
GWD-I (draft-ggf-ogsi-gridserviceprimer-1) Editors:
Open Grid Services Infrastructure (OGSI) Tim Banks
http://www.ggf.org/ogsi-wg
 June 5th, 2003

Copyright © Global Grid Forum (6/5/2003). All Rights Reserved

 Open Grid Service Infrastructure Primer
(Draft)

Abstract

This is a working draft of the OGSI Primer. The aim is to provide an introduction to the
OGSI specification with progressive examples, but without relying on any particular
implementation.

The Primer is a non-normative document, which means that it is not a definitive (from the
GGF's point of view) specification of OGSI, intended to provide an easily readable
description of OGSI. It is intended towards quickly understanding the basic fundamentals
for creating OGSI-based grid services. The examples and other explanatory material in
this document are here to help you understand OGSI, but they may not always provide
definitive or fully-complete answers. In such cases, you should refer to the relevant
normative parts of the Grid Service Specification which can be found on the OGSI
working group web site.

Making comments and contributions.

The OGSI Primer is a being produced by the OGSI working group of the GGF. The web
site1 of the working group lists its charter, mailing list and previous products, including
the draft of the OGSI specification for which the Primer will act as an introduction.

The Primer will be developed during 2003 and during its development comments from
the OGSI working group are encouraged. You should join the working group by
introducing yourself via the mailing list. All that's needed is a note to say 'hello' and
explain your interests and background. If you want to make comments on the Primer, the
mailing list is the way to gain the authors' attention.

You can put you comments directly on the mailing list, or use the GridForge web site.

1 The GridForge web site at https://forge.gridforum.org/projects/ogsi-wg is being developed – it may
soon be a better starting point to make comments on the Primer.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 2 of 68

Contributions to the document are coordinated via the mailing list and associated
conference calls.

Current Status and future schedule.

This is work in progress! This draft was produced in preparation for discussion at the
GGF8 meeting in Seattle.

Ideas and comments on the structure of the document are encouraged. Chapters 1-3 and
parts of chapters 4-6 are in a reviewable state and an ‘incremental improvement’ process
based on review and comments is appropriate. However, beyond that, the text consists of
material taken from the OGSI specification, together with questions and conversations
from sources such as the OGSI-WG mailing list. It has not yet been reworked into a
coherent form.

Input from the GGF meeting, together with comments from the mailing list and working
draft will be incorporated during the remainder of 2003 with the target of producing the
final document at the end of 2003.

Copyright © Global Grid Forum (2002). All Rights Reserved.
For details, see the Full Copyright Notice on page 67.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 3 of 68

Contents
Abstract ...1

Making comments and contributions..1

Current Status and future schedule. ..2
1 About this Primer...7

1.1 Who should read this Document?...7
1.2 Related Documents ..8

2 Grids and their Requirements...9
2.1 What are Grids? ...9

2.2 Why a Service-Oriented view of grids? ..9
2.3 The Scope of OGSI ..10

2.4 What is needed to use Grid Services...11
3 Background Technologies..12

3.1 Web Services Introduction ...12
3.1.1 The Case for Web Services...12

3.1.2 Web Services Overview ...12
3.1.3 Web Services Description Language (WSDL) ..13

3.2 The Counter Example ..15
3.2.1 Counter Web Service..16

3.2.2 Counter Grid Service..17
3.3 Terminology ..20

4 The Concepts of Open Grid Services ...22
4.1 The relationship of Grid service WSDL to Web service WSDL......................22

4.1.1 Using portType extension...24
4.2 Service Factories and Instances ..24

4.3 Identity, Handles, References and Locators..25
4.3.1 Relative longevity/fragility of Handle and Reference..............................25

4.3.2 Passing Handles and references: the Locator ..25

4.3.3 The Identity of Grid Service Instances..26

4.4 Operation Faults...27
4.5 Extensible of Operations ..27

4.5.1 Extensible ServiceData elements ..29

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 4 of 68

4.6 Introducing ServiceData...29
4.7 Introducing Notification...30

5 Implementing Web and Grid Services..33
5.1 Client-Side Programming Patterns ...33

5.2 Server-Side Programming Patterns...35
5.2.1 Monolithic Service Implementation..35

5.2.2 Implementation within a Container...36
5.2.3 Container-managed State..37

5.2.4 Replicated Copies of a Service Instance..38
5.3 The Relationship of Grid service WSDL to Web service WSDL38

6 Using Grid Services ...39
6.1 Using Registries...39

6.1.1 The purpose of registries in OGSA...39
6.1.2 OGSI support for service registries...39

6.1.3 Example 1: a simple registry of service factories41
6.1.4 Example 2: grid-managed registry of service instances45

6.2 Abstract ServiceGroups..45
6.3 Binding to a Service...45

7 The GridService portType ...47
7.1 The basic requirement: GridServiceportType ...47

7.1.1 Terminology: Service Description and Service Instance47
7.2 GridService Service Data ...48

7.2.1 Using serviceData, an Example from GridService portType49

7.2.2 ServiceData Initial values ...50

7.2.3 ServiceData and portType Inheritance ..50
7.2.4 ServiceData Bindings ...50

7.3 GridService Operations ..50
7.3.1 Querying ServiceData ..50

7.3.2 GridService Examples ..51
8 Referencing and Handle Resolution ...52

9 Finding Services: ServiceGroups and Registries ..53
9.1 Reasons for Registries..53

9.2 The Registry Interfaces ..54

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 5 of 68

9.2.1 Registration PortType...54
9.2.2 Making Discoveries..55

9.2.3 Lifetime of Registration..56
9.3 An Example Registry ...56

9.4 Service Discovery and Invocation ..56
9.5 Service Registration ...56

10 Creating Transient Services: The Factory...57
10.1 The Factory Interface ...57

11 GridService Notification ..58
11.1 Notification Interfaces..59

11.1.1 ServiceData for Notification...59
11.1.2 Notification Operations ..59

12 Grid Services Security ...60
12.1 Approach & Scope...60

12.2 List of Topics to address ..60
13 Advanced Topics ...61

13.1 Advanced Registries [?] ...61
13.2 Recommendations for Change Management...61

13.3 Describing Operation semantics ...61
13.4 Monitoring Execution ..61

14 Glossary of Terminology ...62
15 Comparison with other Distributed Architectures...63

16 Editor Information ...65

17 Contributors...65

18 Acknowledgements..65
19 Document References ..66

20 Copyright Notice ...67
21 The Index...68

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 6 of 68

Table of Figures
Figure 3-1: The basis of Web service computing __ 13
Figure 3-2: WSDL markup elements __ 14
Figure 3-3: An increase operation to the Counter Web Service _________________________________ 16
Figure 3-4: An increase operation to a Counter Web Service that supports multiple counters _________ 17
Figure 3-5: An increase operation to a Counter Grid Service Instance ___________________________ 18
Figure 3-6: Operations to two different Counter GSIs representing a counter each _________________ 19
Figure 3-7: Consumer requesting the value of the counter through the counterValue SDE____________ 20
Figure 4-1: Markup language for Grid Services___ 23
Figure 4-2: Main Components Of OGSI Services__ 25
Figure 5-1: A client-side runtime architecture __ 34
Figure 5-2: Simple monolithic Grid service __ 36
Figure 5-3: Container approach to the implementation of argument demarshalling functions._________ 36
Figure 5-4: Container with state management __ 37
Figure 5-5: Use of multiple references for the same Grid service Instance ________________________ 38
Figure 6-1: Resolving a GSH ___ 46
Figure 9-1: Factories and a dedicated Registry as information sources __________________________ 54
Figure 9-2: GWSDL Description of Service Group. __ 55

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 7 of 68

1 About this Primer

This chapter introduces the structure of this document its intended audience and other
material which might be relevant.

1.1 Who should read this Document?

This is an introductory document to the Open Grid Services Infrastructure (OGSI)
specification which is aimed at a wide audience of architects and developers,
implementers and users.

No prior knowledge of the Grid or Web Services is assumed, though an awareness of
distributed computing will help. If you need extensive background material on grids, The
Anatomy of the Grid (see [1] in the ‘References’ section) should help. However,

• Chapter 2 summarizes the background of grid computing. Anyone interested in
gaining an overview of the concepts and major features of services which
conform to the OGSI specification might start at chapter 3.

• Section 3.1 gives an overview of Web Services whose specifications and
technology form the basis for OGSI. It describes some major mechanisms
underlying web services and introduces terminology that will be used elsewhere
in the primer. It also contains a simple example of a web service. If you are
already familiar with Web Services you may want only to look at the example.

• Section 3.2 and chapter 4 describe the concepts which are introduced by OGSI.
The functions required in the Grid which are additional to Web Services.

• Chapter 5 explains how these services can be constructed in real implementations.
• Chapter 6 introduces large scale features which are enabled by the form of the

individual grid services. These are the features necessary to create large-scale
applications and systems.

More detailed information is needed for implementers of Grid-based services or client
systems which need to call them. They might start with this document before going to
read documentation for platform-specific tools and interfaces.

• From chapter 7 onwards, the details of Grid services interfaces are explained in a
way which parallels the Grid specification. This makes it easy to correlate the
information in the two documents.

Examples are used throughout the Primer to illustrate the features which the Specification
requires. The examples are deliberately simple, to avoid any need for knowledge of more
realistic, but complex, Grid applications. Also, though they contain correct interface
definitions for the functions described, implementations are not provided. This is because
the Specification aims to define a standard for interoperability while leaving freedom to
implement Grid services in a wide variety of ways. For details of implementation, you

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 8 of 68

should investigate one of the Grid service toolkits such as GT3[10] and identify sample
services which correspond to the ones described here.

1.2 Related Documents

This document is a companion document to the Open Grid Service Infrastructure (OGSI)
specification [3]. The Specification is the complete and authoritative description of Grid
Services and should always be used to resolve questions of detail or ambiguity.

This document is, as far as possible, a self-contained introduction to the concepts of Grid
Services and their main features which should quickly provide insight into the way Grid
Services can be used and operated. Some of its sections are aligned to corresponding
topics in the OGSI specification, but it has more introductory material and uses
illustrative examples which are not constrained by the need to be complete in detail,
though this is also a goal wherever possible.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 9 of 68

2 Grids and their Requirements

2.1 What are Grids?

Grid computing is way of organizing computing resources so that they can be flexibly
and dynamically allocated and accessed, often to solve problems requiring many
organizations’ resources. The resources can include central processors, storage, network
bandwidth, databases, applications, sensors and so on. The objective of grid computing is
to share information and processing capacity so that it can be more efficiently exploited.
This advantage is clearest when the need for resources is unpredictable, short-term, or
changes quickly or where it is simply larger than any single organization’s capability to
provide it. Some kinds of problem which might take days to solve on a single
installation’s resources can be reduced to a few minutes with the right kind of
parallelization and distribution of the task. This reduction in turn-around time has opened
up areas and styles for computing applications which have previously been impractical.

2.2 Why a Service-Oriented view of grids?

Inevitably, the use of widely distributed, resources requires a connecting architecture
which is universal; it must allow the use of heterogeneous resources which have the
minimum of constraints on their hardware and software platforms. For this reason, the
connectivity is defined in terms of the sequence network messages that an application or
resource and its consumers must exchange. There is no need to say what operating system,
programming language or interfaces should be used to create the messages, and none of
these things is part of the OGSI specification. Any hardware platform or application
container will do, provided the messages are correctly constructed.

The term service is used to describe a network-enabled entity that provides a specific
capability, for example, the ability to move files, create and execute processes, or verify
access rights. A service is defined in terms of the messages one uses to interact with it
and the behavior expected in response. This behavior may depend on the state of
resources such as files, databases or sensors which are encompassed by the service and
the state may change in response to messages from one or more clients, or on internally
generated events such as timers or external physical events. The messages, state and other
behavior must be described by a service definition.

A good service definition permits a variety of implementations. For example, an FTP
server speaks the FTP Protocol and supports remote read and write access to a collection
of files. One FTP server implementation may simply write to and read from the server’s
local disk, while another may write to and read from a mass storage system,
automatically compressing and uncompressing files in the process. If variants are

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 10 of 68

possible, then discovery mechanisms that allow a client to determine the properties of a
particular implementation of a service are important.

From the client’s point of view, an important aspect of the implementation of a service is
the protocol which is used to communicate requests. A well-constructed server side
implementation may permit several protocols. For example, http and https can both be
used to retrieve Web pages from Web servers, but the latter is preferable if security is
important.

The term Web Services describes an important distributed computing paradigm that
focuses on simple, Internet-based standards (e.g., eXtensible Markup Language: XML) to
enable heterogeneous distributed computing. Web Services define a technique for
describing definitions of software components to be accessed, protocols for accessing
these components, and discovery methods that enable the identification of relevant
service implementations. Web services are programming language-, programming model-
, and system software-neutral.

2.3 The Scope of OGSI
OGSI describes the services of grid services using Web Services as a basis. This means
exploiting

• The mechanisms for encoding message transmission protocols which are
described as bindings in Web Services. There are many ways of encoding
messages and Web Services separates these concerns from the XML
definitions of application interfaces: OGSI standardizes interfaces at the
application level, independent of the bindings.

• The conventions used in Web Services to separate the primary application
interfaces (function calls and their parameters) from functions often managed
by standardized, generic middleware. This includes issues as authentication
and access control for an operation or isolation of an operation from the
effects of concurrent calls from other clients.

• The techniques used in Web Services to separate service- and network-
management functions from the application interface. The management issues
include Workload balancing, performance monitoring, and problem diagnosis.

Grids may require techniques which are developments of those used in Web Services
because of their large scale, scope and dynamic nature. These techniques are
described in documents which build on the basic service definitions of OGSI and the
assumed standards and techniques of Web Services.
[Need a reference to the Physiology paper and OGSA]

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 11 of 68

2.4 What is needed to use Grid Services
[Introduction to what kind of server platforms exist, and what do they provide, what
does the user provide.]

[What’s needed on the client side. Tools and what they do]

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 12 of 68

3 Background Technologies

3.1 Web Services Introduction

This chapter provides a high-level overview of Web Services. It necessarily leaves out
much detail but includes descriptions of those aspects of Web Services which are
extended by OGSI and illustrates them via a simple example.
[Need a reference to more detailed material for those that are interested.]

3.1.1 The Case for Web Services
Web services are centered on the service definitions and the messages, encodings and
protocols used between clients and servers rather than the application interfaces (APIs)
which clients and servers use to manipulate them; this was a difficulty with older
technologies such as CORBA [reference?] even though they recognized the importance
of protocols, these systems were built “APIs first” and the interoperability goal remained
elusive.

Web services build on a set of well established technologies and protocols. For example,
service descriptions are written in XML and data interchange formats can be both
expressed in and transmitted as XML so tools for describing the format of XML
documents, for creating them and parsing them can all be exploited by Web services.
Also, http is used as a transport protocol which is well understood, has many
implementations and is widely deployed with trusted security features and configurations
such as firewalls. All this has made the adoption of Web services much easier and
consequently more widespread.

The standards that define Web services are structured and extensible. The ability to use
simple, widely accepted SOAP and http, where appropriate, is preserved while enabling
replacement, enhancement and optimization if necessary. This lowers the barrier for
adoption for many users who might view the more complex systems as too difficult. This
also lowers the barrier to implementation for providers and developers. All of this
contributes to the popularity of Web services.

A consequence of the focus on heterogeneity and web-wide scope (as opposed to
enterprise-wide scope) of Web services is that investment in development of services can
be exploited more easily and more widely. This aspect is also important for investment in
resource which can be exploited via a computing Grid.

3.1.2 Web Services Overview

The term Web service is evolving as new standards and technologies are being defined.
Many different vendors tout new Web service technologies etc. For the purposes of this
primer we will define a Web service as something that can be described using the Web
Services Description Language (WSDL)[4]. The next section describes the content and
structure of WSDL documents.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 13 of 68

The use of this language enables exploitation of other [references?] standards and their
implementations which provide services for publication of the existence of a service.
Such publication enables the services to be discovered and subsequently invoked by a
client using a binding (protocol) that is mutually acceptable. Publication, dynamic
discovery and invocation of services is a essential feature of grid computing. Figure 3-1
summarises these fundamental aspects of Web services: here the services are shown as
applications, data and the resources needed to process and store them.

Figure 3-1: The basis of Web service computing

The mechanisms needed by the client to use services and by the server to implement
them are the same as in other distributed architectures: a WSDL compiler takes the
service description and generates code that translates WSDL concepts into concepts
specific to the client’s and server’s implementation. These mechanisms are described
in section 5 (Implementing Web and Grid Services).

3.1.3 Web Services Description Language (WSDL)

WSDL is an XML document style for describing service definitions. Figure 3-2
summarizes the markup language for Web Services description. The root XML
element called the wsdl:definitions is on the left of the diagram. It may contain
subsiduary elements, shown via the ‘contains’ linkage, such as wsdl:import and
wsdl:types. Subsidiary elements can be repeated as shown by the range indicator; for
example all subsidiary elements of wsdl:definitions can appear any number of times
(0..*).

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 14 of 68

The diagram is divided into three vertical sections.

• The elements in the top section allow imports from external files and
definitions of datatypes for use in subsequent elements.

• The middle section is the abstract definition of the service interface its
operations and their parameters. These definitions determine what a client
of the service can do.

• The bottom section is defines the binding(s) of the abstract definition to
concrete message formats, protocols and endpoint addresses through
which the service can be invoked.

Figure 3-2: WSDL markup elements

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 15 of 68

At the heart of a WSDL description is the portType definition. It is a concept similar to a
Java interface or a C++ class. A portType may contain several operations (similar to Java
or C++ method signatures) which reference (shown in the diagram as arrows)
messages to describe their inputs, outputs and faults (exceptions). A message is
composed of many parts where each part can be of different types. The message parts can
be thought of as input and output parameters; a message simply combines them.

The types of message parts are defined within the types component of
WSDL:definition. This element is extensible, meaning that it can contain arbitrary
subsidiary elements to allow general data types to be constructed. The default type
system in WSDL is XML Schema, which we won’t discuss here in detail. In order to
understand our example it is sufficient to know that at the end of the definition we link
the type names of message parts to their XML definitions. WSDL allows the other
elements to contain subsidiary extension elements means of allowing description of very
al interface types; these extension points are shown in the diagram. The purpose of other
extensions is decribed in appendix A.3 of WSDL[4].

Another important part of the WSDL definition is the binding. It describes the concrete
implementation of messages: that is a data encoding, messaging protocol, and underlying
communication protocol. The XML elements of a binding are operations which reference
the corresponding abstract messages by name. An important aspect of WSDL bindings is
their capacity for extension with new subsidiary element definitions. WSDL allows any
and all data encoding, message and communications protocols to be described. The
usefulness of a particular description depends on having client and server systems which
are able to interpret the WSDL descriptions to encode/decode the messages.

[There was a discussion of bindings on the OGSI-WG mailing list with the subject line
‘[ogsi-wg] OGSI (spec draft 29) comments' around May 15th with suggestions for
documenting bindings. (see the note from David Snelling on 19/05/2003 at 11:18).
References to samples of bindings would be useful at this point.]

One important piece of information in the binding is where the service lives. The port
element associates a protocol-specific address (endpoint) hosting the web service to a
binding element.

3.2 The Counter Example

This section introduces the terms used by the OGSI specification and their relation to
Web Services. The Counter Service example is used as a vehicle for the discussion. The
WSDL for a simple Counter Service follows (the bindings and service sections are not
presented):

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:counter="http://www.gridforum.org/namespaces/
2003/05/ogsiprimer/counter"
 targetNamespace="http://www.gridforum.org/namespaces/

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 16 of 68

2003/05/ogsiprimer/counter">
 <wsdl:types>
 <xs:schema/>
 </wsdl:types>
 <wsdl:message name="increaseMsg">
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <wsdl:message name="getValueMsg">
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <wsdl:portType name="counterPortType">
 <wsdl:operation name="increase">
 <wsdl:input message="increaseMsg"/>
 </wsdl:operation>
 <wsdl:operation name="getValue">
 <wsdl:output message="getValueMsg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Two operations are available: increase and getValue.

3.2.1 Counter Web Service

In the Web Services world, the Counter Web Service is a software component whose
interface is described in WSDL and it is the logical receiver of operations.

The Counter Web Service of Figure 3-3 implements the WSDL interface presented in
Section 3.2. The interface does not say anything about the state that must be maintained
by the implementation of the Web Service. However, for the Counter Web Service to be
useful, state has to be maintained in an implementation-specific way (e.g., in memory, in
a database, in a file, etc.), making it a stateful Web Service. Multiple consumers, that
have discovered the Counter Web Service through a registry, can use its operations to
change the counter’s state (any security-related issues are orthogonal to this discussion
and are not considered). In Figure 1, a consumer of the service submits a request for an
increase operation.

Figure 3-3: An increase operation to the Counter Web Service

If a Counter Web Service was to be extended so that multiple counters were supported,
an ID would have to be introduced. The ID would identify the particular counter on
which an operation was to be executed. Although the interface of the Counter Web
Service would have to change in order to accept the ID, the same Counter Web Service is
still going to be the logical receiver of the operations (Figure 3-4).

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 17 of 68

Figure 3-4: An increase operation to a Counter Web Service that supports multiple counters

Following, is the modified WSDL of the Counter Web Service that can support multiple
counters.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:counter="http://www.gridforum.org/namespaces/
2003/05/ogsiprimer/counter"

targetNamespace="http://www.gridforum.org/namespaces/2003/05/ogsiprimer/
counter">
 <wsdl:types>
 <xs:schema/>
 </wsdl:types>
 <wsdl:message name="increaseMsg">
 <wsdl:part name="counterId" type="xs:positiveInteger"/>
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <wsdl:message name="getValueMsg">
 <wsdl:part name="counterId" type="xs:positiveInteger"/>
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <wsdl:portType name="counterPortType">
 <wsdl:operation name="increase">
 <wsdl:input message="increaseMsg"/>
 </wsdl:operation>
 <wsdl:operation name="getValue">
 <wsdl:output message="getValueMsg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

3.2.2 Counter Grid Service

In OGSI-terms, a Grid Service is a general term referring to a template, a contract, an
interface described in GWSDL and the Grid Service Instances that must adhere to it. The
term Grid Service does not characterise a component that can be part of a Grid
application (i.e., it does not refer to a software component that can execute operations).
Instead, it is Grid Service Instances that are the logical recipients of operations.

In the OGSI world, a Grid Service Instance (GSI) has to be explicitly created (by a
factory or by the hosting environment) and then registered with a handle resolver. An
example of the steps that may be required for a Grid Service Instance to be discovered,
created, and consumed is described in section 4.2

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 18 of 68

Once a Grid Service Reference (GSR) to a Grid Service Instance is available to a
consumer, the GSI can be used to offer equivalent functionality with its Web Service
counterpart. However, the OGSI-specific characteristics of a GSI can be used to provide
richer solutions.

The Counter Grid Service Instance of Figure 3-5 is equivalent to the Counter Web
Service presented in Figure 1. Different service consumers can call operations on the
same Counter GSI in order to change or access the state of the counter. This example
differs from the one of Figure 1 in that the state is logically attached to the instance. The
semantics of a Grid Service Instance, as defined by OGSI, specify that state has to be
maintained between consumer-service interactions. This is done in an implementation
specific way (i.e., the OGSI standard does not talk about how state is to be maintained).

Figure 3-5: An increase operation to a Counter Grid Service Instance

In contrast to the Counter Web Service, each Counter Grid Service Instance is associated
with lifetime properties that can be used to manage the lifecycle of a counter. Also note
that the OGSI specification does not deal with the semantics of concurrent access to the
same Counter Grid Service Instance by multiple clients. Hence, the consistency semantics
of state related information are application-specific.

The GWSDL interface of the Counter Grid Service looks very similar to its Web Service
equivalent. Apart from the obvious namespace change, the only other difference is the
introduction of portType extension using the "extends" attribute. This indicates to
GWSDL processors that the counterPortType extends the functionality defined by the
ogsi:GridService portType.

<wsdl:definitions
xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/OGSI"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:counter="http://www.gridforum.org/namespaces/
2003/05/ogsiprimer/counter"
 targetNamespace="http://www.gridforum.org/namespaces/
2003/05/ogsiprimer/counter">
 <wsdl:types>
 <xs:schema/>
 </wsdl:types>
 <wsdl:message name="increaseMsg">
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <wsdl:message name="getValueMsg">
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 19 of 68

 <gwsdl:portType name="counterPortType" extends="ogsi:GridService">
 <wsdl:operation name="increase">
 <wsdl:input message="increaseMsg"/>
 </wsdl:operation>
 <wsdl:operation name="getValue">
 <wsdl:output message="getValueMsg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Once a Grid Service Instance that adheres to the above GWSDL is created, it behaves in
exactly the same way as the Counter Web Service but it also offers the additional
functionality defined by OGSI. The GWSDL of a Grid Service Instance will, of course,
contain the necessary bindings and service elements, as required by WSDL.

The implicit association between a Grid Service Instance and state, allows us to replicate
the functionality of the multiple Counter Web Service without any change to the interface
and implementation. All that is required is a new Grid Service Instance. One could argue
that a new Web Service identical to the one of Figure 1 could be deployed if multiple
counters were required while keeping the same interface. However, it is the way in which
OGSI facilitates the creation of new transient instances and the management of their
lifetime, identity and state that are of great value when compared to traditional Web
Services.

Figure 3-6: Operations to two different Counter GSIs representing a counter each

In addition to state management, Grid Service Instances can provide access to
information through attribute-like constructs, called Service Data Elements (SDEs). An
SDE is declared in the Grid Service's interface and accessed through operations defined
by OGSI's GridService portType.

The Counter Grid Service may expose the value of the counter through an SDE. The
getValue operation will no longer be necessary. The GWSDL of the Counter Grid
Service will now be:

<wsdl:definitions
xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/OGSI"
 xmlns:sd="http://www.gridforum.org/namespaces
/2003/03/serviceData"

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 20 of 68

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:counter="http://www.gridforum.org/namespaces/
2003/05/ogsiprimer/counter"
 targetNamespace="http://www.gridforum.org/namespaces/
2003/05/ogsiprimer/counter">
 <wsdl:types>
 <xs:schema/>
 </wsdl:types>
 <wsdl:message name="increaseMsg">
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <wsdl:message name="getValueMsg">
 <wsdl:part name="value" type="xs:positiveInteger"/>
 </wsdl:message>
 <gwsdl:portType name="counterPortType" extends="ogsi:GridService">
 <wsdl:operation name="increase">
 <wsdl:input message="increaseMsg"/>
 </wsdl:operation>
 <sd:serviceData name="counterValue"
 type="xs:positiveInteger"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable">
 <sd:documentation>
 The value of the counter.
 </sd:documentation>
 </sd:serviceData>
 </wsdl:portType>
</wsdl:definitions>

It is now possible to access the counterValue SDE through operations specified by the
Grid Service portType (Figure 3-7).

Figure 3-7: Consumer requesting the value of the counter through the counterValue SDE

Note that OGSI says nothing about how the value of an SDE is maintained, if it is
maintained at all.

3.3 Terminology

Web Service: A software component identified by a URI [RFC 2396], whose public
interfaces and bindings are defined and described using XML. Its definition can be
discovered by other software systems. These systems may then interact with the Web
service in a manner prescribed by its definition, using XML based messages conveyed by

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 21 of 68

Internet protocols. (Web Services Glossary, WS-Arch W3C Working Group, Draft 14
May 2003)

Web Service Consumer: An software component that sends messages to a Web Service.

Stateful Web Service: A Web Service that maintains some state between different
operation invocations issued by the same or different Web Service Consumers.

Grid Service(s): A general term used to refer to all aspects of OGSI. The term “Grid
Service” is sometimes used to refer to a Grid Service Description document and/or a Grid
Service Instance for a particular service.

Grid Service Description: A WSDL(-like) document that defines the interface of Grid
Service Instances. The defined interface must extend the OGSI GridService portType.

Grid Service Instance: A stateful Web service whose interface adheres to that defined
by a Grid Service Description and whose lifetime management properties are well
defined.

Service Data Element: An attribute-like construct exposing state information through
operations defined by the GridService portType.

Grid Service Handle: A URI that permanently identifies a Grid Service Instance.

Grid Service Reference: A temporal, binding-specific endpoint that provides access to a
Grid Service Instance.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 22 of 68

4 The Concepts of Open Grid Services

This chapter introduces the ideas that are essential to Grid Services. These are:

• The use of ‘extension’ to create complex portTypes from simpler, ones, how this
is enabled by Grid service WSDL and the behaviours every grid service must
have as a result of extending the basic OGSI gridService portType.

• The roles of portTypes other defined by OGSI: the Factory, HandleResolver and
registration.

• The Identity of a Grid Service Instance
• Faults
• Extensibility of Operations
• Service Data
• Notification

The next chapters (chapters 5 and 6) describes how Grid Services can be implemented
and what large scale features are needed to create and/or use services based in a grid.
More detailed explanations of the standard portTypes can be found in subsequent
chapters starting with the core GridService portType in chapter 7.

4.1 The relationship of Grid service WSDL to Web service
WSDL

Extra features of OGSI are introduced to basic Web Services by redefinition of the
portType element of WSDL 1.1 which describes a service interface. The differences are
marked in Figure 4-1 and can be summarised as follows:

• While a WSDL portType contains only operations, an OGSI portType can contain
ServiceData descriptions.

• In OGSI, new portTypes can be constructed by reference to existing ones whose
definitions it can extend. This enables standard behaviour to be defined
authoritatively, and referenced by service definitions that need to incorporate it.

These additions to the WSDL document schema are prefixed with gwsdl to identify their
definition by OGSI.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 23 of 68

Figure 4-1: Markup language for Grid Services

OGSI is based on Web services, and in particular uses WSDL as the mechanism to
describe the public interfaces of Grid services. However, WSDL 1.1 is deficient in two
critical areas: lack of interface (portType) extension and the inability to describe
additional information elements on a portType which is needed to enable the description
of Service Data. These deficiencies have been addressed by the current “work in
progress” draft of WSDL 1.2 in the W3C Web Services Description Working Group
[WSDL 1.2 DRAFT]. Because WSDL 1.2 is currently “work in progress”, OGSI cannot
directly incorporate the entire WSDL 1.2 body of work.

Instead, OGSI defines an extension to WSDL 1.1, isolated to the wsdl:portType element,
that provides the minimal required extensions to WSDL 1.1. These extensions to WSDL
1.1 match equivalent functionality agreed to by the W3C Web Services Description

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 24 of 68

Working Group. The Global Grid Forum commits to updating OGSI when WSDL
1.2 [WSDL 1.2] is published as a draft specification by the W3C.

4.1.1 Using portType extension
Grid Service Description can use portType extension to define standard operations by
the use of the ‘extends’ attribute. For example, the Counter grid service (Section 3.2.2)
begins:

<gwsdl:portType name="counterPortType" extends="ogsi:GridService">

This declaration causes the inclusion of the definitions for ServiceData from the
ogsi:GridService portType (described fully in chapter 7). All Grid Service
Descriptions include these definitions. In summary, they are:

• The identity (known as the Grid Service Handle) of any Grid Service Instance
created to implement the description.

• The names of all the portTypes which the Instance implements.

• The identity of the factory which created the Instance.

• The termination time of the Instance.
In addition, the GridService portType provides operations which allow a client to
query and modify this and other ServiceData.

Finally, the GridService portType provides an operation to destroy the Instance.

4.2 Service Factories and Instances

Figure 4-2 shows an interaction between components defined by OGSI which is a typical
pattern for the use of Grid Services. The client uses a well-known service called the
Registry to discover a factory. Many factories may exist in the registry, each capable of
creating different types of Grid Service Instance. The factory establishes a globally
unique identity for the instance and creates it. The handle and references are returned to
the client (for use in invoking the service instance) and also published in the
handleResolver.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 25 of 68

Figure 4-2: Main Components Of OGSI Services

4.3 Identity, Handles, References and Locators

4.3.1 Relative longevity/fragility of Handle and Reference
A client gains access to a Grid Service Instance through Grid Service Handles and Grid
Service References. A Grid Service Handle (GSH) can be thought of as a permanent
network pointer to a particular Grid Service Instance, but the GSH does not provide
sufficient information to allow a client to access the service. The client needs to “resolve”
a GSH into a Grid Service Reference (GSR). which contains all the necessary
information to access the service. The GSR is not a “permanent” network pointer to the
Grid Service Instance because a GSR may become invalid for various reasons; for
example, the Grid Service Instance may be moved to a different server.

4.3.2 Passing Handles and references: the Locator

Handles and References may be passed as input and/or output parameters, and it is often
convenient to pass a collection of References and Handles so that the eventual user (a
client application or its supporting middleware) of the target instance can choose the most
appropriate way of calling it. For example, a client which is local to the Instance may use
a GSR representing a binding describing unencrypted transmission. Conversely, if the

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 26 of 68

client is remote, and the Locator has been stored for some time before use and its
references are no longer valid, the client may choose one of the Handles, for example a
handle described by a secure scheme, and resolve it to a GSR which describes an
encrypted protocol.

A Locator may also contain the name (as a fully qualified QName) of the interface for the
target service. This can be used by the recipient of the Locator discover the interface
description, check that the handles and refrences refer to implementations which are
suitable for the client, and allow client infrastructure to enable access to the service. In
some cases, References themselves may contain interface references or descriptions, but
this is not always the case.

Many handle schemes are possible; the OGSI specification does not restrict or mandate
any particular one and allows multiple schemes to be used in parallel. In this Primer, for
the purposes of examples, we use a simple one based on the http protocol. In this scheme,
a handle is a globally unique URI in the http scheme (that is, beginning "http://")
described further in. Handles may also be based on https to provide encryption of
responses from the resolver. Other schemes may be specified and developed in with
characteristics such as improved caching or trustworthiness. See [5] for an example.

4.3.3 The Identity of Grid Service Instances

Each Grid Service Instance is distinguished from all others by means of its Handles and
References. Use of the same Handle to call (via resolution) operations on multiple
occcasions, even by different clients, must mean the operations act on the same Instance.

However, a grid service can have multiple Handles and/or References and a client may
receive different versions from several sources as Locators are passed around. Comparing
versions of these recieved from different sources is not useful as a way of identifying the
target Grid service Instance as being the same one. If a Service requires to Clients to be
able to establish equivalence of several Locators, Handles or References, it must provide
an operation to do this and the details of the comparison are dependent on the service.

For example, a counter service may provide access to each counter Instance by multiple
clients. One way of implementing the service is to establish multiple copies of the same
Instance with multiple (different) references to those copies as a way of providing
workload distribution. Nevertheless, each reference is equivalent to the others provided
the copies are correctly synchronised during updates. A service may also place additional
information in its Handles to distinguish copies of the service from each other. The
Counter Instance may provide different Qualities of Service (such as fast or slow
response times) to different clients based on information in the Handle, yet still preserve
the semantics of the Counter service across all clients of the Instance.

The semantics of the service description may, like the counter, require that the service
move through a series of well-defined states in response to a particular sequence of
messages, thus requiring state coherence regardless of how Handles are resolved to

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 27 of 68

References. However, other service descriptions may be defined that allow for looser
consistency between the various members of the distributed service implementation. The
copies of the Service Instance, identified by different Handles and References may
respond differently in some respects, yet still be the same Instance.

4.4 Operation Faults

A common procedure is used for handling operation faults. This simplifies problem
determination by having a common base set of information that all fault messages contain.
It also allows for "chaining" of fault information up through a service invocation stack, so
that a recipient of a fault can drill down through the causes to understand more detail
about the reason for the fault. OGSI defines a base XSD type (ogsi:FaultType) for all
fault messages that Grid services must return. All faults from a Grid service should either
use the ogsi:FaultType directly, or extensions of it. All Grid service operations must
return the ogsi:fault (which is of type ogsi:FaultType) in addition to any operation-
specific faults. For example

 <wsdl:definitions ...>
 <types>
 <xsd:schema ...>
 <xsd:complexType name="MyFaultType">
 <xsd:complexContent>
 <xsd:extension base="ogsi:FaultType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="myFault" type="tns:MyFaultType"/>
 </xsd:schema>
 </types>

 <message name="myFaultMessage">
 <part name="fault" element="tns:MyFaultType"/>
 </message>

 <gwsdl:portType ...>
 <wsdl:operation ...>
 <input ...>
 <output ...>
 <fault name="myFault" message="tns:myFaultMessage"/>
 <fault name="fault" message="ogsi:faultMessage"/>
 </wsdl:operation>
 </gwsdl:portType>
</wsdl:definitions>

4.5 Extensible of Operations
[from the spec section 7.8]

Several OGSI operations accept an input argument that is an untyped extensibility element,
which allows for common patterns of behavior to be expressed in an extensible manner. In
order to allow a client to discover the valid extensions that are supported by such an

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 28 of 68

operation, we define a common approach for expressing extensible operation capabilities via
static service data values.

For example, the NotificationSource::subscribe operation allows a client to ask a service for
notification messages whenever portions of that service’s serviceDataValues changes. The
specific portions of service data upon which to send notifications are defined by a
subscription expression. This argument is not fully typed, but is instead an extensible
argument. One simple subscription expression is defined by the NotificationSource portType
that can be passed in this argument to any service that implements NotificationSource.
However, services that implement a portType that inherits from NotificationSource can
extend the capabilities of subscription by defining new query expressions that are more
powerful, and/or more customized to a specific problem domain. This section defines the
means by which a client can determine what.subscription expressions are supported by
services that implement extensions to the NotificationSource portType.

We define a single XSD type that is the base for all SDEs that describe extensible operations:

targetNamespace = “http://www.gridforum.org/namespaces/2003/03/OGSI”
<xsd:complexType name="OperationExtensibilityType">
<xsd:attribute name="inputElement" type="QName" use=”optional”/>
</xsd:complexType>

For each extensible operation in a portType, that portType SHOULD have a serviceData
declaration of type OperationExtensibilityType, and mutability=”static”. Static values of this
SDE define the valid extensions of the operation.

For example, suppose we have portType named myPT with an operation named myOperation,
such that one of the myOperation’s input parameters is extensible. Further suppose there are
two standard input elements called myop:myOption1 and myop:myOption2 that can be
passed into myOperation’s extensible input parameter. The portType definition for
myOperation would be:

<gwsdl:portType name=”myPT”>
…
<sd:serviceData name=”myOperationExtensiblity”
type=”ogsi:OperationExtensiblityType”
minOccurs=0 maxOccurs=”unbounded”
mutability=”static”
modifiability=”false”
nillable=”false” />
…
<sd:staticServiceDataValues>
<myOperationExtensibility inputElement=”m1:myOption1”/>
<myOperationExtensibility inputElement=”m1:myOption2”/>
</sd:staticServiceDataValues>
…
</gwsdl:portType>

The inputElement attribute of the SDE MUST be a QName that uniquely implies the types
and behavior of a particular extension to the operation. The inputElement, if present,
SHOULD be the QName of an XSD element decla ration that is a valid element that can be

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 29 of 68

passed to an operation as an extensible input argument. All other properties of the extensible
operation are implied by the inputElement, unless they are explicitly defined in an extension
of OperationExtensibilityType. For example, the inputElement MAY imply the type of
output parameters from the operation, and MAY imply the semantics of how the operation
when it receives this inputElement.

If inputElement is omitted from the SDE value, then it MUST be valid to omit the extensible
input argument when invoking the operation.

Operation extensibility SDE values MAY be included in portTypes that extend a portType
containing operation extensibility serviceData declarations. For example, a second portType
named myPT2 that extends myPT could define additional valid input arguments to
myOperation:

<gwsdl:portType name=”myPT2” extends=”m1:myPT>
…
<sd:staticServiceDataValues>
<myOperationExtensibility inputElement=”m2:myOption3”/>
<myOperationExtensibility/>
</sd:staticServiceDataValues>
…
</gwsdl:portType>

In this example, a service that implements myPT2 would support four options for the
extensible input argument to myOperation: m1:myOption1, m1:myOption2, m2:myOption3,
and no element at all. Each of these options may further imply output argument types,
semantics of the operation related to the inputElement, etc.

In some situations it is useful to extend ogsi:OperationExtensibilityType to include additional
attributes or elements. In this case, a new type should be defined that is an xsd:extension of
ogsi:OperationExtensibilityType, along with a serviceData element defined with this
extended type. See the Factory portType (§12) for an example of this.

4.5.1 Extensible ServiceData elements

4.6 Introducing ServiceData
[ServiceData Lifetimes and the concept of soft state]
[ServiceData as the external view of the Service, including introspection and its
implications for registration, inquiry, monitoring, configuration and notification]

In order to support discovery, introspection, and monitoring of Grid service instances, we
introduce the concept of service data, which refers to descriptive information about a
Grid service instance, including both meta-data (information about the service instance)
and state data (runtime properties of the service instance). We describe the components of
the service data concept and their relationships.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 30 of 68

Each Grid service instance has an associated set of service data elements (SDEs). Each
SDE is represented in XML by a serviceData element (see Section 4.4.1). Each SDE can
be used to model a separate property of the service.
ServiceData elements are roughly analogous to instance variables in a class definition in
some object-oriented programming language. However, service data elements represent
read-only state data.

(what follows is from section 6 of the spec)
The approach to stateful Web services introduced in OGSI identified the need for a
common
mechanism to expose a service instance’s state data to service requestors for query, update
and change notification. The term used is “serviceData”. Since this concept is applicable to
any Web service including those used outside the context of Grid applications, we propose a
common approach to exposing Web service state data called serviceData. We are
endeavoring to introduce this concept to the broader Web services community.
In order to provide a complete description of the interface of a stateful Web service (i.e., a
Grid service), it is necessary to provide a description of the elements of its state that are
externally observable. By externally observable, we mean to say that the state of the service
is exposed to clients making use of the declared service interface, where those clients are
outside of what would be considered the internal implementation of the service itself. The
need to declare service data as part of the service’s external interface is roughly equivalent to
the idea of declaring attributes as part of an object-oriented interface described in an object-
oriented interface definition language (IDL). Service data can be exposed for read, update, or
subscription purposes.

Since WSDL defines operations and messages for portTypes,, the declared state of a service
MUST only be externally accessed through service operations defined as part of the service
interface. To avoid the need to define serviceData specific operations for each ServiceData
element, the Grid service portType (§9) provides base operations for manipulating
ServiceData elements by name.

Consider an example. Interface foo introduces operations op1, op2, and op3. Also assume
that the foo interface consists of publicly accessible data elements of de1, de2, and de3.
We use WSDL to describe foo and its operations. The OGSI serviceData construct
extends WSDL so that the designer can further define the interface to foo by declaring the
public accessibility of certain parts of its state de1, de2 and de3. This declaration then
facilitates the execution of operations against the service data of a stateful service
instance implementing the foo interface.

[The Abstract Structure of Service Data]

4.7 Introducing Notification

The notification framework allows for asynchronous, one-way delivery of interesting
messages from a source to a subscribed sink. Any service that wishes to support
subscription of notification messages, must support the NotificationSource interface.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 31 of 68

OGSI allows for notification on the service data elements of a grid service instance. As
part of its service Data, the NotificationSource maintains a set of service data elements to
which a requestor may subscribe for notification of changes. If notification on
implementation-specific internal state is desired, then additional servide data elements
may be defined for that purpose. For example in the Counter example from section 3.2
where state is maintained internally as an integer, a service data element (CounterStatus?
in the example below) may be defined for the purpose of notification.

<wsdl:definitions
xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/OGSI"

xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:counter-
notifcation="http://www.gridforum.org/namespaces/2003/05/ogsiprimer/coun
ter/notification"

targetNamespace="http://www.gridforum.org/namespaces/2003/05/ogsiprimer/
counter/notification">
 <wsdl:types>
 <schema
targetNamespace="http://www.globus.org/namespaces/2003/05/ogsiprimer/cou
nter/notification"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="CounterStatusType">
 <sequence>
 <element name="status" type="string"/>
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>

 <wsdl:message name="increaseMsg">
 <wsdl:part name="value" type="xsd:positiveInteger"/>
 </wsdl:message>
 <wsdl:message name="getValueMsg">
 <wsdl:part name="value" type="xsd:positiveInteger"/>
 </wsdl:message>
 <gwsdl:portType name="NotificationCounterPortType"
extends="ogsi:NotificationSource">
 <wsdl:operation name="increase">
 <wsdl:input message="increaseMsg"/>
 </wsdl:operation>
 <sd:serviceData name="CounterStatus" type="counter-
notification:CounterStatusType"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable"
 modifiable="false"
 nillable="false">
 <documentation>Sample Counter Status Type as
SDE</documentation>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 32 of 68

 </sd:serviceData>
 </gwsdl:portType>
</wsdl:definitions>

In the implementation of the Grid service, the CounterStatus SDE should be updated
whenever a change to the counter state occurs.

To start notification from a particular service one has to invoke the subscribe operation
on the notification source interface, giving it the GSH of the notification sink. A
subscription request also contains a subscription expression which is an XML element
that describes what messages should be sent from the source to the sink, as well as when
messages should be sent, based on changes to values within a service instance's
serviceData values.

A subscription request causes the creation of a subscription Grid service instance which
can be used by the client to manage the (soft-state) lifetime of the subscription, and to
discover properties of the subscription (This is possible because the NotificationSource
portType is a factory of subscription Grid service instances). A locator to this
subscription instance is returned as an part of the output as well the currently planned
termination time.

Following a successful subscription, a stream of notification messages then flow from the
source to the sink, whenever a change to the subscribed SDE's occurs, until the
subscription is either explicitly destroyed or is timed out.

Any client that is interested in receiving notification, only has to support the
NotificationSink interface. That is a Web service is not required to also implement the
GridService portType in order to act as a notification sink.

The OGSI Notification framework defines how to subscribe to SDEs by name only, but
allows for more advanced subscription expressions through the subscribe operation
extensibility declarations. This will be investigated in chapter 11.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 33 of 68

5 Implementing Web and Grid Services
In this section, we examine the relationship between OGSI and the existing and
developing Web services framework (description languages, tools and implementation
platforms) on which it builds and depends. We examine both the client-side programming
patterns for Grid services and several conceptual hosting environments for Grid services.
The patterns described in this section are enabled but not required by OGSI. We discuss
these patterns in this section to help put into context concepts and details described in the
other parts of the Primer and in the Specification. In particular, the discussion of
implementing robust services provides more information on the relationship between
handles and references, and the discussion of replicated service instances answers some
questions about the issue of identity.

First, however, we discuss the client side.

5.1 Client-Side Programming Patterns
An important issue, that requires some explanation, particularly for those not familiar
with Web services, is how OGSI interfaces are likely to be invoked from client
applications.

OGSI exploits an important component of the Web services framework: the use of
WSDL to describe abstract interfaces and, separately, multiple protocol bindings,
encoding styles, messaging styles (RPC vs. document-oriented), security tokens and so
on, for a given Web service. The Web Services Invocation Framework [WSIF] and Java
API for XML RPC [JAXRPC] are examples of infrastructure software that provide the
capability to separate interface from bindings and provide multiple bindings. There are
many other examples. In each case, the basic structure is similar, and it provides a client-
side architecture which can also be used to access OGSI services.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 34 of 68

Figure 5-1: A client-side runtime architecture

In figure 5, the client application accesses a client-side representation of the Web service,
sometime called a proxy. The proxy calls, or uses components (shown as protocol-
specific stubs) which marshal parameters for the invocation of the Web service over a
chosen binding, and adding other necessary information such as protocol headers or
security tokens obtained from the client’s runtime environment.

There is a clear separation between the client application and the stub by the client-side
interface which consists of the methods, procedure calls, parameters, exceptions and other
interface features needed to invoke the service and receive responses and handle faults
generated by the service. The client interface also defines exceptions which describe, in a
generic way, errors arising from the binding mechanisms. These are dependent on the
particular client infrastructure.

The client’s interface to the service can be generated by taking the WSDL description of the
Web service interface and transforming it into interface definitions in a programming
language specific way (e.g. Java interfaces or C#) suitable for the particular client-side
architecture. The parameter marshalling and message routing stubs are generated from the
various binding options provided by the WSDL. Generation of the interface and stubs can
take place at various stages of development, deployment and execution of the client
application: dynamic Web service invocation leaves the generation of the binding and service
address until execution time.

This approach allows certain efficiencies, for example, detecting that the client and the Web
service exist on the same network host, and therefore avoiding the overhead of preparing for
and executing the invocation using network protocols.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 35 of 68

It is possible, but not recommended, for developers to build customized code that directly
couples client applications to fixed bindings of a particular service. Although certain
circumstances demand potential efficiencies gained this style of customization, this approach
introduces significant inflexibility into a system and therefore should only be used under
extraordinary circumstances.

We expect the stub and client side infrastructure model that we describe to be a common
approach to enabling client access to Grid service instances where each remote instance is
represented by a proxy. This includes both application specific services as well as common
infrastructure services that are defined by the OSGI Specification and described in this
Primer. So, for most developers using Grid services, the infrastructure and application level
services appear in the form of a class library or programming language interface that is
natural to the caller.

The WSDL and the GWSDL extensions required by OGSI can be support by heterogeneous
tools and enabling infrastructure software. The techniques for doing this are discussed in
section 5.3.

Further discussion of the Client-side, including its use of registries, grid Service handles and
resolution of bindings and References can be found in section 6.3.

5.2 Server-Side Programming Patterns
The OGSI Specification does not dictate any particular service-side implementation
architecture. A variety of approaches are possible, ranging from implementing the Grid
service instance directly as an operating system process to a sophisticated server-side
component model such as J2EE. In the former case, most or even all, support for standard
Grid service behaviors (invocation, lifetime management, registration, etc.) is encapsulated
within the user process, for example via linking with a standard library; in the latter case,
many of these behaviors will be supported by the hosting environment.

To illustrate a range of possibilities for implementation, and the features of the Specification
which enable this range we describe different hosting patterns of increasing complexity in the
following sections.

5.2.1 Monolithic Service Implementation

In Figure 5-2, we depict a scenario where the entire behavior of the Grid service,
including the demarshalling/decoding of the network message, has been encapsulated
within a single executable. The protocol termination represents a communications
component such as an http server with the Grid service implemented directly using the
servlet interface. Although this approach may have some efficiency advantages, it
provides little opportunity for reuse of functionality between Grid service
implementations.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 36 of 68

Figure 5-2: Simple monolithic Grid service

5.2.2 Implementation within a Container

Figure 5-3: Container approach to the implementation of argument demarshalling functions.

In Figure 5-3, the invocation message is received at a network protocol termination point
(e.g., an http server, as is the case for many Grid services.) This converts the data in the
invocation message into a format consumable by the hosting environment. We illustrate
two Grid service instances (the circles) implemented as container-managed components
(for example EJBs within a J2EE container). Here, the message is dispatched to these
components, with the container frequently providing facilities for demarshalling and
decoding the incoming message from a format (such as an XML/SOAP message) into an
invocation of the component in native programming language. Demarshalling from
protocol terminations to the native language is accomplished by generated components
called skeletons which correspond to the stubs on the client-side. In some circumstances
(the upper circle), the entire behavior of a Grid service is completely encapsulated within
the component. In other cases (the lower circle), a component will collaborate with other
server-side executables, to delegate certain operations to standard components or perhaps
through an adapter layer designed to translate language invocation syntax, to complete
the implementation of the Grid service behavior, or

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 37 of 68

5.2.3 Container-managed State
A container implementation may provide a range of functionality beyond simple argument
demarshalling. For example, the container implementation may provide lifetime management
functions, automatic support for authorization and authentication, request logging,
intercepting lifetime management functions and terminating service instances when a service
lifetime expires or an explicit destruction request is received. Thus, we avoid the need to re-
implement these common behaviors in different Grid service implementations.

Figure 5-4 shows a container which consists of multiple execution environments which
can be selected to host a Grid service instance and is a possible implementation of the
J2EE container described in the EJB specification [9]. In this implementation the state of
the instance can be saved by the container at operation boundaries and restored in case a
service instance fails due to software or hardware errors.

Figure 5-4: Container with state management

Figure 5-4 includes Grid HandleResolver and Registry services so that the order of
events required to create and access the service can be seen. The client has a
permanent reference to the HandleResolver and uses it to resolve service Handles that
become invalid. The client also has a handle to the registry service which it can use (1)
to locate a suitable factory and, via the factory (2), create a Grid service Instance (3a).
The container is responsible for allocating the execution environment for the instance,
establishing the service Reference and supplying this to the HandleResolver (4), and
initialising the service state and managing the store/load operations. The factory
returns to the client a Locator containing a Handle and a Reference to the new service
Instance which can be used to invoke service operations (5). If the execution
environment fails, the container may allocate a new one with a new service Reference,
load the state and supply the new reference to the HandleResolver. The client uses the
Handle to obtain the updated Reference (6).

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 38 of 68

5.2.4 Replicated Copies of a Service Instance
[This illustrates the use of multiple references simultaneously by different clients to
access the same service Instance. See OpFAQHandleResolution for input material.]

Figure 5-5: Use of multiple references for the same Grid service Instance

5.3 The Relationship of Grid service WSDL to Web service
WSDL

[An explanation of the interpretation, in tooling, of gwsdl constructs in WSDL 1.1 is
needed here, namely:

• portType extension

• ServiceData description?

What tool and extensions are needed?

The exchanges on WGSI-WG around 11/12th May provide input]

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 39 of 68

6 Using Grid Services
This chapter introduces the concepts that are needed to use create and use the service
instances described by the previous chapter. The issues are

• Locating services and communicating with them

• Ways in which collective information is used.

6.1 Using Registries

6.1.1 The purpose of registries in OGSA

A registry is the very general concept. In computing, we may define it as a catalogue of
objects, described and indexed by the objects' metadata. The objects may be either inside
the computing system (i.e. the objects consist entirely in data); or they may be real-world
items, with only metadata inside the computing system; or they may be computing-
system proxies for real-world objects. In all cases, the essence of the registry pattern is
that a registry stores some part of an object's metadata without storing either the object
itself or (for a real-world object) its proxy.

Given a registry, clients may inspect the metadata and use them to reason about the
catalogued objects. Typically, clients then use the metadata to locate and access some of
the catalogued objects. Often, the only use of the registry is to locate the objects.

OGSI is concerned with registries of grid services. Grid services can be used to build
other kinds of registries, but OGSI has specific port-types that can be used to build
registries where the entries describe grid services.

The essential requirement of a service registry is that the metadata include a GSH for
each catalogued service. The registry itself does not resolve a GSH to a GSH, although
the service running the registry may also include a HandleResolver port for this purpose.
From OGSA's point of view, "locating" a service instance through a registry means
finding its persistent handle, not finding its reference, the latter function being the role of
a handle resolver.

6.1.2 OGSI support for service registries

In OGSA, service registries have two uses:

• finding service factories from which to make new instances;
• finding existing instances.

The same OGSI port-types cover both uses:

• serviceGroup

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 40 of 68

• serviceGroupEntry
• serviceGroupRegistration

From the OGSI specification:

The ServiceGroup port-type provides an interface for representing a service group
comprising zero or more member services. [...] The ServiceGroup port-type extends
the GridService port-type.

[The serviceGroupEntry] port-type defines the interface through which individual
entries in a service group should be managed. Each ServiceGroupEntry service refers
to a grid-service instance that is a member of the ServiceGroup
[The ServiceGroupRegistration] port-type provides a management interface (add and
remove operations) for a service group. The ServiceGroupRegistration port-type
extends the ServiceGroup port-type.

Thus, in OGSI, a service group may be used to create a service registry.

The service implementing the registry provides either a ServiceGroup or a
ServiceGroupRegistration port. If the set of registered services is updated only through
local, non-grid interfaces, then the registry service has a ServiceGroup port; call this a
"locally-managed" registry. If the set of registered services can be altered by clients
working over the grid, then the registry service has instead a ServiceGroupRegistration
port; call this a "grid-managed" registry. Since ServiceGroupRegistration extends
ServiceGroup, the registry service needs only one of these two port types.

The registry facility also has one ServiceGroupEntry port for each registered service.
Since any given grid-service can only have one copy of a given port-type, this means that
the registry has one subsidiary service, providing ServiceGroupEntry, as a "registration
proxy" for each registered service. In fact, the intention is to have the appearance of one
proxy service-instance per registered service in order to use the lifetime-management
facilities of the GridService port. In practice, a registry may implement these proxy
services in some light-weight form in order to save resources. I.e., a registry for a trivial
number of services may use conventional service-instances for its proxy services, using
ordinary service containers, while a registry intended for thousands of registrants may be
built as a specialized service-container with a more-scalable implementation of the
proxies.

A service instance is registered by

1. creating a new proxy service-instance with the ServiceGroupEntry port-type;
2. adding an element of type ogsi:EntryType (see below) to the service data of the

ServiceGroup or ServiceGroupRegistration port.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 41 of 68

Deregistration is the reverse process. A registration proxy can be set to terminate at a
certain time, in the normal manner of OGSI services, thus limiting the lifetime of a
registration.

In a grid-managed registry, clients can call the add operation of the
ServiceGroupRegistration port to register a service and the remove operation of that port
to deregister services. Each call to add registers one service. Each call to remove
deregisters a set of related services. In a locally-managed registry, the registration and
deregistration mechanisms are outwith OGSI.

The ogsi:Entry contains:

• an ogsi:Locator element pointing to the registration proxy for the registered
service;

• an ogsi:Locator element pointing to the registered service itself;
• an ogsi:EntryContent element that contains zero or more unconstrained metadata

describing the registered service.

Thus a client of the registry reads the metadata of registered services by reading the
ogsi:EntryContentType elements from the ServiceGroup port.

[Some words here or hereabouts concerning how the registry limits what comes in.
_MembershipRule and all that.]

6.1.3 Example 1: a simple registry of service factories

This registry records the service factories currently running in one service container; it's a
way of keeping track of current activity on one server. Any kind of factory can be
registered. The registered services need have nothing in common except what is required
by the OGSI standard. The main metadata of interest are the sets of port types provided
by each service instance created by the factories.

This is a locally-managed registry. The registry contents are set by the service operator as
part of the registry-service's configuration and are not mutable via the grid. Hence, this
registry is based on a ServiceGroup port, not a ServiceGroupRegistration_ port.

The metadata in the registry come from the standard service-data prescribed by OGSI for
the Factory port-type. The ogsi:CreateServiceExtensibilityType elements in a factory port
list as QNames all the port-types of the service instances that the factory can create.

For this example, suppose that there are just three factories, all for variants of a counter
service.

• The basic counter has a Counter port and a GridService port.
• The "private" counter, which enforces access control for a resticted set of users,

has a SecureCounter port and a GridService port.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 42 of 68

• The "shared" counter, which is intended for concurrent use by more than one
client, has a Counter port, a NotificationSource port and a GridService port.

Suppose further that this set is very stable, such that the author of the registry chooses to
hard-code the membership and metadata of the registry. Therefore, the membership and
member-descriptions are all carried in the GWSDL for the registry as "static" SDEs:

<gwsdl:portType name="ServiceGroup">

 <!-- Definition of the SD as per OGSI standard. -->
 <sd:serviceData name="entry"
 type="ogsi:EntryType"
 minOccurs="0"
 maxOccurs="unbounded"
 mutability="mutable"
 modifiable="false"
 nillable="false"/>

 <!-- Specific values for this registry. -->
 <sd:staticServiceDataValues>

 <!-- Description of basic-counter factory. -->
 <ogsi:EntryType>
 <serviceGroupEntryLocator nil="true"/>
 <memberServiceLocator>

<ogsi:handle>http://exemplar.org/ogsa/services/CounterFactory</ogsi:hand
le>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>Counter</createsInterface>
 <createsInterface>GridService</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
 </ogsi:EntryType>

 <!-- Description of private-counter factory. -->
 <ogsi:EntryType>
 <serviceGroupEntryLocator nil="true"/>
 <ogsi:memberServiceLocator>

<ogsi:handle>http://exemplar.org/ogsa/services/PrivateCounterFactory</og
si:handle>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>SecureCounter</createsInterface>
 <createsInterface>GridService</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
 </ogsi:EntryType>

 <!-- Description of shared-counter factory. -->
 <ogsi:EntryType>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 43 of 68

 <serviceGroupEntryLocator nil="true"/>
 <memberServiceLocator>

<ogsi:handle>http://exemplar.org/ogsa/services/SharedCounterFactory</ogs
i:handle>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>Counter</createsInterface>
 <createsInterface>GridService</createsInterface>
 <createsInterface>NotificationSource</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
 </ogsi:EntryType>

 </sd:staticServiceDataValues>

</gwsdl:portType>

Notes on this WSDL:

1. This is GWSDL, the extended form of WSDL defined by OGSI. Basic WSDL
won't do as we need to add elements of various namespaces into the portType
element.

2. Elements with the ogsi prefix are defined in the OGSI standard.
3. The sd:serviceData element defines the form of the service data. The GWSDL for

this element is fixed by OGSI standard.
4. The serviceGroupEntryLocator elements are all annulled. This registry is locally

managed and doesn't use service instances with ServiceGroupEntry ports.
5. The memberServiceLocator elements contain handle elements which give the

GSHs of the registered factories. The given GSHs follow the HTTP scheme for
GSHs used by Globus Toolkit 3; other forms for handles are possible.

[To do: describe how a client finds a particular type of service using the registry.]

A client can use the registry to select factories for particular kinds of counter as follows.

Client invokes findServiceData on the registry's GridService port. Client includes this as
the queryExpression parameter of the invoked operation:

<ogsi:queryByServiceDataNames>
 <name>ogsi:entry</name>
</ogsi:queryByServiceDataNames>

Service returns this as the result parameter of the operation:

<sd:serviceDataValues>
 <ogsi:EntryType>
 <serviceGroupEntryLocator nil="true"/>
 <memberServiceLocator>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 44 of 68

<ogsi:handle>http://exemplar.org/ogsa/services/CounterFactory</ogsi:hand
le>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>Counter</createsInterface>
 <createsInterface>GridService</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
 </ogsi:EntryType>
 <ogsi:EntryType>
 <serviceGroupEntryLocator nil="true"/>
 <ogsi:memberServiceLocator>

<ogsi:handle>http://exemplar.org/ogsa/services/PrivateCounterFactory</og
si:handle>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>SecureCounter</createsInterface>
 <createsInterface>GridService</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
 </ogsi:EntryType>
 <ogsi:EntryType>
 <serviceGroupEntryLocator nil="true"/>
 <memberServiceLocator>

<ogsi:handle>http://exemplar.org/ogsa/services/SharedCounterFactory</ogs
i:handle>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>Counter</createsInterface>
 <createsInterface>GridService</createsInterface>
 <createsInterface>NotificationSource</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
 </ogsi:EntryType>
</sd:serviceDataValues>

I.e., the result of the operation is a dump of all the metadata for all the services.

Client runs these metadata through an XPath serach-engine (an XSLT processor is a
likely implementation of this) using this query:

//ogsi:EntryType[content/ogsi:CreateServiceExtensibilityType/createsInte
rface="NotificationSource"]

to find all the factories for counters that do notification. Client this then left with
<ogsi:EntryType>
 <serviceGroupEntryLocator nil="true"/>
 <memberServiceLocator>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 45 of 68

<ogsi:handle>http://exemplar.org/ogsa/services/SharedCounterFactory</ogs
i:handle>
 </memberServiceLocator>
 <content>
 <ogsi:CreateServiceExtensibilityType>
 <createsInterface>Counter</createsInterface>
 <createsInterface>GridService</createsInterface>
 <createsInterface>NotificationSource</createsInterface>
 </ogsi:CreateServiceExtensibilityType>
 </content>
</ogsi:EntryType>

Client runs a further XPath search using query

//ogsi:handle

to extract the GSH of the selected service.

6.1.4 Example 2: grid-managed registry of service instances

[To do: all of example]

6.2 Abstract ServiceGroups
[Explain the abstract concept, and illustrate with concrete examples]

6.3 Binding to a Service
[bootstrapping to find information about resources and factories]

[Resolvers this needs an example]
[Spec section 3.3 Client Use of Grid Service Handles and References]

A client gains access to a Grid service instance through Grid Service Handles and Grid
Service References. A Grid Service Handle (GSH) can be thought of as a permanent network
pointer to a particular Grid service instance. The GSH does not provide sufficient information
to allow a client to access the service; the client needs to “resolve” a GSH into a Grid Service
Reference (GSR). The GSR contains all the necessary information to access the service. The
GSR is not a “permanent” network pointer to the Grid service instance because a GSR may
become invalid for various reasons; for example, the Grid service instance may be moved to
a different server.

OGSI provides a mechanism, the HandleResolver (see §10) to support client resolution of
a Grid Service Handle into a Grid Service Reference. In Figure 6-1, a client application
needs to resolve a GSH into a GSR.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 46 of 68

Figure 6-1: Resolving a GSH

The client resolves a GSH into a GSR by invoking a HandleResolver Grid service identif ied
by some out-of-band mechanism. The HandleResolver can use various means to do the
resolution; some of these means are depicted in Figure 2. The HandleResolver may have the
GSR stored in a local cache. The HandleResolver may need to invoke another
HandleResolver to resolve the GSH. The HandleResolver may use a handle resolution
protocol, specified by the particular kind (or scheme) of the GSH to resolve to a GSR. The
Handle resolver protocol is specific to the kind of GSH being resolved. For example, one
kind of handle may suggest the use of HTTP GET to a URL encoded in the GSH order to
resolve to a GSR.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 47 of 68

7 The GridService portType
To be a Grid service a service must implement the interface and behavior that enables
clients to manage it like other Grid Services. In summary, the behaviors allow clients to
locate or create service instances, call them and arrange for their destruction when they
are no longer needed. These behaviors are defined in the Grid Service Specification [3] as
portTypes, beginning with the basic GridService which is common to all OGSI services.

7.1 The basic requirement: GridServiceportType

[This is based on section 9 of the spec].

We start with the GridService portType, which must be implemented by all Grid
services and thus serves as the base interface definition in OGSA. This portType is
analogous to the base Object class within object -oriented programming languages
such as Smalltalk or Java, in that it encapsulates the root behavior of the component
model. The behavior encapsulated by the GridService portType is that of

• The required elements the serviceDataSet and the semantics associated with
these elements.

• Managing the termination of the instance

7.1.1 Terminology: Service Description and Service Instance

(This is from the spec, section 7.1)
We distinguish in OGSA between the description of a Grid service and an instance of
a Grid service:

• A Grid service description describes how a client interacts with service
instances. This description is independent of any particular instance. Within a
WSDL document, the Grid service description is embodied in the most
derivedportType (i.e. the portType referenced by the wsdl:service element
describing the service) of the instance, along with its associated portTypes,
serviceDataDescriptions, messages, and types definitions.

• A Grid service description may be simultaneously used by any number of Grid
service instances, each of which:

o embodies some state with which the service description describes how
to interact;

o has one or more Grid Service Handles;

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 48 of 68

o and has one or more Grid Service References to it.
A common form of Grid Service Reference (defined in section ?) is a WSDL
document comprising a serviceelement, which carries an attribute that refers to a most
derived portType defined by the service description of that instance.

A service description is primarily used for two purposes. First, as a description of a
service interface, it can be used by tooling to automatically generate client interface
proxies, server skeletons, etc. Second, it can be used for discovery, for example, to
find a service instance that implements a particular service description, or to find a
factory that can create instances with a particular service description.
The service description is meant to capture both interface syntax, as well as (in a very
rudimentary, non -normative fashion) semantics. Interface syntax is, of course,
described by portTypes.

Semantics may be inferred through the name assigned to the portType. For example,
when defining a Grid service, one defines zero or more uniquely named portTypes,
and then collects a set of portTypes defined from a variety of sources into a final or
most derived portType. Concise semantics can be associated with each of these names
in specification documents – and perhaps in the future through Semantic Web or other
formal descriptions. These names can then be used by clients to discover services with
the sought-after semantics, by searching for service instances and factories with the
appropriate names. Of course, the use of namespaces to define these names provides a
vehicle for assuring globally unique names.

7.2 GridService Service Data
[Enumerate the servicedata elements and describe their purpose.]
[This is from section 6.2 of the spec]

For example, the following portType declares two serviceData elements, with qualified
names “tns:sd1” and “tns:sd2”. Any service that implements this portType MUST have as
part of its state these two ServiceData
elements.

<wsdl:definitions xmlns:tns=”xxx” targetNamespace=”xxx”>
<gwsdl:portType name="exampleSDUse"> *
<wsdl:operation name=…>
…
<sd:serviceData name="sd1" type=”xsd:String”
mutability=”static”/>
<sd:serviceData name="sd2" type=”tns:SomeComplexType”/>
…
<sd:staticServiceDataValues>
<tns:sdl>initValue</tns:sd1>
</sd:staticServiceDataValues>
</gwsdl:portType>
…
</wsdl:definitions>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 49 of 68

7.2.1 Using serviceData, an Example from GridService portType
[From section 6.2.2 of the Spec]

Let’s examine how serviceData can be used by reviewing an example, namely the
GridService portType, described in §9. The (non-normative) serviceData elements declared
for the Grid Service portType are as follows.
<wsdl:definitions …
<gwsdl:portType name=”GridService” …>
<wsdl:operation name= …>
…
<sd:serviceData name=”interface” type=”xsd:QName”
 minOccurs=”1” maxOccurs=”unbounded”
 mutability=”constant”/>
<sd:serviceData name=”serviceDataName” type=”xsd:QName”
 minOccurs=”0” maxOccurs=”unbounded”
 mutability=”mutable” nillable=”false”/>
<sd:serviceData name=”factoryHandle”
 type=”ogsi:HandleType”
 minOccurs=”1” maxOccurs=”1
 mutability=”constant” nillable=”true”/>
<sd:serviceData name=”gridServiceHandle”
 type=”ogsi:HandleType”
 minOccurs=”0” maxOccurs=”unbounded”
 mutability=”extendable”/>
<sd:serviceData name=”gridServiceReference”
 type=”ogsi:ReferenceType”
 minOccurs=”0” maxOccurs=”unbounded”
 mutability=”mutable”/>
<sd:serviceData name=”findServiceDataExtensibility”
 type=”ogsi:OperationExtensibilityType”
 minOccurs=”1” maxOccurs=”unbounded”
 mutability=”static”/>
<sd:serviceData name=”terminationTime” type=”ogsi:terminationTime”
 minOccurs=”1” maxOccurs=”1”

The normative description of the individual serviceData elements are in (§9.1).

The following is an example set of serviceData element values for a Grid service.
…
xmlns:crm=”http://gridforum.org/namespaces/2002/11/crm”
xmlns:tns=”http://example.com/exampleNS”
xnlns=”http://example.com/exampleNS”>
<sd:serviceDataValues>
<ogsi:interface>crm:GenericOSPT</ogsi:interface>
<ogsi:interface>ogsi:GridService</ogsi:interface>
<ogsi:serviceDataName>ogsi:interface
</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:serviceDataName
</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:factoryHandle

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 50 of 68

</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:gridServiceHandle
</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:gridServiceReference
</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:findServiceDataExtensibility
</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:terminationTime
</ogsi:serviceDataName>
<ogsi:serviceDataName>ogsi:setServiceDataExtensibility
</ogsi:serviceDataName>
<ogsi:factoryHandle>someURI</ogsi:factoryHandle>
<ogsi:gridServiceHandle>someURI</ogsi:gridServiceHandle>
<ogsi:gridServiceHandle>someOtherURI</ogsi:gridServiceHandle>
<ogsi:gridServiceReference>…</ogsi:gridServiceReference>
<ogsi:gridServiceReference>…</ogsi:gridServiceReference>
<ogsi:findServiceDataExtensibility
inputElement=”ogsi:queryByServiceDataNames” />
<ogsi:terminationTime after=”2002-11-01T11:22:33”
before=”2002-12-09T11:22:33”/>
<ogsi:setServiceDataExtensibility
inputElement=”ogsi:setByServiceDataNames” />

7.2.2 ServiceData Initial values
See example text in the spec (section 6.3.1)

7.2.3 ServiceData and portType Inheritance
See example text in the spec (sections 6.4 and 6.4.1)

7.2.4 ServiceData Bindings
[From the spec section 6.2, last para]

The wsdl:binding associated with various operations manipulating serviceData elements will
indicate the encoding of that data between service requestor and service provider. For
example, a binding might indicate that the serviceData element values are encoded as
serialized Java objects.

7.3 GridService Operations
[Summary of Querying and modyfing servicedata, termination time. Destrying a
service. Sufficient to inform the following example]

7.3.1 Querying ServiceData

[From section 9.2.1.1 of the spec)

For example, a findServiceData invocation with this QueryExpression:

<ogsi:queryByServiceDataNames>
<name>ogsi:findServiceDataExtensibility</name>
<name>ogsi:setServiceDataExtensibility</name>

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 51 of 68

</ogsi:queryByServiceDataNames>

might return this Result:.

<sd:serviceDataValues>

<ogsi:findServiceDataExtensibility
inputElement=”ogsi:queryByServiceDataNames”/>
<ogsi:setServiceDataExtensibility
inputElement=”ogsi:setByServiceDataNames”/>
<ogsi:setServiceDataExtensibility>
inputElement=”ogsi:deleteByServiceDataNames”/>
</sd:serviceDataValues>

7.3.2 GridService Examples
[Develop the example of the Counter with Servicedata defined]

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 52 of 68

8 Referencing and Handle Resolution
[Details on the The handle resolver portType – concepts are introduced earlier]

(This text came from an earlier version of the spec)
A handle resolver is a Grid service instance that implements the HandleResolver
portType. Each GSH scheme defines a particular resolver protocol for resolving a
GSH of that scheme to a GSR. Some schemes, such as the http and https, MAY not
require the use of a HandleResolver service, as they are based on some other resolver
protocol. However, there are two situations where a Grid service based resolver
protocol MAY be used, and which therefore motivates the definition of a standard
HandleResolver portType. First, a GSH scheme MAY be defined that uses the
HandleResolver as a fundamental part of its resolver protocol, where the GSH carries
information about to which HandleResolver service instance a client should send
resolution requests. Second, in order to avoid placing undo burden on a client by
requiring it to directly speak various resolver protocols, a client instead MAY be
configured to outsource any GSH resolutions to a third party HandleResolver service.
This outsourced handle resolver MAY in turn speak the scheme-specific resolver
protocols directly. Both of these situations are addressed through the definition of the
HandleResolver portType.

Various handle resolvers may have different approaches as to how they are populated
with GSH to GSR mappings. Some handle resolvers may be tied directly into a
hosting environment’s lifetime management services, such that creation and
destruction of instances will automatically add and remove mappings, through some
out-of-band, hosting-environment-specific means. Other handle resolver services may
implement the Registration portType, such that whenever a service instance registers
its existence with the resolver, that resolver queries the GridServiceHandles and
GridServiceReferences service data elements of that instance to construct its mapping
database. Other handle resolver services may implement a custom registration protocol
via a custom portType. But in all of these cases, the HandleResolver portType MAY
be used to query the resolver service for GSH to GSR mappings.

[Suggestion: this is the place to answer questions about the relationship between a service
implementation and the HandleResolver?. There is some input in
OpFAQHandleResolution]

[Suggestion: is this the place to explain solutions to the bootstrap problem - how to get a
reference to the handle resolver]

[Suggestion: explain the rationale behind the GSRExclusionSet? input to findByHandle]

[Question: In section 7.5.1.1. the spec recommends only including minumal info in the
WSDL version of a GSR. What other information is possible? Why is it discouraged]

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 53 of 68

9 Finding Services: ServiceGroups and Registries
[This needs a major update following changes to the spec]

9.1 Reasons for Registries
Registries are sources of information about services (including resources) in a Grid.
They are themselves Grid Services, and their function is to provide references to other
services, perhaps based on some selection criteria such as the serviceType, resource
capacity, availability or current load. The criteria aren’t determined by the Grid
Specification and depend on the registry and the kind of information it provides. Thes
following examples give a flavor of how registries and service information can be
organized.

• Central directories are the starting point for enquiries about Grid services and
resources. Their locations may be well-known to potential clients and may
keep lists of more local registries.

• Partner Catalog UDDI registry: Web services to be used by a particular
company can be published to a Partner Catalog (rolodex like) UDDI registry.
A Partner Catalog UDDI registry sits behind the firewall. This kind of private
UDDI registry contains only approved, tested, and valid web service
descriptions from legitimate business partners. The business context and
metadata for these web services can be targeted to the specific requestor.

• Local directories can contain references to factories capable of creating
services instances (including resource allocations, for example). Local
information can contain more detailed, precise and/or dynamic information.

• Factories may keep a list of the service instances they have created.

• Instances keep information about their own current status which registries (or
clients can use) to refresh information got from other sources.

The factory (penultimate) example shows how a registry can be only one of several
functions provided by a service. The Grid Service Specification describes a
Registration portType containing few basic operations that a registry must provide, but
this can be combined with other portTypes or extended with additional operations and
message types. Figure (2?) shows some of the alternatives described above.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 54 of 68

Figure 9-1: Factories and a dedicated Registry as information sources

9.2 The Registry Interfaces
There are two components to a registry – Registration and Discovery. Registration
places a services reference in the registry, Discovery allows a client to retrieve it.
Though it’s logical to think of these as two parts of the same service, this is not
necessarily the best way to organize the information. The Discovery service can use
the registered references to find out more information (or more dynamic information,
such as the current load) about the services, or pass this on to a third party which
provides selection among a group of similar services, or qualities of its own such as
scalability.

9.2.1 Registration PortType

Below is a diagram of the WSDL markup elements which describe the Service Group
portType.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 55 of 68

Figure 9-2: GWSDL Description of Service Group.

A registry service must implement the Registration portType which has the following operations

• Registration :: RegisterService

Add or atomically update an entry in the registry. This operation takes as input

o A Locator (Containing one or more handles and maybe references to
the service) being registered.

o Descriptive information about the service. The format of the
information depends on the kind of registry and is described by
ServiceDataElement values of the type
gsdl:registrationExtensibilityType. An example might be a UDDI
description of the service.

o If the operation is successful, (no fault is generated) the newly
registered service will subsequently be returned

• Registration :: UnregisterService

Remove a Grid Service Handle from the registry.

9.2.2 Making Discoveries
Registration information is made available as a WS-Inspection (WSIL) document. –
other forms of information may be available too, depending on the implementation of
the discovery service. The WSIL document contains references to all of the services
contained in the registry and can be retrieved from the registry as the serviceData

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 56 of 68

element GridServiceRegistryWSInspection using the normal operations for querying
service Data.

9.2.3 Lifetime of Registration
As with other stateful interfaces in OGSA, GSH registration is a soft state operation
and must be periodically refreshed, thus allowing discovery services to deal naturally
with dynamic service availability.

This soft-state registration requires the service to periodically refresh is

9.3 An Example Registry
We need something realistic which illustrates sub-setting via attributes, eg selection of
CPUs, based on ServiceData elements describing speed in Mhz?

.

9.4 Service Discovery and Invocation
What is the Bootstrap sequence for a client?

9.5 Service Registration
What does an instance have to do to be registered? Should it rely on the Factory to do
it?

What does a factory have to do to be registered?

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 57 of 68

10 Creating Transient Services: The Factory
[The Factory as a pattern]
From a programming model perspective, a factory is an abstract concept or pattern. A
factory is used by a client to create an instance of a Grid service. A client invokes a
create operation on a factory and receives as response a serviceLocator for the newly
created service. This specification defines one approach to realizing the factory pattern
as a Grid service. OGSA uses a document-centric approach to define the operations of
the basic factory. Service providers can, if they wish, define their own factories with
specifically typed operation signatures.

In OGSA terms, a factory is a Grid service that MUST implement the Factory
portType, which provides a standard WSDL operation for creation of Grid service
instances. A factory MAY of course also implement other portTypes (in addition to
the required GridService portType), such as:

• Registration (Section ??), which allows clients to inquire of the factory as to what
Grid service instances created by the factory are in existence.

Upon creation by a factory, the Grid service instance MUST be registered with, and
receive a GSH from, a handle resolution service (see Section 7). The method by which
this registration is accomplished is specific to the hosting environment, and is
therefore outside the scope of this specification.

10.1 The Factory Interface

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 58 of 68

11 GridService Notification
(This is from Section 11 in the spec)
The purpose of notification is to deliver interesting messages from a notification
source to a notification sink, where:

• A notification source is a Grid service instance that implements the
NotificationSource portType, and is the sender of notification messages. A
source MAY be able to send notification messages to any number of sinks.

• A notification sink is a Grid service instance that receives notification
messages from any number of sources. A sink MAY implement the
DeliverNotification operation of the NotificationSink portType, which allows
it to receive notification messages of any type. Alternatively, a sink MAY
implement a specialized notification delivery operation from a different
portType, where that operation is a specialization of the DeliverNotification
operation. A specialized delivery operation MAY only accept a subset of the
types of messages that the general DeliverNotification operation can accept,
and like DeliverNotification is an input-only operation (i.e. it does not return a
response).

• A notification message is an XML element sent from a notification source to a
notification sink. The XML type of that element is determined by the
subscription expression.

• A subscription expression is an XML element that describes what messages
should be sent from the notification source to the notification sink. The
subscription express also describes when messages should be sent, based on
changes to values within a service instance’s serviceDataSet.

• In order to establish what and where notification messages are to be delivered,
a subscription request is issued to a source, containing a subscription
expression, the serviceLocator of the notification sink to which notification
messages are to be sent, the portType and operation name of the specialized
notification delivery operation to which notification messages should be sent,
and an initial lifetime for the subscription.

• A subscription request causes the creation of a Grid service instance, called a
subscription, which implements the NotificationSubscription portType. This
portType MAY be used by clients to manage the (soft-state) lifetime of the
subscription, and to discover properties of the subscription.

This notification framework allows for either direct service-to-service notification
message delivery, or for the ability to integrate various intermediary delivery services.
Intermediary delivery services might include: messaging service products commonly
used in the commercial world, message filtering services, message archival and replay
services, etc.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 59 of 68

11.1 Notification Interfaces

11.1.1 ServiceData for Notification

11.1.2 Notification Operations

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 60 of 68

12 Grid Services Security
Depending on the domain and the nature of the Grid services, a service

implementor can and would implement layers of security - from transport level to
message level to service level. In this context most probably one would require an
interoperable security layer that spans multiple administrative domains.

12.1 Approach & Scope
This section addresses Grid Services security in a descriptive way (as opposed

to prescriptive directions) and touches security only with respect to the primitives in
OGSI/OGSA. This section :

1. summarizes the important ideas, topics and concepts (as resulted from
discussions and specifications from the various grid security wgs)

2. provides links to detailed work in each of the above areas (thus neither
duplicating nor reiterating the rest of the grid security work)

3. provides examples (abstract examples and patterns) how they could be used
4. will not have implementation details

The most important is to explain how security is factored out of the application

(and is orthogonal to OGSI) and provide references to introductory material which
explains (in a generic fashion) how security protocols can be plugged in to Client and
Server infrastructure. What those infrastructures do with the security is not the
business of OGSI, but some simple examples would be reassuring to the Primer
audience.

12.2 List of Topics to address
1. ServiceData access, visibility and exposure controls - how to express,

exchange and process serviceData security artifacts
2. WSDL security - i.e. security of the exposed interfaces including restricting

operations
3. Standards for identity and access control policies
4. Examples of how to handle resolution protocols
5. Explain VOs and how they are achieved using Kerberos/X.509
6. X.509 and Kerberos usage in a grid scenario
7. Infosec issues - firewall traversal, any ACL and other requirements for grid

installation
a. Examples/explanation of how gateways can be constructed for Web

services as part of a firewall.
8. Trust mechanisms - establish, bootstrap and use

a. Some simple examples of authorization for operations, and the importance
of propagation of the authorization would be reassuring to the Primer
audience.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 61 of 68

13 Advanced Topics

13.1 Advanced Registries [?]

13.2 Recommendations for Change Management
< Change management from the gss spec>

13.3 Describing Operation semantics
[How operations may interact with each other, where to document this]

13.4 Monitoring Execution
[nice example – Monitoring a Datamining operation?]

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 62 of 68

14 Glossary of Terminology
Thse terms and abbreviations are used in the text and are defined where they are first
used. The list below may help you if you dip into the text without reading from the
beginning.

TBD – To Be Done.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 63 of 68

15 Comparison with other Distributed Architectures
 [Comparison to Corba, EJB, BPEL?]
This was 3.1. Relationship to Distributed Object Systems in the spec.

As we describe in much more detail below, a given Grid service implementation is an
addressable, and potentially stateful, instance that implements one or more interfaces
described by WSDL portTypes. Grid service factories (§12) can be used to create instances
implementing a given set of portType(s). Each Grid service instance has a notion of identity
with respect to the other instances in the distributed Grid, (§7.5.2.1). Each instance can be
characterized as state coupled with behavior published through type-specific operations. The
architecture also supports introspection in that a client application can ask a Grid service
instance to return information describing itself, such as the collection of portTypes that it
implements.

Grid service instances are made accessible to (potentially remote) client applications through
the use of a Grid Service Handle (§7.5.2) and a Grid Service Reference (§7.5.1). These
constructs are basically network-wide pointers to specific Grid service instances hosted in
(potentially remote) execution environments. A client application can use a Grid Service
Reference to send requests (represented by the operations defined in the portType(s) of the
target service) directly to the specific instance at the specified network-attached service
endpoint identified by the Grid Service Reference.

We expect that in many situations, client stubs and helper classes isolate application
programmers from the details of using Grid Service References. Some client side
infrastructure software assumes responsibility for directing an operation to a specific instance
that the GSR identifies.

Each of the characteristics introduced above (stateful instances, typed interfaces, global
names, etc.) is frequently also cited as a fundamental characteristic of so-called distributed
object-based systems. However, there are also various other aspects of distributed object
models (as traditionally defined) that are specifically not required or prescribed by OGSI. For
this reason, we do not adopt the term distributed object model or distributed object system
then describing this work, but instead use the term Open Grid Services Infrastructure, thus
emphasizing the connections that we establish with both Web services and Grid technologies.

Among the object-related issues that are not addressed within OGSI are implementation
inheritance, service mobility, development approach, and hosting technology. The Grid
service specification does not require, nor does it prevent, implementations based upon object
technologies that support inheritance at either the interface or the implementation level. There
is no requirement in the architecture to expose the notion of implementation inheritance
either at the client side or the service provider side of the usage contract. In addition, the Grid
service specification does not prescribe, dictate, or prevent the use of any particular
development approach or hosting technology for the Grid service. Grid service providers are
free to implement the semantic contract of the service in any technology and hosting
architecture of their choosing.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 64 of 68

We envision implementations in J2EE, .NET, traditional commercial transaction
management servers, traditional procedural UNIX servers, etc. We also envision service
implementations in a wide variety of programming languages that would include both object-
oriented and non-object-oriented alternatives.

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 65 of 68

16 Editor Information
Tim Banks
IBM
Hursley Park, Winchester, UK. SO21 2JN.
Email: tim_banks@uk.ibm.com

17 Contributors
We gratefully acknowledge the contributions made to this document by the following
people: Adbeslem Djaoui, Kate Keahey, Guy Rixon, Savas Parastatidis

Also, the authors of the OGSI Specification which provided source material: Steven
Tuecke, Karl Czajkowski, Ian Foster, Jeffrey Frey, Steve Graham, Carl Kesselman, Tom
Maguire, Thomas Sandholm, Dr. David Snelling and Peter Vanderbilt.

18 Acknowledgements
We are grateful to numerous colleagues for discussions on the topics covered in this
document, in particular (in alphabetical order, with apologies to anybody we've missed):

Marc Brooks, Krishna Sankar.

This work was supported in part by the North-East UK Regional e-Science, IBM, Rutherford
Appleton Laboratory, UK

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 66 of 68

19 Document References
 [1] The Anatomy of the Grid: Enabling Scalable Virtual Organizations, I. Foster, C. Kesselman,

S. Tuecke, Authors. International Journal of High Performance Computing Applications, 15
(3). 200-222. 2001.
Available at http://www.globus.org/research/papers/anatomy.pdf.

 [2] The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems
Integration, I. Foster, C. Kesselman, J. Nick, S. Tuecke, Authors. Globus Project, 2002.
Available at http://www.globus.org/research/papers/ogsa.pdf

 [3] Open Grid Services Infrastructure (OGSI) (draft). February 17, 2003. S. Tuecke, K.
Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling, P. Vanderbilt. Global
Grid Forum.
Available at: http://www.ggf.org/ogsi-wg

 [4] Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001
Available at http://www.w3.org/TR/wsdl

 [5] Secure Grid Naming Protocol (SGNP): Draft Specification for Review and Comment. GGF4
Submission May 3, 2002
Available at http://sourceforge.net/projects/sgnp/

 [6] Java (TM) API for XML-Based RPC (JAX-RPC).
Available at http://java.sun.com/xml/jaxrpc/docs.html

 [7] Welcome to WSIF: Web Services Inocation Framework
Available at http://www.apache.org/wsif

 [8] OGSA. Ref from OpImplementingWebandGridServices
Available at ?

 [9] Enterprise JavaBeans TM Specification, Version 2.1. Sun Microsystems
Available at ?

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 67 of 68

20 Copyright Notice
Copyright © Global Grid Forum (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be repared,
copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such copies
and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the GGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures
for copyrights defined in the GGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this
specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director
(see contact information at GGF website).

GLOBAL GRID FORUM
office@gridforum.org
www.ggf.org

GWD-I (draft-ggf-ogsi-gridserviceprimer-1) June 5th, 2003

Page 68 of 68

21 The Index

