?
All of these issues need to be addressed in wide-area national, and eventually
international, deployment comprising hundreds and later potentially thousands
of users.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 23

Below we summarize in detail needs of the clients as well as servers.

QoS-based execution during fusion experiments. Magnetic fusion experiments
operate in a pulsed mode producing plasmas of up to 10 seconds duration every
15 to 20 minutes, with multiple pulses per experiment. Decisions for changes to
the next plasma pulse are made by analyzing measurements from the previous
plasma pulse (hundreds of megabytes of data) within roughly 15 minutes
between pulses. This mode of operation could be made more efficient by the
ability to do more analysis and simulation in a short time using codes running on
remote resources only if their execution time could be guaranteed. Given the
present capabilities, the decision to include a new code in the “between pulse”
analysis usually involves buying a new cluster that will be run on-site and
dedicated during the experiment; obviously this mode of operation does not scale
in the long run. The ability to run codes on remote resources would be helpful, on
the condition that end-to-end quality of service (QoS) guaranteeing the execution
within certain timebounds could be provided. For example, end-to-end quality of
service should combine input and output data transfer with execution time and
ensure the execution of this QoS-based workflow in such a way as to meet the
user’s overall QoS requirement.

Availability contracts. Like in many other scientific communities, much of the
work in the Fusion community is driven by the need to make results available in
time for major conferences. Although the current deployment has not yet been
found lacking in this respect, we anticipate that resource utilization before such
events will grow to the point where some users’s requests will not be fulfilled due
to high demand. The resolution of this problem could be provided by a contract
mechanism whereby the user contracts for the availability of a service ahead of
time, and claims it when the need arises.

Use policies. Both of the client needs described above require mechanisms for use
policy specification and enforcement on the part of service/resource provider as
well as the virtual organization. The service provider for example has the need to
assert who (which groups or users) have the right to run certain codes, how many
hardware resources they can use, what availability contracts they can enter into
and under what circumstances, how service execution can be managed etc. Such
use policies also have to be suitably enforced by the underlying resource
management system.

Flexible delegation of rights. Providing seamless maintenance of a client’s run
requires flexible rights delegation policies for the server. For example, if a run is
found to experience an unexpected failure, the service provider may want to
diagnostic the run, debug and restart it. Since the run may involve access to
secure databases, in order to perform these actions, the service provider will need
to acquire rights that allow it to reproduce this usage pattern. Impersonating the
client is not necessarily a reasonable option as that may give the service provider
too many rights, and the client may be unwilling to do this.

Community accreditation. The clients would like to be able to use community
services by getting accredited with the community rather than each individual
service provider. For example, code execution on a hardware resource (which may
not even be known to the client) should not be associated with the need to obtain

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 24

an account on that resource. Instead, a mechanism is needed whereby it is
sufficient for the client to present community credentials in order to initiate the
run.
4.3 Scenarios
In the experimental scenario described above, a scientist at one of the NFC sites
(a client site) needs to remotely run code installed and maintained at another
NFC site (a service provider site) during an experiment within time bound T
(typically on the order of 10 minutes). For a very simple execution, the following
would be available on the service provider’s side: a script that will download
experimental data for the application input once that data becomes available, a
suitable “short-running” configuration of an application, capable of executing in
less than T (some application may be available in multiple configurations
reflecting accuracy/time trade-offs), a script delivering results to the client, as
well as an execution plan, or a workflow, describing the sequence of these actions
and their QoS dependencies. To ensure that the code executes with the required
QoS (in this case: within time T), the scientist at the client site enters into a
contract with the application server and as a result is guaranteed code execution
within T any time it is requested during the experimental availability window
(typically a day). Since only a few such executions may be requested during that
day, and the service provider resources have to be shared with other clients, it is
essential that resource allocations not be overgenerous and that other codes can
share the resource with the time-critical application, getting preempted
whenever the situation requires.
When the client claims the execution based on the contract, the service provider
initiates and monitors the run, adaptively recovering from failure of specific
actions if needed. Depending on the importance of the run the service provider
may have overprovisioned, or replicated the run.
This scenario may be more sophisticated depending on the service in question. It
is essential that the execution time or other QoS aspect experienced by the client
is end-to-end, in other words accounts not only for application execution but also
allows for database access, data transfer, and other activities. It is important to
note that data availability before transfer time (replication) cannot be leveraged
in this case as it becomes available dynamically. Similarly, in national (and
potentially international) deployment data transfer will become a significant
factor which cannot currently be reliably managed. Also, it is important that the
QoS-base execution is available to small fusion labs in small centers as well as
large fusion labs in large centers.
Apart from the time, fusion codes can also require non time-critical mode of
execution but one that provides accurate results, or the time requirement can be
relaxed to complete by a certain deadline rather than in a specific amount of time.
More details of the scenario are described in [3].

4.4 Involved resources
The primary resources involved include

1. The hardware resource at service provider site; these can range
from supercomputers to single workstations.

2. The machines running the client’s sites.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 25

3. Networks between Fusion sites (the service provider sites and the
client site), they are widely distributed, potentially internationally
distributed.

The services to be delivered primarily relate to service executions, however
may involve hardware services in the future.
4.5 Functional requirements for OGSA platform
This use case uses the following OGSA functionalities as described in [1]:

1. Discovery. The clients need to discover network services before they are
used. Service brokers need to discover hardware and software availability.

2. Workflow management. A fusion grid network service is a workflow of
multiple components (remote execution, input and output data transfer,
etc.).

3. Scheduling of service tasks. The service provider (or broker acting on
service provider’s behalf needs to schedule resource in order to meet the
execution constraints requested by the client. The scheduling can take the
form of advance reservation.

4. Disaster Recovery. As the service provider (or broker acting on itse behalf)
strives to meet the client’s end-to-end constraints, some degree of
adaptation may have to be used to prevent failure.

5. Provisioning. Provisioning is required to reserve obtain CPU time,
applications, licenses, storage, and potentially networks.

6. Brokering. The service broker identifies codes and platforms suitable for
execution requested by the client.

7. Load Balancing. Some load balancing may be required to use service
provider resource more efficiently.

8. Fault Tolerance. A reliable solution is needed in order to provide the time-
critical execution capability.

9. Transport Management. Reliable transport management is essential to
obtain the end-to-end QoS required by this application.

10. Legacy Application Management. Realizing the Grid potential to deal with
legacy issues was the one of the foremost motivation for this project.

11. Services Facilitating Brokering. This capability is essential for the service
broker to compose and later execute an workflow meeting the requested
constraints.

12. Application and Network-level Firewalls. This is a long-standing problem
in the fusion use case. It is made particularly difficult by the many
different policies we are dealing with and particularly harsh restrictions
at international sites.

13. Agreement-based interation. This project requires agreement-based
interaction capable of specifying and enacting agreements between clients
and servers (not necessarily human) and then composing those
agreements into higher-level end-user structures.

14. Authorization and use policies. We also require use policy specification
and enforcement mechanisms as described above.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 26

4.6 OGSA platform services utilization
The following services are necessary to provide functions in the previous section.

1. Name resolution and discovery service
2. Security service
3. Provisioning and resource management service
4. Metering and accounting service
5. Policy service
6. Messaging and logging
7. Monitoring service
8. Metering and Accounting
9. Administration
10. Service Orchestration

4.7 Security Considerations
The server sites need the ability to provide authorization on the usage of certain
codes (or application services) as well as on the usage of resources. The VO-
specific authorization policies need to be maintained centrally, while resource-
specific policies need to be maintained by resource owners.

In addition, application service providers need to be able to assume a subset of
user’s rights needed to debug an application that has gone astray. This is needed
because applications access the experimental database based on the rights of the
user that started the run. Frequently, the application provider is able to debug
and resubmit the user’s program in a manner transparent to the user.
4.8 Performance Considerations
The ability to deliver services in real-time is essential. Also important is the
ability to satisfy other QoS constraints (application-specific notions of accuracy).
4.9 Usecase situation analysis
Some of the required capabilities have already been provided by Globus as
evidenced by the fact that fusion services are deployed and successfully used by
the community. We are currently researching enforcement issues, issues of
agreement-based interaction, as well as scheduling and adaptive techniques that
would support them. We also require changes in the security model and advances
in overcoming deployment issues such as firewalls.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 27

4.10 References

1. Foster., I. and Gannon, D. The Open Grid Services Architecture Platform.
www-unix.gridforum.org/mail_archive/ogsa-wg/doc00016.doc.

2. Keahey, K., Fredian, T., Peng, Q., Schissel, D.P., Thompson, M., Foster, I.,
Greenwald, M. and McCune, D. Computational Grids in Action: the
National Fusion Collaboratory. Future Generation Computing Systems
(to appear), 18 (8). 1005-1015.

3. Keahey, K. and Motawi, K. Taming of the Grid: Virtual Application
Services, Argonne National Laboratory, Mathematics and Computer
Science Division Technical Memorandum ANL/MCS-TM-262, 2003.

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 28

5 Severe Storm Prediction
5.1 Customer
A consortium of meteorologists and environmental modelers are attempting to
build a Grid to predict the exact location of severe storms such as tornadoes
based on a combination of real-time wide area weather instrumentation and
large-scale simulation coupled with data modeling. The virtual organization is
widely distributed and often mobile.
The scenario is roughly as follows. Instrument data streams from Doppler radar,
satellite imaging, ground-based sensors such as pressure, temperature and
humidity detectors, are constantly monitored by data mining agents looking for
dangerous patterns. When one is detected, VO members are notified and a large
number of simulations are launched automatically. Data mining tools are
configured to scan the output of the simulations and compare the results against
the evolving data stream from the instruments. Data archives are searched for
similar patterns. Some of the instruments are automatically reconfigured to
refine the data streams.
As the storm evolves additional simulations are launched to refine the resolution
of the predictions. Humans, are not monitoring the entire process and aiding in
the process by steering some of the simulations. (The simulations generate
output files which can be visualized as animations.) Other individuals on the
ground are entering more data from mobile devices. The authorities and media
are notified of the predictions.
This scenario is not yet possible because the Grid infrastructure is not yet in
place. At the present time, many of the various components exist, but they are
not all integrated. The current activity for this group is collaboration on testing
the simulation and data mining and integrating the simulations with the data
streams.

5.2 Resources involved and the services that are being delivered
The primary resources involved include
1. the sensor network courtesy of several agencies.
2. the data archives of past storm activity and instrument readings
3. the compute resources including the Teragrid resources
The services to be delivered:
• An integrated grid allowing VO members access to the simulation and data

mining tools, the data archives and the sensor network tools.
• Eventually an automated, autonomic Grid of services that carry out the

scenario described above.
Required Services:
1. VO management. Who has access to what parts of the instrument, data,

compute resources is very important.
2. Security (authentication and authorization) for VO members. Also mobile

access

GWD-C (draft-ggf-ogsa-usecase-1) June 5, 2003

ogsa-wg@ggf.org 29

3. Datagrid services: metadata catalogs, directory and index services, grid-wide
access to data archives, virtual data management

4. Grid-wide monitoring, messaging, event systems and logging services
5. Most instruments will have webservice access interfaces
6. Workflow engines to orchestrate the coupled

simulation/datamining/visualization tasks.
7. Compute and data resource brokering services. Scheduling and co-

scheduling services will be needed.

5.3 Security considerations: environment and threats
• Access to much of the sensor network output is public, however the ability to

re-deploy it on-the-fly is very restricted.
• The simulation and datamining run on very high-end compute resources and

require special authorization to demand computing of this scale on-demand.
• The VO needs to be able to share resources and access as much as possible.
• The ability to authenticate VO members on mobile devices is essential.

5.4 Performance considerations
The ability to make better-than-real-time predictions is very important.
Resource allocation must be very efficient. It is expected that many of the
compute scenarios will require dynamic reallocation of resources as needed.

5.5 Lifetime and evolution
This Grid must be always available. Autonomic capability is an essential
component.

5.6 Situation analysis

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org

6 Virtual Organization Grid Portal
6.1 Summary
Given that the grid enables people to be members of many VOs and each VO gives
one access to various computational, instrument-based, data and other types of
resources, it is very natural for these VO’s to produce a Grid portal which provides
an end-user view of the collected resources available to the members of the VO. By
producing a portal with “one-stop” shopping for users who participate in a VO, the
VO makes its resource much more useful and accessible for their users.

• These grid portals have several elements in common:
• Provide a public-face for the VO with various outreach and informational

materials
• Provide a set of collaborative tools (discussion, file storage, calendar,

announcedments, etc)
• Provide access to any large data stores which are available to the members of

the VO
• Provide the ability to make use of any computational resources available to

the members of the VO
These portals are usually a combination of web-based and other tools. Typically core
functionality is provided via grid-enabled web servers while more sophisticated tools
are deployed to user’s desktops.
Given that there are a number of common elements which can be reused across
multiple grid portals, and to simplify the user experience as they move from one
portal to another, it is important to develop best practices and techniques for the
development and deployment of Virtual Organization Grid Portals.

6.2 Customers
The customers of this capability are effectively

6.3 Scenarios
There are an increasing number of grids where the focus is collaboration centered on
some scarce physical resource. Often these resources are so large or so expensive
that there can only be a very small number of installations across the world. Some
of the examples of this type of collaborative activity include Astronomy (NVO, EVO,
JVO, or Sloan Digital Sky Survey), High Energy and Nuclear Physics (ATLAS, CMS,
LIGO, or D0), fusion research (FusionGrid), earthquake engineering (NEESGrid),
and others.
These broad collaborative efforts generally have the following attributes:

• Geographically dispersed access to computation, data and instruments
• The need for environments for participants to meet and work together across

large geographical distances

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 31

Most of these collaborative activities are by their nature world-wide and cross-
organizational. Within the collaboration there are many groups of varying sizes
which are dynamically formed to work on a wide range of problems from experiment
design, experiment scheduling, equipment operations, management, publication of
results, and many others. All of these groups must operate with members scattered
around the world in any time zone.
For these collaborations it is very important to maintain the security of the data,
ideas, and the interactions of each group. While there is overall collaboration in the
use of the equipment, there is often competition between subgroups within the
collaborations in their pursuit of research results. In addition to proper security and
access control are absolutely necessary when dealing with the control and operation
of any type of experimental equipment or the monitoring of the real-time data as it
comes from the experimental equipment.

6.4 Involved resources
Explain all resources managed and provided by the Grid system. E.g. what
hardware, data, software might be involved.
Are these resources geographically distributed? How many resources are involved in
the use case?

6.5 Functional requirements for OGSA platform
Review section 3.2 of OGSA platform document which proposes functionalities of
OGSA platform and choose necessary requirements from them.
Explain which of these functions your use case needs and how it uses them in detail.
If desired function is not included in section 3.2, you should specify what function is
required.

6.6 OGSA platform services utilization
Review section 4.2 of OGSA platform document which proposes services of OGSA
platform and choose necessary services from them.
Explain which of these services your use case uses and how it utilize them in detail.
Please include figures if possible.
If desired service is not included in section 4.2, you should specify what service is
required.

6.7 Security considerations
Draw up environment and possible threats of the use case.

6.8 Performance considerations
 Explain performance considerations of the use case.

6.9 Usecase situation analysis
A discussion of what services relevant to the use case are already there, to what
extent they are satisfactory/unsatisfactory, and an articulation of what else needs to
be done.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 32

6.10 References
List up references to further reading

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 33

Online Media and Entertainment
Summary

To deliver an entertainment experience, several actors form a VO for this purpose. In a first
step we want to focus on the following roles of actors:

• A consumer who consumes the entertainment content

• A service provider that hosts the entertainment content

• A publisher that offers the entertainment content

• A developer that consumes the entertainment Content.

Each roles may be consists of multiple companies, while the entertainment content may
consists of many different forms (e.g. move on demand or online games) with different
hosting capacity demands and lifecycle. Therefore one of the primary focuses of this use
case is to facilitate the ability to dynamically manage resources based on workload demands
and current system configuration. During the lifetime of an entertainment content the actors
involved in the delivery of the content may change. During the lifetime of a company the
entertainment contents it has to deal with may also change. There the other primary focus of
this use case is to provide standard interfaces to allow dynamic and open collaboration.

Customer and their need
There are two main categories of entertainment experiences with each
having unique requirements on the infrastructure that delivers it:
consumption and interaction. Consumption of content (e.g. video on
demand) does not require a lot of user interaction. Other contents, such as
online games, require a lot of user interaction and it is very important to
guarantee response times for these contents.

Online entertainment has seen a great adoption over the last couple of months. However, it is
still in it’s infancy in the areas of content, business models and infrastructure. With more
online content available, differentiation from competitors will become more important. New
commercial opportunities will emerge, for examples usage-based pricing or subscription
models for premier consumer experience. Commercial transaction will be tied to
entertainment or even inherent to the end user experience.
Because this is a new area, content developers lack competency in programming for a
distributed network. There is no standard architecture or even best practice for how the
back-end datacenters used to deliver the contents are designed. The most common practice
today is to design one stovepipe solution for each game title, and manage each solution
separately. Consequently, infrastructure and components deployed for each game are not
reusable. Furthermore, these stovepipe solutions are designed with a particular level of
workload assumed (e.g. 10,000 concurrent users), and scaling beyond this initially assumed
workload requires major redesign. As a result, today’s datacenters are either over
provisioned, or overstressed to the point that service outage occurs. Finally, to make
everything even worse, when a game is first designed, there is no way to tell how long the
lifetime of the game is going to be. That is, the datacenters for these games may only be
needed for only a few days (for a beta-test environment) or needed a few years (e.g.
Everquest).

Scenario

In this scenario, there are 4 actors: consumers, service providers, publishers, and developers.
An consumer, for example a game player, will access a portal and authenticate as a known
identity. With this authorization he is then able interact with his account or consume an
offered entertainment experience, e.g. play an online game. There may be several providers

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 34

working in concert with each other. For example a network service provider that offer
bandwidth, a hosting capacity provider, who provides server and storage resources, and an
application service providers that offer common services like online game engines, standard
customer relationship management and helpdesk applications or billing applications. The
content provider or studio provides the media content, artwork and game play that the
consumer will experience. The integrator or publisher ties the offering together and exposes it
to the consumer. The figure below shows some simple interaction between these actors.
The interactions between actors may change, and the entertainment content may change as
well, therefore it is a key requirement to be able to autonomically manage resource allocation
as well as enabling dynamic discovery and interaction of provided infrastructure and services.

Consumer
Content Prov ider

Studio

Integrator /
Publisher

Infrastructure
Serv ice Prov ider

Network Serv ice
Prov ider

xSP

Entertainment
Experience

Consumer
Account

Management

Billing and
Settlement

Prov ide Hosting
Infrastructure

Customer
Relationship
Management

«realize»

«realize»

setup/change

pay

«realize»

hosts and supports

interact

consume
provides content

«realize»

The following table lists the main behaviors of each of the actors.
Consumer Publisher Studio xSP
Sign up for account (with xSP) Create Account
 Create a user subscription

offer

 Purchase and subscribe to
hosting environments

Create a business offer for
publishers (environment on
demand)

 Provide subscription to game
environment (includes
reserve/scheduling and
purchase)

 Delete a user subscription
offer

 Delete offering

Subscribe to contents/game(s)
(with Publisher)

Create Authorization Retrieve Authorization
information

Authorization/authentication Authorization/authentication

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 35

Find Content Publish available contents
Create a M&E session
Retrieve / use content Create the On Demand

hosting environment
(provisioning, failover,
workload management)

 Monitor Resources
 Add a physical resource
 Add new functionality /service
 Upgrade functions / services
 Delete an environment on

demand offer
 Delete a physical resource

from pool of servers
 Delete resources / services
 Load balancing
 Error capture, Problem

Determination, Failover, and
Recovery

 Define meter requirements Meter usage
Apply a client patch/PTF
 E-Commerce Intergration
 Generate billing record based

billing and rating packages
 Generate billing record based

on billing and rating packages
 Bill player for usage (monthly,

per hour, etc)
 Bill publisher for

usage/footprint

Resources and Services
The datacenter of online entertainment consists of at least the following components in a
potentially distributed environment.

• Distributed Server

• Networked storage

• Secure network (including multiple levels of firewalls)

• Player Consoles

The online entertainment business includes at least the following functions:
• Security services (authentication / authorization, identity mapping, etc.)

• Financial services (billing, rating, accounting, etc.)

• Contracting / settlement services

• Customer relations services (logging and data mining of user behaviors)

• Management service (capacity management, workload management)

• Media / Entertainment specific services (e.g. multimodal input)

To solve the problem identified in section 2 the infrastructure hosting the online entertainment
environment has to:

• Allow dynamic composition of standard pluggable components (e.g. billing service,
customer relations service)

• Be secure and trusted.
• On Demand capacity (autonomic scalability according to workload)
• On Demand aggregation / selection of new services.
• On Demand integration with other companies that has needed competencies.
• There are currently major trust barriers in the online gaming industry, where

publishers are very reluctant to share resources / components. To overcome this
trust barrier, the components must be based on industry standard interfaces, and
must be plug replaceable (i.e. the flexibility to choose components from a wide
selection of providers).

• enable new commercial business models
• apply to needs of online game applications

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 36

More specific functional requirements, illustrated by specific examples, are listed in the
sections below.

Functional Requirements

Discovery
OGSA services must be discoverable at both runtime and setup time. For
example, a game developer needs to discovery a set of rendering engines
and choose to use a particular one based on the end user’s screen
resolution and connection bandwidth.
OGSA discovery must support masking; more specifically, render some
services undiscoverable based on, amongst other things, a user’s
authorization and service level. There are different trust levels between
companies. A company may want to expose all components of its software
stack to a company that has a joint development agreement in place, but
hide these components from other companies.
Instantiate new services
New service instances may need to be instantiated. For example, when an
additional 2000 players joins an online game, a new game server needs to
be provisioned to host these additional players. To provision the new
server, the necessary services needs to be instantiated, and there are two
aspects to this instantiation: deployment and scheduling/dispatching.
Deployment involves transporting the necessary file / data to the server.
An example of scheduling / dispatching may involves 1) reserving server
resources for a period of time (e.g. reserve 2 hours to run AI logic) 2)
determine the order of execution and whether the reservation can be met,
and 3) dispatch the appropriate process when the scheduled time arrives.
Service Level Management
On of the biggest service level to be managed for online entertainment
world is response time. For example, guarantee 50 ms response time for
first person game, and 100ms for RPG.
Metering and Accounting
Resource usage needs to be logged with respect to each consumer and each
provider. This information will be used to charge the consumers based on
their usage, as well as used for cost analysis by the providers to determine
the pricing.
Monitoring
The resource or service owners need to surface certain states so that the
user of those resources or services may manage the usage using those
state information.
Policy
There may be policies at every level of the infrastructure from the low
level policies that governs how the resources are monitored and managed
to high level policies that governs how business process such as billing are
managed. High-level policies are sometimes decomposable into lower-level
policies.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 37

Grouping / Aggregation of Services -- based on policy and functional
requirements

Taking on-line games as an example, the game developers lack
competency in many areas such as network programming, rating and
billing, eCommerce integration, etc. Therefore, composing services using
existing services is a core requirement. There are two main types of
composition techniques needed by the online gaming developers: selection
and aggregation. Selection involves choosing to use a particular service
amongst many services with the same operational interface (e.g. select the
fastest MP3 encoder.) Aggregation involves orchestrating a functional
flow (workflow) between services. For example, the output of accounting
service is fed into the rating service to produce billing records. One other
basic function required for aggregation services is to transform the syntax
and/or semantics of data or interfaces.
Security
In such a flexible environment, resources will over time be used for multiple content titles.
Therefore trust has to be built on the side of the content providers that such a dynamic
environment will not interfere with the goal of consistent user experience. Proper isolation
between content offerings also has to be ensured. This level of isolation has to be ensured
by the security of the infrastructure.
In addition, several securities related services are required:

• Single sign-on needs to be supported. A player may traverse several organizations in
the M&E environment. For example, a player of Everquest may buy a Everquest
character on e-bay and pay for it via his pay-pal account. To support single sign-on a
game developer may want to use a 3rd party authentication and authorization service,
identify mapping service, etc.

• Digital rights management and key management.

• Intrusion detection and protection

Certification
A trusted party certifies that a particular service has certain semantic
behavior. For examples, a company will only use e-commerce services
certified by yahoo shopping.
Lifecycle / Change management
Upgrade services or retire services with minimal impact to deployed
and/or running services. This could be accomplished by a workflow which
provisions the required services, and dynamically modify the current
running environment by modifying its selection rules and / or workflows.
Failure Management
OGSI soft state management could be one way to implement a
heartbeating function. Resource instrumentation can provide additional
information about how well resources are functioning. Logging service is
needed to keep track of resource’s history of performance and is necessary
for first error capture. Capture failure and trigger recovery actions. For
example, when a game server’s performance is degraded because of a
software problem, apply patch.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 38

Provisioning Management
Take online gaming as an example of the M&E industry. On-line games’
workloads are very close to uniform sinusoidal waves, but typical server
farms are still only about 20% utilized. It is ideal for the providers of the
data centers to not over provision for the peak workload, but instead, use
just enough capacity to meet the required service level agreements in both
a predictive and a reactionary fashion.

Game/
GW

Server Resource ServiceServer Resource Service

Gateway
Server

Proxy
Servers

Free
Server

DB
Servers

controls Free Pool of servers

ODRM server (WebSphere)

eUtility Infrastructure

Server Resource Manager

Server Resource Services CRM interface to monitor each
server

Server Instantiation Service Instantiation and configuration
actions for one server

Network Configuration Service network configuration actions

Free Server

add and remove server

Assist
Server

Assist
Server

Game
Server

additional
gamers

Resource
Monitoring

Workload Management
Taking online games as an example, the amount of workload is a direct
result of how many concurrent players are being hosted on a game server.
If the game server (A) is responsible for a 20 square mile area in the game
world, and a battle occurred in that area, many players will rush to that
area, causing workload on that server to increase. As players enter that
area and leave other areas, other servers’ workload will decrease. So,
when the workload of server A gets above certain threshold, a load
balancing routine needs to be triggered to rebalance the resources (i.e.
servers). That is, redistribute workloads across servers with idle capacity.
Application Specific (e.g. multimodal input)
Additional domain specific services may be needed; for example, a voice
recognition engine.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 39

OGSA Service Mapping

Functions Services

Registry
Directory and ns Binding
Security
Resource Services
Reservation and Scheduling
Messaging and Queuing
Logging
Events
Accounting
Data
Transaction
Policy
Orchestration
Deployment and Transfer
Factory

Security
Discovery

SLA & Policy Management

Provisioning

Certification
Grouping & Aggregation

•Policy
•Selection
•Aggregation
•Transformation
•Context
•Filtering
•Topology

Lifecycle & Change Mgmt.
Failure Management

Capacity management
Workload Management

Every service
May have some
policies

Every function
has certain
service levels

Possible OGSA Possible OGSA PorttypePorttype / Services:/ Services:

Security Considerations
Each consumer, service provider, developer and publisher must have its
own security identity and context (e.g. relationships with other entities).
All security functions traditional in the enterprise environment must be
addressed including privacy and non-repudiation.
Performance Considerations
The backend server infrastructure has to be able to scale driven by
increasing concurrent number of consumers and amount of content.
Another aspect of scalability is the number of content pieces or game titles
that will be served by a single datacenter. New titles will also require
more compute, network and storage resources per player.
Situation Analysis
Several cutting-edge technologies and products already in the market attempt to
solve one or more issues described above. Such attempts take a proprietary
approach and have limited scope. The OGSA, however, is an open, extensible,
and comprehensive architecture, which can be used to address these problems.
We are now in proof of concept phase, after which, we would like to prototype
OGSA base Commercial GRID system.

Reference

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org

7 Service-Based Distributed Query Processing using OGSA
and OGSA-DAI

7.1 Summary
A service-based distributed query processor supports the evaluation of
queries expressed in a declarative language over one or more existing
services. These services are likely to include database services, such as those
provided by the OGSA-DAI project (www.ogsa-dai.org), but may also include
other computational services. As such, a service-based distributed query
processor supports service orchestration, and can be seen as complementary
to other infrastructures for service orchestration, such as workflow languages.
In a Grid setting, distributed query processing can benefit from the facility to
discover and make use of computational resources on demand, based on the
anticipated resource requirements of a request. A distributed query processor
on the grid can itself be cast as a service, referred to here as a Grid
Distributed Query Service (GDQS).
In principle, a GDQS can be used in any Grid application that must integrate
and analyse structured data collections. Regardless of the application domain,
there are several primary phases in a typical use case involving GDQS. Some
of those phases are transparent to the user, whereas some require interaction
with the user. All, however, imply particular requirements from the grid
software infrastructure. Each phase will be examined in more detail in
Section 1.3; below is a summary:

• Factory discovery and service instance creation phase. The user has to
discover a GDQS factory by querying a Grid Data Service Registry
(GDSR). It is the users responsibility to have the knowledge of an
appropriate registry and a reasonable search criteria. Once the factory
is discovered an instance can be created.

• Resource discovery phase. The GDQS needs to obtain metadata about
the computational capabilities of available grid nodes in order to be
able to optimize and efficiently schedule a query plan. This phase is
transparent to the user.

• GDQS setup phase. The User is required to prepare the GDQS
instance for accessing multiple data sources and analysis services. This
involves providing the factory handles and an appropriate
configuration document for OGSA-DAI services that wrap the data
sources being integrated, as well as providing the WSDL URLs of the
services that are to be used for analysis. The GDQS uses this
information to import the database schemas of the data sources and
WSDL content of the services so that it can process (compile and
optimize) the submitted query.

• Query (request) submission phase. The user is required to formulate a
query in Object Query Language (OQL) and submit it to GDQS.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 41

• Query Execution and result delivery phase. Once the query is
submitted, the GDQS compiles, optimizes, schedules and executes the
query utilizing the available computational resources on the grid by
taking into account the information collected in the resource discovery
and GDQS setup phases. The results are, then, delivered to the user
subject to the interaction patterns allowed by the OGSA-DAI Grid
Data Service (GDS) port type interaction semantics [ref to OGSA-DAI].

7.2 Customers
The potential users of SB-DQP can be both from commercial or scientific
background. The fundamental characteristics of the usage pattern is the
requirement to integrate data from distributed and heterogeneous resources
with analysis capabilities provided as services. For example, distributed
query processing is considered a relevant technology in bioinformatics, in
which there are many distributed structured data stores, and in which an
individual analysis often needs to access several of these stores and several
analysis tools. In bioinformatics, there are several hundred important
structured data stores (of very variable size) and many analysis tools
applicable to data that can be extracted from these stores. Currently many
bioinformaticians apply a sequence of disconnected (or largely manually
connected) activities to achieve data and analysis integration. A declarative
interface that uses a standard query language to combine such disconnected
activities in an optimized way is of particular interest to the bioinformatics
community.
A detailed scenario that illustrates the potential value of the GDQS for
bioinformaticians is given in Section 1.3. The scenario provided illustrates
the integration of data from two distributed data resources, the Gene
Ontology (GO) database, the Genome Information Management System
(GIMS) in combination with an analysis tool, namely BLAST.
7.3 Scenarios
The following OQL query is meant to provide a starting point for constructing a
scenario that illustrates how a bioinformatician can interact with a GDQS causing it
to pass through the phases introduced in Section 7.1. First the query is explained
and then scenarios are provided that exemplify the

select p.proteinId, blast(p.sequence)
from p in protein, t in proteinTerm
where t.termId='GO:0008372' and
p.proteinId=t.proteinId

This query returns, for each protein annotated with the GO term 'GO:0008372' (i.e.,
unknown cellular component), those proteins that are similar to it. Assume that (as
in [21]) the protein and proteinTerm extents are retrieved from two databases,
respectively: the Genome Information Management System (GIMS)
[img.cs.man.ac.uk/gims] and the Gene Ontology (GO) [www.geneontology.org], each
running under (separate) MySQL relational database management systems. The

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 42

query also calls the BLAST sequence similarity program
[www.ncbi.nlm.nih.gov/BLAST/], which, given a protein sequence, returns a set of
structures containing protein IDs and similarity scores. Note that the query is
essentially a select-project-join query but retrieves data from two relational
databases, and invokes an external application on the join results. A service-based
approach to processing this query over a distributed environment allows the
optimiser to choose from multiple providers (in the safe knowledge that most
heterogeneities are encapsulated behind uniform interfaces), and to spawn multiple
copies of an operator to exploit parallelism. In the example query, for instance, the
optimiser can choose between different GO and GIMS databases, different BLAST
services, and different nodes for evaluating the query sub-plans.
7.3.1 Service Discovery and Instance Creation
Figure 1 illustrtaes the interaction during the first phase. The first interaction in
the figure refers to the fact that a GDQS factory registers itself to a GDSRegistry as
part of its initialization. The client queries a Registry using
GridService::FindServiceData operation to find an appropriate GDQS factory
(GDSF) (interaction 2). The client then creates an instance of the GDQS using the
OGSA factory port-type.

111

GDQS

GDS

GDQ

G

Registry

 GS
GDSR

Client

GFactory GDQSF113

112

registerService

findServiceData

createService

Figure 1 Service Discovery and GDQS instance Creation

7.3.2 Setting up the GDQS instance
It is necessary for the GDQS to collect database schema information of the data
sources being integrated. Figure 2 illustrates interaction during the setup phase
through which the GDQS acquires this information. The client discovers a GDS
Factory for a particular data source (interaction 2) and passes the handle of this
factory (GSH:GDSF) along with a configuration script obtained by querying the
factory (interaction 3), to the GDQS instance via an importSchema call (interaction
4). It is also necessary to provide a configuration document to determine the type of
the GDS being created. The client should be able to interrogate the GDS factory to
find out the set of configurations supported, and choose the most convenient one.
The GDQS instance, then, creates a GDS instance (GDS1) using the factory handle
and the configuration document provided by the client (interaction 5), and obtains
the database schema of the data source wrapped by that GDS (interaction 6).

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 43

importSchema(GSH:GDSF, ConfDoc)

findServiceData

GSH:GDSF

N2

N3

Create(ConfDoc)

findServiceDataDBSchemaGSH:GDS1

5

N1

3

4

findServiceData ConfigDocs

2

G

Factory

GDSF

GGDQ GDQS1

G Registry GS

GDSR

GClient

 GS

register

GGDS GDS1

 GS

1

6

Figure 2 Importing Schema Information of Data Sources

7.3.3 Collecting Computational Resource Metadata
It is also important for the GDQS to collect sufficient data about the available
computational resources on the Grid to enable the optimiser to schedule the
distribution of the plan partitions as efficiently as possible.
Although the current OGSA reference implementation does not fully support this
need, it does provide a high-level Index Service, to enable collecting, caching and
aggregating of computational resource metadata. Figure 3 illustrates the service-
based architecture that enables a GDQS to collect resource metadata from multiple
nodes on the Grid. In this set-up, an index service collects dynamic information on
the system it is deployed in using back-end information providers. The GDQS
identifies a central index service as its server for caching and aggregating metadata,
and causes (2) it to subscribe to other distributed index services. The remote index
services send (3) notification messages at specified periods whose payload is resource
metadata in a format determined by the back-end information provider. The GDQS
can use (4) a findServiceData call to obtain the aggregated information as SDEs
from its server.
Note that one would expect the index service hierarchy to have been set up as part
of a virtual organisation's infrastructure, since the identification of Grid nodes that
constitute the organisation's resource pool is beyond the operational scope of the
GDQS.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 44

findServiceData

N2

N3

N1

113

4

G IndexServiceGS

NSrc

NSnk

G IndexServiceGS

NSrc

Registry

G IndexServiceGS

NSrc

Registry

G
SysInfo
Provider

G
SysInfo
Provider

GGDQS

SysInfo

SysInfo

Resource
SysInfo

Subscribe

Subscribe
2

2

113

Figure 3 Acquiring Computational Resource Metadata

7.3.4 Query (Request) Submission
Most of the interactions (apart from the initial query submission) in this phase are
inter-service interactions transparent to the user. Figure 4 illustrates those
interactions. After importing the schemas of the participating data source, the client
can submit queries (1) via the GDS port type using a perform call. Note that the
format and semantics of query submission is compliant with that of OGSA-DAI
framework. The submitted query is compiled and optimised into a distributed query
execution plan. The GDQS, then creates a set of Grid Query Evaluator Services
(GQES) for executing each query-sub plan (or partition) generated by the query
optimizer on a different node on the grid. The scheduling of the GQES instances is
also done in an optimized way based on the metadata collected. Once the GQES
instances are created on their designated execution nodes (and these could be,
potentially, anywhere in the Grid), the GDQS hands over to each (2) the plan
partition assigned to it. This is what allows the DQP framework to benefit from
(implicitly) parallel evaluation even as the uniform service-based interfaces hide
most of the low-level complexity necessary to achieve this. Finally, (some of the)
GQES instances interact (3) with other GDS instances to obtain data, after which
the results start to propagate (4) across GQES instances and, eventually, back to the
client via the GDT port type.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 45

GGDS GQES n

GDT

GDQS

GDS

GDT

GDQ
Client

GGDS GDS
Instances

GGDS GQES 1

GDT

.
.

.

4

1

3

4

GDT

 GS

p
e
rfo

rm
(q

u
e
ry

S
u

b
P

la
n

)

perform(query)

perform(gqes_query)
2

2
4

Figure 4 Query Execution - Overview

7.3.5 Query Execution and Result Delivery
For the example query given at the beginning of Section 7.3, the query
submission gives rise to the Grid Service (GS) interaction diagram in Figure
5. The GQESs that scan stores, viz., N1 and N2, are instantiated in different
hosts. Conditions at N2 (e.g., available memory) are such as to justify the
GDQS having assigned the hash join to N2. For the BLAST operation call,
the GDQS saw benefits in parallelising it over two GQESs N3 and N4. The
GDQS receives the request (1) and compiles it into the distributed query plan
in Figure 7(d), each partition of which is assigned to one or more execution
nodes. Each execution node corresponds to a GQES instance which is created
by the GDQS (2). The GDQS then dispatches (3), as an XML document, each
plan partition to its designated GQES instance. Upon receiving its plan
partitions, each GQES instance initiates its evaluation. Query execution is a
data flow computation using the iterator model, in which each operator
implements an fopen(), next(), close() interface. Data flows from the GQES
instances that execute partitions containing operators whose semantics
requires access to stores.
Within each GQES instance, the initialisation procedure starts when an
open() call reaches the topmost operator. This call propagates down the
operator tree from parent to children at every level until it reaches the leaf
operators. Then, interaction with other GDSs occurs. The handle for each
such GDS will have been planted by the GDQS in the XML document passed
to each GQES instance that needs it. For example, in node N2 (in Figure 5),
when the stream of open() calls reaches the sequential scan operator, it

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 46

causes the N2 GQES to interact with the GDS instance on N2, whereby data
becomes ready to flow upwards from the protein extent in the GDS through
which the GIMS database is accessed.

GFactory GQESF

GDQ

GDT

GGDS GQES2

GDT

GDQS

GGDS GQES3

GDT

GFactory GQESF

GGDS GQES1

GDT

GFactory GQESF

N2

perform(QuerySubplan)

perform(QuerySubplan)

perf orm
(Q

ue ryS ub pla n)

createService

createService

createService

results

results

results

2

3

N1

N3

N0
GDS

GClient

perform(Query)
protein

proteinTerms

sequential_scan

reduce (proteinID,sequence)

sequential_scan (term=8372)

reduce (proteinID)

hash_join
(p.proteinID=t.proteinID)

GGDS

GGDS

3

GGDS GQES1

GDT

operation_call
blast(p.sequence)

reduce (p.proteinID, blast)

operation_call
blast(p.sequence)

reduce (p.proteinID, blast)

GFactory GQESF
createService

2

4

114

3

4

2

N4

Web Services
 (BLAST)

1

Figure 5 Query Execution and Result Delivery - Detailed

Note that many forms of disruptive heterogeneity in the data stores are
encapsulated by the standard GDS interface. As such, SB-DQP exploits the
power that the Grid metaphor embodies, viz., query evaluation is carried out
over heterogeneous data and computational resources but the heterogeneity
is encapsulated behind the universal GS interface, giving rise to consistent
and uniform inter-service interaction semantics.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 47

7.4 Involved resources
A GDQS can be expected to make use of computational resources for: (i)
running query evaluator services, several of which may collaborate in the
evaluation of a single query; (ii) moving data from primary sources to
analysis tools or to evaluators that join or manipulate the data in a query;
and (iii) holding intermediate results for performance or reliability. All such
computational services need to be identified and allocated dynamically to
support the specific needs of complex requests.
In terms of the services used by a GDQS, these are likely to include: (i)
service registries, as service descriptions must be imported into a GDQS
before queries are evaluated over them; (ii) structured data access services,
as consistent access to structured stores is important for reducing set-up
costs; and (iii) flexible transport services, for example supporting streaming
of data and delivery to multiple sites in parallel.
7.5 Functional requirements for OGSA platform

• Discovery and Brokering. It is very important for SB-DQP to be able to
discover available computational resources, Grid Data Services (GDS) and
Analysis Services (AS). The discovery of the GDSs is needed for importing the
database schemas of the data sources over which a query is to be formulated.
Discovery of analyses services is needed to identify the type of operations and
data types supported/required by those operations, so that they can be
embedded in a query. The crucial requirement here is a uniform model that
will enable both the SB-DQP clients (users) and the DQP service itself to
discover and interpret the metadata about such services but also to relate
them to the information about computational resources (hosting
environments, machine capabilities such as CPU speed, available memory
etc.).

• Metering and accounting. SB-DQP can potentially use many GDSs and other
grid and web services. Each of these may have its own impact on the overall
billing cost of the distributed query service. SB-DQP must be able to
integrate into metering, accounting and billing mechanisms employed by
other participating data sources and/or services and if possible choose from
among the most convenient ones based on user preferences. This is only
possible if such seamless integration is supported at the infrastructure level.

• Data sharing and management. Data sharing and management is
fundamental to SB-DQP. It does this at two levels. At the lower level it relies
on Grid Data Services for accessing data sources, and at a higher level it
processes the data it obtains (joins, reduces, analyses etc) in a way that
conforms to the principles of a data-flow architecture. It does not however,
currently, address the problem of schema integration and consistency. SB-
DQP would benefit from such data management facilities as semantic data
model integration, transparent data caching and consistency management.

• Monitoring. SB-DQP requires monitoring in several contexts. First, it should
monitor the progress of the services it orchestrates. Progress information has
to be collected from the Evalutor services (GQESs), GDSs and analysis

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 48

services. Second, since a query can potentially involve long running
interactions (because of large amounts of data or network conditions) the SB-
DQP should respond by re-allocating resources and re-scheduling evaluator
services. This, in turn, requires monitoring of computational resources to
collect dynamic information to aid in reaching a decision as to how to adapt to
the changing conditions.

• Multiple security infrastructures. In most of the cases the distributed query
will require access to multiple data resources access to which may be
restricted by different security policies and infrastructures. It is essential for
the SB-DQP to rely on infrastructure support for obtaining access permission
to multiple resources on behalf of the client in a transparent way.

• Optimization of resource usage. SB-DQP uses a query optimizer (the Polar*
system) which is responsible for generating an efficient execution plan for a
declarative OQL query over distributed services (both data and computational,
since OQL supports invocation of external functions). As such, SB-DQP offers system-supported
optimization of declarative requests with implicit parallelism. In that respect

• Transport Management. As the SB-DQP executes the queries as a data flow
computation, efficient data transport is of paramount importance. Shipping
only XML data over SOAP/HTTP is not particularly convenient for data
intensive applications. It is very desirable to have multiple transport
protocols, including very efficient ones, to be available for inter-service
interactions.

• Fault tolerance and disaster recovery. Fault tolerance is particularly
important for long running queries that can potentially return large amounts
of data.

7.6 OGSA platform services utilization
• Name resolution and discovery. The discovery of Grid Services via an easy to use

interface that enable rich queries to be submitted against metadata maintained
in the registries, is important for the usability of the SB-DQP. The setup of SB-
DQP requires the discovery of Grid Data Service Factories for importing the
schemas of the participating data sources.

• Service domains. SB-DQP can be seen as a good example of service domains. It
coordinates and orchestrates multiple Grid Query Evaluator Services and other
Web services in a particular context during its lifetime.

• Messaging and events. There may be several contexts where SB-DQP needs to be
notified of events. If the schemas of the participating data sources change the
DQP would want to know about those changes so that the queries can be
validated against the new database schemas. Another context is progress
monitoring. When the query execution is in progress, the SB-DQP needs to
receive notification messages that indicate the state of the execution at each
query evaluation node. It is also required to receive regular updates on the state
and availability of the computational resources, so that the query evaluation can
be re-scheduled if needed.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 49

• Transaction. Currently distributed transactions are not supported in SB-DQP,
but it would certainly benefit from transaction interfaces provided by the
infrastructure in the future.

• Service orchestration. SB-DQP implements a service orchestration framework in
two sense: both in terms of the way its internal architecture handles the
construction and execution of distributed query plans and in terms of being able
to query over data and analysis resources made available as services. The latter
form of service orchestration can be seen as complementary to other
infrastructures, such as workflow languages.

7.7 Security considerations
The nature of the security challenges facing a GDQS are likely to vary from
setting to setting, but may be quite demanding. For example, a single query
may run over services within different domains of control, and could benefit
from allocating evaluators to run on nodes that are under different domains
of control. There may also be privacy issues on the data being manipulated by
a query – for example, a requester may be reluctant ever to allow data from a
private source to leave their organisation, but may want to join that data
with data from a public source. Thus single-enterprise, multi-enterprise and
all-comers scenarios are all possible.
7.8 Performance considerations
There are many aspects to the performance of a distributed query. As queries
are declarative, their execution must be planned. Query planning needs
access to comprehensive information on the costs of using the services of
relevance to a query, and also requires information on the computational
resources available for evaluating a query.
Different operations in a query plan may prefer different forms of transport.
For example, many distributed query processors support pipelined
parallelism, but some operations are blocking, and thus may be more suited
to bulk data delivery. Which operators should be used to evaluate a portion
of a query will depend on the capabilities and load of the computational
resources available. Parallelism can often be exploited to improve the
performance of query evaluation, but scheduling is clearly challenging in an
open environment such as the Grid.
7.9 Use case situation analysis
As stated in Section 7.1 each phase in the use case has implication on the required
services/functionalities from he underlying infrastructure. The following list is an
attempt to identify those requirements for each phase and to what extent they are
met by the current OGSA reference implementation.
Service discovery and instance creation. The primary requirement here is the ability
to discover the GDQS Factory and GDS Factories for the data sources by submitting
a query to the service registries. This requires the service registries to support both
the ability to specify and publish potentially rich information on the services being

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 50

registered, and the ability to query this rich information using a well-known (easy to
use) query language.
The existing OGSA reference implementation does not sufficiently support the
ability to query against the service descriptions. The idea of Service Groups
proposed in the latest draft of the GS specification provides more complete support
in this regard.
Setting up the GDQS instance. One important requirement here is that the Grid
Data Services must provide the schema of the database they wrap in a well-defined
way. In other words the GDQS must be able to query the GDS instances to obtain
the schema of a particular data source. Service Data Elements are one obvious
candidate to provide such information in a well-defined way. Currently, querying
this information via SDEs is not supported. GDQS obtains the database schemas by
a custom extension to OGSA-DAI framework. The requirement referred to here,
however, is more directly relevant to OGSA-DAI project rather than OGSA.
Collecting computational resource metadata. The relevant OGSA service here is the
Index Service which is not part of the core OGSI but is provided as a higher level
service. Although the Index Service seems to offer a flexible approach to collecting
grid resource metadata, there are some issues that remains unresolved. The SB-
DQP requires several classes of metadata to be interrelated and provided in a
coherent way. The classes of metadata required are:

• The capability of a grid node (a machine that offers its computational
resources to the grid user community) in terms of the CPU power, available
memory, available disk space etc.

• Dynamic (real-time) information on the communication load on network
connection between a set of grid nodes.

• The characteristics of a grid node in terms of the services it hosts. For
example the information as to whether a particular grid node hosts a Grid
Data Service Factory or a Grid Query Evaluation Factory.

Currently there is no a coherent way of collecting and relating such classes of
metadata.
Query (request) submission. The implication of a query request in regard with the
use of infrastructure services is that the GDQS has to dynamically create instances
of GQESs on an arbitrary number of grid nodes to execute the sub-queries.
Currently it is only possible the create a grid service instance on a node if its factory
is already deployed on that particular node. This constraints the query optimizer to
consider only a limited set of grid nodes (only those where a GQES factor exists). It
is desirable to have the ability to dynamically ship the factory code to a hosting
environment and deploy it so that any grid node can be considered for scheduling
GQES instances.
Query execution and result delivery. The primary requirement here is being able to
bind to efficient transport mechanisms. Currently only XML over SOAP/HTTP is
seamlessly supported. The Reliable File Transfer Service that provides access to
Globus Grid FTP APIs does not seem to be seamlessly integrating with the service

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 51

interfaces. What is needed is direct support for efficient data transfer at the inter-
service interaction level.

7.10 References
1. M.N. Alpdemir, A. Mukherjee, N.W. Paton, P. Watson, A.A.A. Fernandes, J.

Smith, T. Gounaris, Grid Distributed Query Service (GDQS) Design,
OGSA-DAI Design Document , 2, December, 2002.

2. J. Smith, A. Gounaris, P. Watson, N.W. Paton, A.A.A. Fernandes, and R.
Sakellariou. Distributed query processing on the grid. Proc. 3rd Int.
Workshop on Grid Computing, J.Sterbenz, O.Takada, C.Tschudin,
B.Plattner (eds.), Springer-Verlag, 279-290, 2002.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org

8 Grid Workflow
8.1 Summary
Workflow is drawing attention as a convenient way of making new services by
connecting existing services (like shell-scripts of UNIX systems). A new Grid service
can be created and used by registering a workflow definition to a workflow engine.
The definition is interpreted by the workflow engine, and calls several other Grid
services as is specified in the definition.

8.2 Customers
Workflow will be used by both users and providers of Grid services. The cases when
workflow will be used are as follows:
1. Connection of simple services: Users (or service providers) make a new Grid

service by connecting several simple services (whose execution time is relatively
short). For example, by connecting a stock information service and a currency
exchange rate information service, a foreign stock information service can be
made.

2. Job workflow: Users (or service providers) combine several jobs, specifying their
execution order, input, output, etc. Here, jobs include both scientific and
commercial jobs. For a scientific job example, simulation service and
visualisation service is connected using workflow. (Of course there are many
other examples like compound simulation, data grid, etc.) Scientific job workflow
may require huge amount of data transfer between services. As for commercial
jobs, an example would be summing up sales result at each branch shop in
parallel, and then collecting them at the head office.

3. Description of business process: Service providers describe business processes by
connecting several services. For example, a travel agency connects a flight ticket
reservation service, a hotel reservation service, and a vehicle reservation service
to make a new travel reservation service. This kind of workflow is well
investigated in the area of Web Services. Business process may take a long time
(ex. one month) to finish, and may need exception handling mechanism (ex.
cancellation of reservation).

4. System administration: Service providers describe a service for system
administration using workflow. For example, a system administration workflow
obtains an application program from an application repository using a file
transfer service and deploys it to a Grid service container.

Combination of above examples is also possible. For example, one can think of a
workflow which obtains weather information from various place of a country (above
example: 1), and executes weather simulation job using the information and
visualizes the result (above example: 2).

In addition, everything is abstracted as Grid service in OGSA. Therefore, everything
which is abstracted as Grid service can be dealt with workflow.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 53

A workflow definition itself should be seen as a Grid Service. Thus, workflow should
comply with the various rules which the Grid Service Specification requires. For
example, a workflow definition should have FindServiceData operation in
GridService PortType, and may need to support Notification; and a workflow
instance should be created by a Factory.

8.3 Scenarios
As described above, workflow is used in various cases. Here, I will describe
“application deployment scenario” in which typical relationship between other
services/functions is shown.
8.3.1 Application deployment scenario
In this scenario, we assume that a system administrator or a user of a Grid system
wants to deploy (install) an application to a Grid container.
The process is executed by a service orchestration engine. In the service
orchestration, firstly, an application program is obtained from an application
repository which may be implemented as shared storage. The storage may be found
using a discovery service. If the storage has functionality of data cache / replication,
the program code can be efficiently obtained.
When connecting to the storage, authentication / authorization should be performed
in order to restrict the access to the program. For authentication and authorization,
a policy management service may be needed to get security policy for deciding if
providing the program is allowed or not.
After obtaining the program, it is deployed using a deployment service which may be
a part of an administration service. Here, authentication / authorization should be
performed again. It may be needed to reserve the resource (the Grid container)
beforehand using a reservation service.
All these processes might need to be logged using a logging service, and the log
information might be passed to an accounting service for accounting. Again, for
logging and accounting, a policy management service may be needed to obtain
policies for them.
8.4 Involved resources
Computational resources are required in order to interpret and execute workflow
descriptions.
For managing long-lived workflow, non-volatile memories like files or databases are
needed.
8.5 Functional requirements for OGSA platform
In the scenario described above, following functionalities are required.
1. Workflow

With this functionality, several services are connected to realize application
deployment. This functionality is represented as “Flow” in [1].

2. Discovery
In the above scenario, service discovery functionality is needed to discover
storage service which contains the application program to deploy. This
functionality is represented as “Discovery and brokering” in [1].

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 54

3. Shared storage
In the above scenario, shared storage is used as an application repository. This
functionality is represented as “Data sharing” in [1].

4. Authentication and authorization
Obtaining application programs and deploying them into a Grid system may
require authentication / authorization. This functionality is described in
“Multiple security infrastructures” and “perimeter security solutions” in [1].

5. Application deployment
This functionality is required to deploy an application to a Grid container. This
functionality is included in “Administration” functionality in [1].

6. Advanced reservation
This functionality may be required to execute the application on reserved
resources. This functionality is described in “provisioning” functionality in [1].

7. Logging and accounting
Processes like obtaining / deploying application programs might be logged, and
the information might be used for accounting. This functionality is represented
as “metering and accounting” in [1].

8. Policy
Authentication, authorization, metering, and accounting may require policies.

8.6 OGSA platform services utilization
1. Service orchestration service

This service corresponds to “workflow” functionality, and is used as “workflow
engine”.

2. Name resolution and discovery service
This service corresponds to “discovery” functionality.

3. Security service
This service corresponds to “authentication and authorization” functionalities.
In some cases, security is not implemented as services but functions attached to
each service. However, some of the security functions such as decision of
authorization may be implemented as services.

4. Data management service
This service corresponds to “shared storage” functionality.

5. Administration service
This service includes “application deployment” functionality.

6. Provisioning and resource management service
This service includes “advanced reservation” functionality.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 55

7. Metering and accounting
This service corresponds to “logging and accounting” functionality.

8. Policy service
This service corresponds to “policy” functionality.

8.7 Security considerations
There may be a need to deny access to workflow definitions from non-registered
users. To implement this, authentication and authorization should be performed
when creating a workflow instance using a Factory, and when accessing a workflow
instance.
In addition, services called from workflow may require authentication and
authorization. To support this, delegation mechanism like GSI may be needed.
8.8 Performance considerations
If execution time of a service called from a workflow is long enough, performance of a
workflow engine does not matter much. However, if it is short, performance of a
workflow engine may be important.
In addition, if there is need to transfer large amount of data between services called
from a workflow definition, it is not efficient for a workflow engine to receive and
send the data. Therefore, it may be needed to allow description of direct data
transfer between services [7].

8.9 Usecase situation analysis
Many important works have been done in the field of Web Services. For example,
there are WSFL[2] by IBM, XLANG[3] by Microsoft, BPEL4WS[4] derived from both
of them, WSCI[5] by SUN, WSCL[6] by HP. In the Grid computing field, GSFL[7]
was proposed by ANL. In addition, WfMC (The Workflow Management Coalition) is
working in this field for a long time. These significant works can be a basis of a
workflow specification of OGSA.
8.10 References
1. Foster, I and Gannon, D. The Open Grid Services Architecture Platform, 2003.

http://www-unix.gridforum.org/mail_archive/ogsa-wg/doc00016.doc
2. Web Service Flow Language (WSFL 1.0), May 2001, http://www-

3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
3. XLANG Web Services for Business Process Design, 2001,

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
4. Business Process Execution Language for Web Services, Version 1.0, July 2002,

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
5. Web Service Choreography Interface (WSCI) 1.0 Specification, 2002,

http://wwws.sun.com/software/xml/developers/wsci/
6. Web Services Conversation Language (WSCL) 1.0, March 2002,

http://www.w3.org/TR/wscl10/
7. GSFL: A Workflow Framework for Grid Services, July 2002, http://www-

unix.globus.org/cog/projects/workflow/

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org

9 Grid Resource Reseller
9.1 Summary
It is not always desirable for owners of Grid resources to interface with end users
directly. Inserting a supply chain between the resource owners and end users will
allow the resource owner to concentrate on their core competence (e.g. in
maintaining large supercomputers) and avoid providing costly interaction and
support to a large number of consumers, allowing them instead to deal with a few
large customers (potentially only one) who resell the resources.
End users can purchase resources bundled into attractive packages by the reseller
(aggregation); these resources might in fact come from several resource owners.
The resellers can make money from reselling aggregated computational resources
without having to own any resources themselves, thereby minimizing their own risk.
In general, the reseller maintains resource provision by sustaining their
relationships with upstream providers. However, to protect the agreed service level
with the end users, the reseller may occasionally find it necessary to switch provider,
either temporarily or permanently. Instead of worrying about maintaining
resources, the reseller can focus on providing good customer care as well as
marketing resource bundles to their target market(s).
This use case is adapted from the “Computational Reseller” use case, which was
written by Jon MacLaren and William Lee, and appears in the GESA Use Cases
Document [1].

9.2 Actors
There are three key actors in the Grid Resource Reseller scenario. The first of these
is the “Resource Owner” of which there may be several in this scenario (which is
considered from the point of view of the reseller). The Resource Owner is imagined
to own resources which are expensive and rare, e.g. a supercomputer, although this
does not have to be the case. These owners want to sell resources on in bulk, dealing
with only a few large customers, who are resellers. They are interested in ensuring
that they sell all their resource, although they are less concerned about the actual
usage of the resource – that is the concern of the resellers, who are their customers.
There will, however, be service level agreements between the resource owner and
the resellers.
Next, there is the central actor, the “Resource Reseller”. The reseller acts as both
customer (of resource owners, or upstream providers), and provider (to end users or
downstream providers). The reseller need not be interested only in resource
utilization, as their primary concern will be making a profit, i.e. if they can get all
their customers to buy pre-paid resource usage packages (like “free minutes” on
mobile phones), they do not care if these are ever used. In fact, a certain amount of
overselling may be possible, i.e. if everyone used all their pre-paid resources at once,
the reseller would be in trouble, but in fact this is extremely unlikely. A reseller will
have service level agreements both with the providers and consumers of the
resources. The reseller will have many more consumers than providers (e.g. an

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 57

order of magnitude more), providing a natural fan-out as the supply chain moves
from the resource owner to the end users.
Finally, there are the “End Users”, who are customers of a Resource Reseller. They
are the real consumers of the resources. They do not know who owns the resources
they use, as they get all their resources, plus associated service and support, from
the reseller. They will be free to select a reseller who is suitable for them, e.g. based
on the packages the reseller offers, and their cost.
Naturally, the resource owner, reseller(s) and end users will be part of different
organizations, and may be geographically distributed.
In the scenario presented below, we only consider there to be a single reseller
between several resource owners, and many end users. However, in considering the
requirements for this scenario, it is important to envisage the possibility of a chain
of resellers (as is the case for internet providers today).

9.3 Scenarios
As this use case is extremely general, there are many possible scenarios. Further,
these examples are all similar, differing only in the details. Therefore, only one
example is provided.

9.3.1 Computational Chemistry Reseller
Consider the example of a reseller who has strong links with the chemical industry
and the expertise to support a wide range of chemistry applications running on
supercomputers. To establish their business, they offer supercomputer owners the
chance to sell resource in bulk to them, on the understanding that they will resell
the resource. The reseller agrees to respect the policies of the resource owners when
reselling. One resource owner provides cycles which are only for use by academic
users; another offers a two-tier price structure, where cycles that are sold on to non-
academic users are charged for at a higher tariff. Two resource owners specifies that
the provided cycles must not be sold on to another reseller. Due to this complication,
the reseller decides only to deal with end users.
As well as sourcing supercomputer centers, the reseller wants to provide access to
all the popular chemistry packages. In some cases, the reseller can lease the
licenses from the resource owners, some of whom have installed a subset of the
target software. However, the reseller also sources some of these packages directly
from the manufacturer, and must arrange for the staging (or installation) of the
software on the target machines.
Finally, the reseller engages in a publicity campaign to attract users to it’s services.
They market monthly packages of resources which includes pre-paid (“free”) items
such as CPU cycles, secure and backed-up disk storage, and software licenses. To
make itself as attractive as possible, the reseller deliberately resells the resources at
a loss for the first three months of operation as a one-off “not to be repeated” offer
(loss-leading).
To facilitate the execution of the user’s work, the reseller provides a resource broker.
Users submit their work to the broker, which matches the users preference with the
policies of the resource owners. Based on this matching, plus information about the
state of the resources themselves, the user’s job is dispatched.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 58

Where the reseller’s service level agreement with the end user is “broken”, the user
may be entitled to some compensation. This may be described as part of the service
level agreement itself.
It is useful to summarize the potential advantages of this scenario from the
perspective of each type of actor:
1. The Resource Owner. There are a number of reasons why a supercomputing

centre might wish to sell its cycles to a reseller.
a) If all cycles are sold this way, the resource owner never needs to deal directly

with large number of customers; this is useful as it is costly to maintain high
quality of customer care. This policy enables them to manage their resources
in a small number of large transactions.

b) During a period of low local usage, a centre might want to make a one-off sale
of a large amount of otherwise redundant cycles.

c) A centre with seasonal peaks and troughs in local user usage might want to
sell an amount of cycles (varying per month) to match expectation, thus
maintaining steady usage.

2. The Resource Reseller. The reseller bundles the resources available to it from the
various upstream providers, including some licenses it can obtain from the
software vendors at a reduced rate (as it deals mainly with academics and in
large quantity). An example offer is that for a reasonable monthly fee, the
chemist gets 200 “free” CPU-hours on a Cray T3E, plus thirty uses of Guassian98
thrown in (exceed that, and he gets charged quite a lot, of course.) They also
include some compensation deal when jobs are not delivered due to downtime (a
kind of insurance). A Reseller who has insights in the market trend can predict
future demand and source resource provision from upstream vendors in advance
when the price is attractive.

3. The End User. The chemist wants to get resources from the reseller because
getting bundled resources reduces transaction costs in dealing with all parties
manually. Also, he would expect to have better customer care and risks are
shared with the reseller if upstream vendors default. Finally, the academic
might be able to get his bundle for less because he gets it from the same reseller
he gets his electricity / mobile phone time from. It encourages companies with
existing micro-transaction technology (such as telecom, utility, etc.) to
participate as resellers.

9.4 Involved resources
The Resource Owner is selling resources to one or more Resource Resellers (see also
the GESA-WG Computational Provider Scenario [1]).
Each Resource Reseller in the supply chain is buying resources from one or more
Resource Owners and upstream Resource Resellers. The reseller may bundle these
resources before selling them to End Users or to downstream Resource Resellers.
The End Users buy (possibly) bundled resources from the Resource Resellers.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 59

Ultimately, it is the resources bought from the providers that are being consumed by
the end users. This could potentially be any Grid resource. These resources could
be geographically distributed, and could belong to a number of resource owners.

9.5 Functional requirements for OGSA platform
The presented scenario has many requirements, however, here we have chosen to
describe those functions specific to the activity of reselling, i.e. we ignore generic
requirements for work scheduling and execution which will arise from other use-
cases. I’ve stuck with the headings from Section 3.2 of the OGSA Platform
document [2].
The following functions are required for reselling:
15. Discovery and Brokering

In the scenario, each reseller operates a broker to dispatch the user’s work to
the available resources. The most important requirement here is that the
broker can perform some sort of matching between the users’ preferences, and
the resource owners’ policies (perhaps something like the Condor ClassAd
scheme [3]). Using the evaluated list of possibilities, the broker then uses
information like acceptable turnaround time and cost to select specific resources
for the work.
A reseller must be able to discover resource owners (or downstream resellers),
and end-users must be able to identify resellers. Service Level Agreements
must be agreed between these pairs of entities. However, in our scenario, these
are infrequent (even one-off) activities, and will be achievable through existing
mechanisms such as networking, advertising, etc.

16. Metering and Accounting
The model for accounting and charging in the scenario is quite sophisticated.
The Resource Owner will sell large amounts of cycles to one or more resellers.
The price for these cycles will be negotiated between the two parties; it is
unlikely to be uniform for multiple resellers. Further, whether the cycles are
used or not is not really the concern of the resource owner; some partial refund
for unused cycles may be arranged between the two parties. In the situation of
overuse, the resource owner would want to limit the amount of cycles that the
reseller could use. Whether the resource owner would refuse any overrun, or
whether overrun would be charged for at a far-higher rate, would be down to
policy.
For the reseller, they must do their utmost to sell sufficient packages of
resources to cover their expenditure, plus running costs, plus some profit
margin. It should be possible for users to sign up for some sort of monthly plan,
on-line, without human intervention. The reseller will need to bill the end
users on the basis of usage, which is covered by existing plans in OGSA
Platform. It is worth noting again that if the reseller obtains most of their
money through contracts for pre-paid resource use, that they can oversell their
resources (like hotel and airplane overbooking) to maximize income. Like the
resource owner, their income need not depend on the actual usage of the
resources.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 60

In terms of charging, different granularities of trading must be supported. This
also implies the ability to use different payment options, such as purchase
order/invoicing or Credit Card, etc.
There are several different charging schemes mentioned above. However, all
the models described should be possible within OGSA Platform. Similarly, it
should be possible for the accounting systems to operate autonomously for the
vast majority of circumstances (include underrun and overrun). While the
systems being designed in the GESA Working Group [4] have cases like these in
mind, it is hard to see how this functionality can be covered by the charging
systems proposed in the OGSA Platform document [2] (see Section 5.9 in
particular); these seem to focus mainly on tariff-based charging, based on
“accounting schemas”, and do not contain the concept of reselling.

17. Monitoring
The Resource Owner must be able to track the usage by the clients of the
various resellers to check for resources being overused.

18. Policy
End Users and Resource Owners will have potentially complicated policies, as
may the resellers. A reseller must not be able to sell on a resource in a way
that violates the Resource Owner’s policy, e.g. selling cycles to an industrial
user at an academic rate. Similarly, a reseller should not be able to run a user’s
work on resources which violate their policy, e.g. running a job from a user with
an “environmentally friendly only” policy on a computer owned by a corporation
frequently responsible for pollution, etc.
There must be some way in which to aggregate the policies of all upstream
providers.

19. Extended Service Level Agreements
This is not a heading in OGSA Platform, but it’s something needed in this
scenario, and other GESA-WG use cases [1]. We want to incorporate cost
information into the SLAs between parties. In certain circumstances, we would
also like it to be possible to define rates of compensation in the SLA, e.g. if the
user can’t access their pre-paid resources for 24 hours or more in a month, they
will be refunded £2, etc. This is the subject of ongoing work within the GESA-
WG group [4].

9.6 OGSA platform interfaces utilization
The following interfaces (or services?) are necessary to provide functions in the
previous section.

11. Policy 16
The scenario described here has sophisticated requirements for policy definition
and handling within OGSA Platform. In particular, we have a need to
aggregate several policies within a supply chain.

16 The explanation of the policy interface in [2] is very vague and is not clear what it is.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 61

12. Metering and accounting
This interface will need to be made more flexible if it is to cope with the
requirements of the scenario described in this document.

13. Provisioning and resource management
Required for SLA agreement and monitoring. Will need to be able to handle the
extended SLAs discussed in the previous section.

14. Brokering 17
Brokering functionality is required. The policy matching aspects of this are
probably to be handled by the Policy interface.

15. Monitoring service 18
This service is used for monitor function.

9.7 Security considerations
The Resource Owner and Reseller chain should be able to provide the user with
assurances on privacy, where this is required.

9.8 Performance considerations
Where the reseller chain is a few steps long, it should still be possible for the user to
get good performance when accessing the resources.

9.9 Usecase situation analysis
We do not believe that there are any examples of this use case in the Grid.
(Although Application Service Providers exist, these also own the computational
resources used to process the work, and so do not qualify as Resellers.) Of course,
there are hundreds of examples in other areas, most notably internet provision and
mobile phone provision. We are confident that once the enabling technology is
present, that reseller businesses will be established.

9.10 References
1. Keahey, K., MacLaren, J. and Newhouse, S. (Eds.), “GESA Use Cases”,

February 2003. http://www.doc.ic.ac.uk/~sjn5/GGF/draft-ggf-gesa-use-cases-
01-7.pdf

2. Foster, I. and Gannon, D. (Eds.), “The Open Grid Services Architecture
Platform”, February 2003.
http://www-unix.gridforum.org/mail_archive/ogsa-wg/doc00016.doc

3. Raman, R., Livny, M. and Solomon, M. “Matchmaking: Distributed Resource
Management for High Throughput Computing”, Proceedings of the Seventh
IEEE International Symposium on High Performance Distributed Computing,
July 28-31, 1998, Chicago, IL.

4. Grid Economic Services Architecture Working Group (GESA-WG). Home
page: http://www.ggf.org/3_SRM/gesa.htm

17 This function should be added to the OGSA platform interfaces.
18 This function should be added to OGSA platform service.

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 62

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 63

10 HP use case by Jeffrin Von Reich

OGSA-WG use case template rev. 2

ogsa-wg@ggf.org 64

11 Security Considerations
Each use case has its own security considerations and they are described in
corresponding subsection.

12 Editor Information
Ian Foster
Distributed Systems Laboratory
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
Phone: 630-252-4619
Email: foster@mcs.anl.gov
Dennis Gannon
Indiana University
Bloomington, IN 47405
Phone: 812-855-5184
Email: gannon@cs.indiana.edu
Hiro Kishimoto
Grid Computing & Bioinformatics Laboratory
Fujitsu Laboratories Limited
Kawasaki, Japan 211-8588
Phone: +81-44-754-2628
Email: hiro.kishimoto@jp.fujitsu.com

13 Contributors
We gratefully acknowledge the contributions made to this document by Nedim
Alpdemir, Takuya Araki, Boas Betzler, Kate Keahey, Tan Lu, Norman Paton , Jon
MacLaren, Jeffrin Von Reich, Andreas Savva, Charles Severance, David Snelling,
and Ravi Subramaniam.

14 Acknowledgements
This work was supported in part by IBM and by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38
and DE-AC03-76SF0098; by the National Science Foundation; and by the NASA
Information Power Grid project.

References
Each chapter has reference section.

