

Open Grid Services Architecture: A Roadmap

Abstract
Successful realization of the Open Grid Services Architecture (OGSA) vision of
a broadly applicable and adopted framework for distributed system integration
requires the early standardization of core services. The OGSA working group
within the Global Grid Forum has been formed to develop a comprehensive and
consistent OGSA roadmap that (a) defines, in broad but somewhat detailed
terms, the scope of the services required to support both e-science and e-
business applications, (b) identifies a core set of such services that are viewed as
highest priority for definition, and (c) specifies at a high-level the functionalities
required for these core services and the interrelationships among those core
services. This draft document provides an initial outline for this roadmap.

1 Introduction
The Open Grid Services Architecture (OGSA) has been proposed as an enabling infrastructure for
systems and applications that require the integration and management of services within
distributed, heterogeneous, dynamic “virtual organizations” [1]. Whether confined to a single
enterprise or extending to encompass external resource sharing and service provider relationships,
service integration and management in these contexts can be technically challenging because of
the need to achieve various end-to-end qualities of service when running on top of different
native platforms. Building on Web services and Grid technologies, OGSA proposes to define a
core Grid service semantics and, on top of this, an integrated set of service definitions that
address critical application and system management concerns. The purposes of this definition
process are twofold: first to simplify the creation of secure, robust systems and second to enable
the creation of interoperable, portable, and reusable components and systems via the
standardization of key interfaces and behaviors.

While the OGSA vision is broad, work to date has focused on the definition of a small set of core
semantic elements. Specifically, the Grid service specification [3] being developed within the
Open Grid Services Infrastructure (OGSI) working group of the Global Grid Forum defines, in
terms of Web Services Description Language (WSDL) interfaces and associated conventions, the
mechanisms that any OGSA-compliant service must use to describe and discover service
attributes, create service instances, manage service lifetime, and subscribe to and deliver
notifications.

While the Grid service specification defines essential building blocks for distributed systems, it
certainly does not define all elements that arise when creating large-scale interoperable systems.
We may also need address a wide variety of other issues, both fundamental and domain-specific,
of which the following are just examples. How do I establish identity and negotiate
authentication? How is policy expressed and negotiated? How do I discover services? How do I
negotiate and monitor service level agreements? How do I manage membership of, and
communication within, virtual organizations? How do I organize service collections
hierarchically so as to deliver reliable and scalable service semantics? How do I integrate data
resources into computations? How do I monitor and manage collections of services? Without
standardization in each of these (and other) areas, it is hard to build large-scale interoperable
systems.

 2

Given that the set of such issues is in principle large, it is important to identify those capabilities
that are most critical so that specification effort can be focused in those areas, with the goal of
defining, in a coordinated and timely fashion, a set of “core OGSA interfaces” that address the
most urgent requirements.

2 Approach
We propose the following approach:

• Develop an initial draft for this roadmap that first provides a service laundry list and
second proposes a small core set for early specification.

• Refine this draft roadmap via working group activities and public comment.

• Finalize an OGSA Roadmap v1 that identifies priorities for OGSA-related work.

In identifying services we can draw upon the following sources:

• GGF Grid Protocol Architecture document

• Globus Toolkit and related Grid services.

• UK eScience Architecture Roadmap (Malcolm Atkinson et al.)

• OGSA Security WG Roadmap.

• DAIS WG documents

• Data Grid architecture document.

• NPI documents.

• GridLab project’s GAT.

• Unicore.

• TeraGrid.

3 OGSA Goals
OGSA exists so that we may build interoperable, usable Grids for industry, e-science and e-
business. The Open Grid Service Infrastructure (OGSI) defines the extensions and refinements of
the emerging web services standards that are needed to build grid services. These OGSI
compliant web services, which we will call Grid Services, will be the components of future Grid
infrastructure and application stacks. The job of OGSA is to build upon OGSI to define the
specific set of “Core Grid Services” that are the essential components of every Grid.

The OGSA Working Group (OGSA-WG) has the following scope

• To define the actual core services and interoperability requirements that must exists
between them.

• To produce and document the use cases that will drive our prioritization of core service
features and mechanisms.

• To understand the protocols and bindings that are necessary but go beyond the scope of
OGSI.

• To investigate the relationship between core service requirements and the hosting
environments that will support them.

 3

This is a large task. A simple definition of “Core Grid Services” is those things that must be part
of every complete Grid implementation because if they are not there the application developers
will have to write them themselves. However, there are many ways that such a set can be
partitioned into real services. The OGSA-WG must develop a set of profiles of specific services
and their interoperation and the composition mechanisms so that others may unambiguously
implement them. The OGSA-WG will operate by spinning off other working groups, which will
turn these profiles into precise specifications.

In addition to the broad goals described above, there are other, more specific goals for OGSA.
These include

• Facilitating distributed resource management across heterogeneous platforms

• Providing seamless QoS delivery

• Building a common base for Autonomic management Solutions (OGSA provides an
open, integrating infrastructure; Grid computing then addresses issues relating to
accessing and sharing the infrastructure, while autonomic functions make it possible to
manage the infrastructure and thus create self-configuring, self-optimizing systems.

• Providing a common infrastructure building blocks to avoid "stovepipe solution towers"

• Open and Published Interfaces

• Industry- standard integration technologies: web services, soap, xml, etc.

• Accomplished with a seamless integration with existing IT resources

4 OGSI Review
Remind people in a couple of pages what GSS is about. A list of interfaces and a description of
their functionality.

5 Requirements Analysis
Our goal in this document is to identify those services that are fundamental to the realization of
secure, reliable distributed systems, and/or of critical importance to major e-science or e-business
applications. Ideally we would be guided in this requirements analysis process by a complete and
well-defined set of use cases. In the absence of this information, we work from a less formal set
of examples derived from applications with which we are familiar.

5.1 Target Environments
First make a few observations about target environments. Scientific. Business. Desktop. Others?
(Alternatively, the use cases could be categorized in this way.)

It is important to bear in mind that the constituency for OGSA specifications is large and diverse,
encompassing both a range of industrial participants and numerous “e-scientists” from the
research and academic communities. This diversity is a substantial strength of the OGSA process,
but also means that care must be taken when developing specifications to ensure that significant
interests are not neglected.

 4

5.2 Use Cases
The initial meetings of OGSA explored a number of detailed use cases for Grid applications. We
organize these into two general categories: Scientific Applications and Commercial Grid
Scenarios. However, we note that there is significant cross-over between these.

5.2.1 The Scientific Application as Grid Service (based on Kate Keahey’s Fusion
Collaboratory example and Gannon’s discussion of weather prediction.)

In large scientific collaborations, it is common to have certain applications that are tied to a
specific set of high performance computing resources. These applications are hard to port and
maintain and they are updated frequently to capture improved science and algorithms. However
they must be able to be run on-demand from authorized members of the user community and the
users must be able to trust their performance and behavior. In some cases they are run for very
long periods (many hours) to obtain accurate results and in other cases they may be run for only
short periods to obtain partial results.

As a Grid service the factory pattern is the best model to design such an application service. Users
would contact a factory service and provide details about parameters and input files and execution
requirements. After authenticating the user, the factory can then contact resource broker services,
data staging services and scheduling services to provide the user with a service contract
specifying a set of possible time windows and performance guarantees that can be met to meet the
users requirements. Once such a contract has been established, the factory creates an instance of a
transient service that executes the application on behalf of the user. For long running applications,
this transient service may mediate the interaction of a group of user clients with the running
application for the purpose of monitoring or steering.

Instrumentation Grids. In some applications, such as predicting severe weather, a Grid of
sensors spanning a wide area generate streams of data which are tied, in real-time, to large
simulations and data mining tools running on remote supercomputers. As the storm evolves, the
simulations trigger other applications to be run to predict more localized weather behavior such as
tornados. The requirements of this application involve complex, on-demand resource
provisioning and scheduling because the analysis must run in better-than-real-time speeds. It also
involves the wide-area collaboration of many people using visualization clients that may interact
directly with the workflow as it progresses. Autonomic processes must insure that the instruments
stay operational and some instruments may need be retargeted automatically as the system
evolves. Similar autonomic processes must monitor the progress of simulation and data analysis
tasks to provision additional resources in case the existing allocation is not sufficient.

5.2.2 Commercial Grid Scenarios (based on examples from Hiro Kishimoto of
Fujitsu, Jeff Nick of IBM and Andrew Grimshaw of Avaki)

Some commercial Grid applications have similarities to the scientific applications described
above. For example, for Fujitsu, the application may be a simple Java program run as a EJB, but
it may also require advanced resource reservation and dynamic rescheduling. This will require
Service Level Agreements (SLAs) between the customer and application service provide to
assure the client is satisfied with the quality of service.

Workflow Management. Another common batch processing activity encountered by both
Fujitsu and Avaki involves legacy workflow management, which coordinates the execution of
multiple jobs. Grid Service based workflows based on emerging web service workflow standards
will allow multiple services to be composed into a single service. In this case, the workflow is
itself a Grid service and the workflow engine may be distributed across multiple resources.

 5

E-utilities. An e-utility is an on-demand Grid capability that is analogous to the water company
or the electric power grid or telephone utilities. It is trusted and highly available and has
autonomic functionality that keeps it almost always running. It is a service that allows you to pay
for what you consume. There are two ways to think about and design e-utilities. One approach is
to view it as a vertical e-utility. In this case, the e-utility is specific to a particular grid application,
such as on-line multi-user gamming or a service specifically designed for a particular industrial
application. The second case is that of the horizontal business service e-utility. Examples here
include services and applications that cut across market sector such as business directories,
business-to-business brokering services. Another example might be a media e-utility or a portal e-
utility. Horizontal e-utilities might involve the infrastructure for virtualization and management of
distributed computing resources that can be leveraged internally by IT organizations.

Data Federation. Another important use-case encountered by Avaki involves federating data
archives that are stored at multiple sides belonging to an enterprise. In these cases the data
consists of a combination of flat files and relational databases. Much of the data changes over
time, i.e. there are frequent updates. Users and applications need access to all authorized data.
Performance is critical, but the data must “stay at home”. Coherence is critical, so caching must
be done with great care. Audit trails must exist for all data updates.

Enterprise Collaborations. Avaki has seen several cases where multiple enterprises need to
collaborate. For example, one enterprise has a genomics group in Raleigh, a server farm in
Cambridge and a proteomics group in San Diego. At any given time they may have several
partnerships with several other enterprises that may involve data subscriptions or licensed data or
basic research contracts. In all cases the nature of the collaboration, and in may cases the very
existence of the collaboration, must be kept secret. In some cases applications are shared as
source code and in other cases applications are accessed only by remote, authorized clients. In
other cases multiple applications, one from each enterprise, must be coupled together over the
Grid and work as a single distributed workflow application. This type of enterprise application
integration is seen in many different industries. This is like supply chain management – but with
component simulations and data sets. The coupled application components are often proprietary
and run in different companies and use different data sets stored in different companies.

5.3 Use-Case Issues
The OGSA-WG identified a dozen issues that came up often in this initial set of use-cases. They
are

1. Workflow management. Almost all of the most demanding use-cases involve the ability
to express the interaction of a number of services and to cast the composite activity into a
single transient service instance working on behalf of a client or set of clients.

2. Scheduling of service tasks. Long recognized as an important capability for any
information processing system, scheduling becomes extremely important and difficult for
distributed Grid systems.

3. Disaster Recovery. As we begin to build complex distributed Grid infrastructure,
disaster recovery becomes a critical capability. For distributed systems, failure must be
considered one of the natural behaviors and disaster recovery mechanisms must be
considered an essential component of the design. Autonomous system principles must be
fully embraced as we design Grid applications and they should be reflected in the OGSA.

4. Provisioning. Computer CPUs, applications, licenses, storage, networks and instruments
are all Grid resources that require provisioning. Others new types of limited resources
will be invented and added to this list. OGSA will need a framework that will allow
resource provisioning to be done in a uniform, consistent manner.

 6

5. Data Sharing. Data management and sharing is one of the most common and important
uses of Grids. How do we manage data archives so that they may be accessed across a
Grid? How do we cache data and manage its consistency? How do we index and discover
data and metadata? These are all questions that are central to most current Grid
deployments. They are likely to become more important in the future.

6. Legacy Application Management. Legacy applications are those that cannot be
changed, but they are too valuable to give up or to complex to rewrite. Grid infrastructure
has to be built around them so that they can continue to be used.

7. Vertical Utility Grids. Some Grids are built as vertical utilities to service specialized
user communities. For example, butterfly.net provides an enterprise Grid for multi-user
distributed game playing.

8. Horizontal Utilities.

9. Services Facilitating Brokering. Many of the use cases require brokering services that
can automate the process of selecting the appropriate resources for an application. OGSA
will need a model for negotiating with brokers and a standard service model for building
them.

10. Application and Network-level Firewalls. Many use cases require applications to be
deployed on the other side of firewalls from the intended user clients. Inter-Grid
collaboration often requires hoping institutional firewalls. OGSA will need standard,
secure mechanisms that can be deployed which protect institutions but enable cross-
firewall interaction.

11. Virtual Organizations. One of the main purposes for building Grids is to facilitate the
interaction of a group of collaborators as a Virtual Organization (VO) that need share
resources in a secure manner. OGSA will need mechanisms to create VOs and to enable
the constructions of Grid Services that support the VO.

12. CPU scavenging is an important tool for an enterprise or VO to use to aggregate
computing power that would otherwise go to waste. How can OGSA provide service
infrastructure that will allow the creation of applications that use scavenged cycles? For
example, consider a collection of desktop computers running software that supports
integration into processing and/or storage pools managed via systems such as Condor,
Entropia, United Devices, etc. Issues here include maximizing security in the absence of
strong trust.

These issues are tied to a number of other very basic problems that must be solved by any Grid
system. How do I establish identity and negotiate authentication? How is policy expressed and
negotiated? How do I discover services? How do I negotiate and monitor service level
agreements? How do I manage membership and communication within virtual organizations?
How do I organize service collections hierarchically so as to deliver reliable and scalable service
semantics? How do I integrate data resources into computations? How do I monitor and manage
collections of services?

5.4 Initial OGSA Service Candidates.
The OGSA-WG considered a set of possible Core Grid Services that arise from the use-case
issues described in the previous section. We list those here with reference to the use-case issues
above.

 7

Discovery Services are a cornerstone of any distributed system. This provides the ability for a
client or another service to discover other services that make up the Grid. This is important for
issues 2, 3, 4, 5, 8 and 9.

Registry Services provide the mechanisms for services to advertise their existence. Closely
related to Discovery, this is also important for 2, 3, 4, 5, 8 and 9, and also 7, 11 and 12. It is
already specified as part of OGSI.

Directory (file system) / Name Space Management Services provide a uniform way to identify
and access both services and data objects and resource on the Grid. This is important for issues 1,
2, 3, 4, 5, 8, 9 and 11.

Authentication Services allow the Grid to recognize users. This is an essential component of all
Grids and significant for 2, 4, 5, 7, 8, 9, 11 and 12.

Authorization Services allow Grid services to know when an authenticated user has the rights to
access that service or resource. This is important for issues 2, 4, 5, 7, 8, 9, 11, 12.

Security protocol mapping services enable distributed security protocols to be transparently
mapped onto native platform security services for participation by platform resource managers
not implemented to support the distributed security authentication and access control mechanism.

Resource Services provide an interface to a resource, such as a cpu, disk, network, management
tools, etc. The Common Resource Model (CRM) provides a standard way to describe them. This
is important for 2, 4, 5, 7, 8 and 12.

Reservation Services provide the mechanism for clients and workflows to acquire access to
resources and services at a particular time. They are essential for 1, 2, 4, 9 and 12.

Brokering Services would mediate the SLAs that allow clients predicable access to Grid
resources. This is significant for 1, 2, 4, 5 and especially 9.

Scheduling Services are closely related to Reservation and Brokering and constitute issue 2.

Load Balancing Services are services that maintain the integrity of SLA and performance
contracts. They are clearly important for issues 2, 4, 7, 8, 9 and12,

Fault Tolerance Services would provide mechanisms to assure Grid functionality is maintained
when rapid changes may take place in the Grid topology or load. This is closely related to issue 3
as well as 2 and 5. This is also related to a possible Checkpoint and Restart Service.

Event and Notification Services provide the tools to allow application and core services to
communicate significant changes of state. For example, when an application services is created
and registers itself with a Registry Service, the Registry may notify the Discovery Service that the
new application service is available. This is important for 1, 2, 3, 7, 8 and 9. This service is also
significant for Fault Tolerance services mentioned above and Logging and Accounting described
below.

Logging Services maintain a record of the Grid state changes. They play a central role in
autonomic behavior and disaster recovery as well providing an audit trail for various parts of Grid
system failure or even performance tuning. This is important for 3, 7, 8, 9, 10, and 12.

Instrumentation and Monitoring, which keeps track of how well services and resources are
performing. Monitoring services, supporting the discovery of “sensors” in a distributed
environment, the collection and analysis of information from these sensors, the generation of
alerts when unusual conditions are detected, and so forth. This is also a key component of Fault
Tolerance. These are all part of a general class of Problem determination services for distributed

 8

computing, including dump, trace, and log mechanisms with event tagging and correlation
capabilities.

Accounting Services provide the mechanisms for service provides to be paid for authorized use
of their resources. Accounting/auditing services, supporting the recording of usage data, secure
storage of that data, analysis of that data for purposes of billing, fraud and intrusion detection, and
so forth.

Data Caches and Data Replication Services provide a critical component for managing many
of the issues related to Data Grid problems. This is at the heart of issues 5 and 11.

Metadata Search Services are a type of Discovery service to aid clients of Data Grids. They
help locate/index the information about things. These are closely relate to the File/DBMS
services and possible Federated Data Management services that are used as part of a vertical
utility Grid. These are both critically important to issue 5.

Schema Reconciliation Services allow different data, service and policy schema to be reconciled
so that the services can interact correctly. This is important for use-case issues 1, 2, 4, 5 and 9.

Transaction Services are an essential part of any Grid application that must update persistent
information such as data archives or databases. It provides the appropriate multi-phase commit
protocols to assure all parties that transactions have executed correctly in a distributed
environment. This is important for use-case issues 1, 2, 3, 5, 7, 8, 9, 11 and 12.

Application Factory Services may not be core Grid Services but their basic interfaces may need
to be standardized by OGSA. This relates to application deployment and provisioning as well as
issue 6.

Clustering and Collection Services allow services to be grouped into related units. It also refers
to services that manage group membership in general. Clustering services enable grouping and
management of distributed peer service instances in order to provide coordinated management
actions such as disaster recovery and load balancing, through dynamic join/leave semantics and
ordered message and event delivery. A related concept is that of Service Domain which is
discussed in greater detail below. Clustering and Collection is a component of issues 1, 2, 3, 5, 8,
9 and 11.

Policy Management Services allow Grid service providers the ability to specify and deploy
service use policies. Such a policy may provide provisions for defining how a collection of
services interacts or how resources are provisioned and SLAs are granted. This is significant for
issues 2, 5, 8, 9, 11 and 12.

Workflow Engine Services provide ways to describe the choreography of a set of interacting
services that are part of a Service Domain. Workflow services, supporting the coordinated
execution of multiple application tasks on multiple distributed Grid resources. The workflow
engine appears as a service instance to a client. It mediates the interaction between sub-services
and handles the exceptions and faults that may occur in the workflow execution.

Context Services provide a container for the information related to user/service session
interactions. This information may include user capabilities, service profiles, and applicable
policy specifications. This is closely related to the emerging WS-Coordination specification that
“enables an application service to create a context needed to propagate an activity to other
services and to register for coordination protocols. The framework enables existing transaction
processing, workflow, and other systems for coordination to hide their proprietary protocols and
to operate in a heterogeneous environment.”

Administration Services allow Grids to have a standard administration interface.

 9

6 Basic OGSA Structure
Given this background on use case issues and the possible candidate services, the next concern is
the architectural organization that is needed to build these services. In this section we consider
some of the basic structure that must lie at the foundation of the OGSA.

6.1 Core Transport and Security
We note first that no Grid service execution or communication can occur without basic transport
and security functions. These functions are defined within the Grid service specification as
binding properties, meaning that a particular service implementation may choose to implement
them using any protocol. Nevertheless, there must be some agreement on behaviors within any
particular community, otherwise interoperability cannot be achieved.

6.2 Hosting Environments
Standard interface definitions such as those defined within the Grid service specification allow
two services to interoperate. They do not address the portability of service implementations.
Work is required to define standard hosting environments in order to enable portability. The
following are just examples:

• Within a J2EE environment, standardized Java APIs can be defined to allow for
portability among OGSI-enabled J2EE systems.

• Entropia, United Devices, and Condor allow untrusted (and untrusting) desktop systems
to participate in distributed computations. A standard “desktop” hosting environment
would allow for interoperability among these different systems.

• The TeraGrid project is defining standard “execution environments” for computers that
run scientific applications. These execution environments assume Linux and define
conventions for the locations of key executables and libraries, and for the names of
certain environment variables.

6.3 Basic Interfaces and Behaviors
We list first a set of interface and behavior definitions that appear particularly fundamental to the
creation of interoperable Grid systems. The inclusion of an interface in this list is not in any way
a binding categorization: rather, it represents a value judgment concerning priorities.

• Common resource models conformant to the OGSI service model. The expression of
underlying instrumented resources as OGSA services enables consistent distributed
management and access to these resources without having to understand the details of
implementation of the resources, whether they are instrumented in CIM or SNMP or
MDS/Glue, etc.

• Registry and service discovery. OGSI defines a Registry interface and associated service
data elements to support the registration, and subsequent discovery, of service instances.
One or more standard registry behaviors need to be defined to permit service discovery in
various settings.

 10

• Handle mapping. OGSI defines a HandleMap interface to support the resolution of Grid
service handles (GSHs) to Grid service references (GSRs). One or more standard
HandleMap behaviors need to be defined to permit GSH resolution in various settings.

• Service domain. In what seems likely to be a common architectural approach, an OGSA-
compliant “service” is implemented via a collection of internal services that are managed
in some coordinated fashion. Standard interfaces and behaviors need to be defined to
facilitate the creation and operation of, and the integration of new services into, such
service domains.

• Policy. A Policy is a definitive goal, course or method of action based on a set of
conditions, to guide and determine present and future decisions. Policies are implemented
or executed within a particular context (such as policies defined for security, workload
management, network quality of service, etc.). They provide a set of rules to administer,
manage and control access to Grid resources. Policy Services are required to provide a
framework for creating, managing, validating, distributing, transforming, resolving, and
enforcing policies within a distributed environment.

• Security. Requirements here are wide reaching, encompassing policy services.
Fortunately, a substantial effort has already started within the OGSA Security WG on an
OGSA security roadmap that defines requirements, relationships to other standards
efforts (e.g., WS Security) and priorities for early development.

• Provisioning and resource management. Negotiation of service level agreements and
dynamic resource allocation and re-distribution consistent with SLA policy.

• Distributed data management services, supporting access to and manipulation of
distributed data, whether in databases or files [2]. Services of interest include database
access, data translation, replica management, replica location, and transactions.

7 Detailed Analysis
7.1 Common Resource Models / Resource Instrumentation
A common resource model is an abstract representation of real IT Resources, such as node,
interface adaptor, disk, filesystem, IP address. It is also an abstract representation of logical IT
Resources, that is, compositions of real IT Resources to build services and complete business
applications.

Resources, either real or logical, define information that is useful for managing a resource – a
concept known as manageability. Manageability details the aspects of a resource that support
management including the instrumentation that allows an application or management tool to
interact with a resource. Management is the active process of monitoring, modifying, and making
decisions about a resource including the capabilities that use manageability information to
perform activities or tasks associated with managing IT resources.

Manageable resources are exposed as Grid services in OGSA. A manageable (resource) Grid
service implements the GridServices portType plus additional portTypes for the purpose of being
used from or included in an application or management tool. Query of a resource’s manageability
information is through use of the GridServices portType’s find and query operations. The use of
additional portTypes provides manageability interfaces (common portType operations) to
facilitate traditional systems management disciplines such as performance monitoring, problem
determination, configuration, operational support, event notification, discovery, and lifecycle
management.

 11

Resources possess a lifecycle – an ordered set of states and the transitions between the states that
a resource (in CRM, a service) goes through. Resources exist from the time they are installed
until they are destroyed and a variety of states in between. Resources can be (and in most cases,
are) managed differently over their lifetime. The resource lifecycle extensions describe the
meaningful lifecycle states and transitions for the service, i.e., port types, operations, and service
data. An application or management tool uses a resource’s lifecycle state to better manage that
service.

The resource models are expressed in XSD and embodied in a grid service. So, accessing the
manageability information of a resource is just like as accessing any other grid service. The
resource’s manageability information can be instrumented using any instrumentation type of
choice, such as CIM, SNMP, and LDAP. The resource model and grid service for that resource is
independent of the underlying service implementation and resource instrumentation. The
Common Resource Model (CRM) is not a strict algorithmic mapping for any one model. Existing
models are mappable to CRM; those existing models with their operations and resource
instrumentation can be service implementations of CRM.

7.2 Service Domains
The value of Grid solutions will be realized through the formation of Grid service collections and
automated interactions between services and across collections. The OGSA Service Domain
architecture proposes a high level abstraction model to describe the common behaviors, attributes,
operations and interfaces to allow a collection of services to function as an integral unit and
collaborate with others in a fully distributed, heterogeneous, but grid-enabled environment. The
model includes, but is not limited to, the registration, discovery, selection, filtering, routing, fail-
over, creation, destroying, enumeration, iteration, and topological mapping of service instances
represented by the collection, as well as intra and inter collection interactions.

Service Domains represent multiple system and service objectives: resource oriented, such as
CPU, storage, and network bandwidth; infrastructure oriented, such as security, routing,
management; or application oriented, such as purchase orders, stock transactions, travel; etc.
Domains can be homogeneous or heterogeneous, compute-intensive such as financial calculations
or scientific and engineering computing, and transactional and business- process functions such
as ERP, CRM; etc. Multiple Service Domains could be composed, nested, peer-to-peer, layered,
overlapped, or mixed to satisfy the grid requirements for an enterprise complex, which could be
part of a larger grid complex of heterogeneous business entities.

The architecture starts with the proposed OGSI ServiceCollection portType which extends the
base GridService portType. ServiceColleciton defines the abilities to register (add) and unregister
(remove) service instances from the service collection. The Service Domain model extends the
ServiceCollection portType to provide a rich set of behaviors (and associated operations and
attributes) on top of the collection of services with layered abstractions. A proposed set of
behaviors that a Service Domain abstraction model should address initially include:

Filter: Behavior that supports choosing/allowing a Grid service to be included as part of a
service collection.

Selection: Behavior that supports choosing a particular instance or a subset of instances within
the service collection.

Topology: Behavior that supports a topological sort of the services in a service collection to
impose one or more orders on the services within a service collection

Enumeration: Behavior that enumerates the services in a service domain.

 12

Discovery: Behavior that allows a service domain to discover services from one or more
registries and/or service domains to include as part of the service collection.

Policy: Behavior that allows policies to control the behavior of service domain operations as well
as the constituent services (service domains).

In a large grid complex, service domains may be interconnected into a topology to meet the
objectives of the complex. Each domain is itself a grid service representing a collection of
services with specific functional objectives. Its intelligence comes from the rules and information
fed by others together with the data gathered itself. Domains automatically perform the function
for the grid complex by responding to the messages they receive.

7.3 Policy
A Policy is a definitive goal, course or method of action based on a set of conditions, to guide and
determine present and future decisions. Policies are implemented or executed within a particular
context (such as policies defined for security, workload management, network quality of service,
etc.). They provide a set of rules to administer, manage and control access to Grid resources. The
Policy Service provides a framework for creating, managing, validating, distributing,
transforming, resolving, and enforcing policies within a distributed environment.

The proposed architecture for policy services is derived from the IETF draft policy framework
architecture. It uses the IETF/DMTF CIM Policy Core Information Model, (IETF RFC3060 and
DTMF DSP0108) as its information model. Policies are encoded and stored in an XML schema,
which is derived from the CIM Policy Core Information Model extensions (PCIMe). The policy
model provides policy rules that consist of conditions and actions. It also provides grouping for
categorization / classification, and a scoping of policies by management discipline and role.
Through its GridService behavior, it provides subscription to, and notification of, policy state
changes so clients can be notified when policies become effective or expire, or are added, updated
or deleted.

The Policy Service components consist of a Policy Manager which controls access to the Policy
Repository for the purpose of policy creation and maintenance, Policy Enforcement Points that
carry out the enforcement of policies on a specific device, and discipline neutral Policy Agents
that can assist Policy Enforcement Points with policy retrieval, transformation and conflict
resolution. To assist with these tasks, it defines a framework for Policy Transformation services
to translate polices from business level objectives down to device level configurations, Policy
Validation services which can be called by administrative tools and autonomic managers to
validate policy changes, and Policy Resolution services to build higher level policy resolvers
which could evaluate “value to the business” concerns as those expressed in a Service Level
Agreement when resolving policy conflicts. All of these services are exposed as GridServices
conforming to the Grid service specification.

7.4 Security
OGSA security architecture must support, integrate and unify popular security models,
mechanisms, protocols, platforms and technologies in a way that enables a variety of systems to
interoperate securely. The security architecture defined in the OGSA Security Architecture
document (submitted to the OGSA SEC WG) is intended to be consistent with the security model
that is currently being defined for the Web services framework used to realize OGSA’s service-
oriented architecture.

The security of a Grid environment must take into account the security of various aspects
involved in a Grid service invocation. This is depicted in the following Figure.

 13

A grid service can be accessed over a variety of protocols and message formats it supports. Given
that bindings deal with protocol and message formats, they should provide support for quality of
service, including such security functions as confidentiality, integrity, and authentication.

Each participating end point can express the policy it wishes to see applied when engaging in a
secure conversation with another end point. Policies can specify supported authentication
mechanisms, required integrity and confidentiality, trust policies, privacy policies, and other
security constraints. Given the dynamic nature of Grid service invocations, end points will often
discover the policies of a target service and establish trust relationships with it dynamically.

Once a service requestor and a service provider have determined each other’s policies, they can
establish a secure channel over which subsequent operations can be invoked. Such a channel
should enforce various qualities of service including identification, confidentiality, and integrity.
The security model must provide a mechanism by which authentication credentials from the
service requestor’s domain can be translated into the service provider’s domain and vice versa.
This translation is required in order for both ends to evaluate their mutual access policies based
on the established credentials and the quality of the established channel.

Therefore, OGSA security model must address the following security disciplines: authentication,
confidentiality, message integrity, policy expression and exchange, authorization, delegation,
single logon, credential lifespan and renewal, privacy, secure logging, assurance, manageability,
firewall traversal and security at the OGSi layer.

As illustrated in the building blocks of Grid security model, and described above, existing and
evolving standards will be adopted or recognized in the Grid security model.

Bindings Security
(transport, protocol, message security)

Credential and
Identity Translation

(Single Logon)

User
Management

Key
Management

Intrusion
Detection

Service/End-point
Policy

Audit &
Non-repudiation

Anti-virus
Management

Trust M
odel

Authorization
Policy

Privacy
Policy

Secure
Conversations

Policy Expression and Exchange

Policy
Management
(authorization,

privacy,
federation, etc)

Mapping
Rules

Access Control
Enforcement

Figure 2: Components of Grid Security Model

Secure Logging

 14

Requestor
Application

VO
Domain

Credential
Validation

Service

Authorization
Service

Secure Conversation

Requestor's
Domain

Service Provider's
Domain

Audit/
Secure-Logging

Service

Attribute
Service

Trust
Service

Service
Provider

Application

Bridge
Service

Trust
Service

Authorization
Service

Attribute
Service

Credential
Validation

Service

WS-Stub WS-Stub

Audit/
Secure-Logging

Service

Figure: Grid Security Services

The relationship between a requestor, service provider and many of the security services is
depicted in Figure in a Virtual Organization setup. All the security service portTypes used by a
service requestor and service provider are to be standardized within OGSA. Compliant
implementation would be able to make use of existing services and defined policies through
configuration. Compliant security service implementations of a particular security related service
type, would be able to provide the associated and possibly alternative security services.

7.5 Data Integration and Access
The complexity of data access and management on a grid arises from the scale, dynamism,
autonomy, and distribution of data sources. These complexities should be made transparent to
grid applications, through a layer of grid data virtualization services.

Applications require transparencies across heterogeneity, location, naming, distribution, replicas,
ownership and costing for data access. The data virtualization services, such as, federated access
to distributed data, dynamic discovery of data sources based on content, dynamic migration of
data for workload balancing, schema management etc. provide these transparencies and enable
ease of information access on a grid. The data sources need to support standard interfaces to
enable uniformity of access. The GGF-DAIS group is chartered with defining the data
virtualization services and the standard interfaces.

 15

A Grid-enabled DBMS should federate all types of data - relational, XML, filesystem... It is
characterized as: Federated/Parallel DBMS which supports flexible infrastructure and dynamic
data source discovery.

7.6 Data Replication
To provide for the needs of distributed processing, the replication of data becomes critical to
ensure that local compute resources have access to local-data ensuring appropriate access with
satisfaction of performance objectives. Services that may consume data replication are Group
Services for Clustering and failover, utility computing for dynamic resource provisioning, Policy
services ensuring Quality-of-Service (QoS), Metering and Monitoring services, and also higher
level Workload Management and disaster recovery solutions. Each may need to migrate data for
computation or to replicate state for a given service.

The intent of the data replication work effort is to define an Open Grid Service Architecture
compliant set of services that, through the use of 'adapters', can move data in and out of
heterogeneous physical and logical environments without any changes needed to the underlying
local data access subsystems. The adapters handle the native 'reading' and 'writing' of data and the
replication software coordinates the runtime (recoverability, monitoring etc) associated with
every data transfer. A central process, 'Monitor' sets up and handles communication with the
calling service or program and sets up a 'subscription-pair' relationship between capture and apply
services on a per-replication-request basis to ensure reliability.

Capture Service
Source

Apply Service
Target

Capture Program
• Data

Apply Program
• Data

Monitor
Service Interface for

• Subscriptions (Static and Dynamic)
• QoS (latency, security,..)
• Notifications (subscriber, metadata, …)
• Billing, Auditing..

∆Psvcs ∆Csvcs
Control flow, Data Flow

Adapters
Adaption Layer

 16

7.7 Distributed Logging

7.7.1 Motivation / Overview
One of the primary goals for OGSA is to define standard service interfaces for meta-OS
functions, describe the exposed state for these functions as service data, and push down onto the
native platform for implementation.

All modern operating systems and middleware provide logging systems to facilitate the
communication and recording of diagnostic information. Log artifacts (i.e., atomic expressions of
diagnostic information) are used by end users, system administrators, support engineers, and
software developers to diagnose problems and monitor system activity. Log artifacts can also be
analyzed, aggregated, and used by autonomic systems to perform corrective or preventive actions
and are an essential component of Problem Determination systems.

Just as a logging service is an essential component for a traditional OS, it is also an essential
meta-OS component for OGSA and every Grid Service should have access to an OGSA logging
service.

Standard logging design patterns (LOG4J, JSR47, JRAS) separate the message producer
component from the component that interfaces with the message consumer. The following figure
expresses this basic pattern using OGSI semantics.

One of the advantages to this approach is that it permits the logical separation of logging artifact
creation from logging artifact consumption; ultimate usage (e.g., logging, tracing, management) is
determined by the message consumer not by the message producer.

7.7.2 Requirements

7.7.2.1.1 Abstract Interface
The log service should support standard OGSI semantics (eg FindServiceData and
DeliverNotification) for accessing log artifacts. Specifically, the Logging Grid Services should be

 17

configurable such they can be accessed through the GridService::FindSericeData operation,
NotificationSink::DeliverNotification operation, or through both operations.

7.7.2.1.2 Service Data
Log artifacts should be made available as service data. Also, to facilitate standard access to log
information, a canonical schema should be specified for log artifacts and its use encouraged.

7.7.2.1.3 Filtering
An application (the message producer) generates log artifacts that may or may not be used at a
later time by another application (the message consumer). In most cases, the amount of data
generated is very large, while the amount of data actually consumed can be relatively small.
Therefore, it is desirable to have a mechanism to control the amount of data generated and to
filter out data that is actually kept.

7.7.2.1.4 Configurable Behavior
Log services should support a variety of behavioral characteristics such as:

• persistency (i.e., how long should an log artifact persist, e.g., real-time monitoring data
becomes irrelevant very fast, but is needed as soon as it is generated, while audit data
may be needed months after it was generated),

• artifact retention policy (e.g., determining which log artifacts to drop when a buffer
reaches its size limit),

• consumption of log artifacts (push/notification or pull/findServiceData),
• reliable delivery of log artifacts, and
• security (i.e., who has access to log artifacts).

Hence, there is a need for a mechanism to create different repositories of data, each with its own
behavioral characteristics.

7.7.2.1.5 Native logs
To ensure access to native logs and legacy applications that exploit native logs, the logging
service should be able to accommodate (surface) artifacts placed into native OS logging
implementations.

7.8 Accounting: Metering resource consumption

7.8.1 Motivation / Overview
One of the primary goals for the OGSA is to define standard interfaces for meta-OS functions,
describe the exposed state for these functions as service data, and push down onto the native
platform for implementation.

All modern operating systems and many middleware systems provide the capability to meter
resource consumption and correlate the consumption by individual users, processes, and/or
threads. Traditional metering scenarios are based on departmental charge back and capacity
planning applications.

An accounting service is an essential component for a traditional OS and it is an essential meta-
OS component for OGSA. Traditional operating systems sample resource consumption on a per-
thread or per-process basis. These resource usage statistics are then used to generate accounting
records on a per user or per account basis. End-to-end flows can be constructed by composing
Grid Services.

 18

The metering of end-to-end flows in a grid environment is analogous to the metering of
individual processes in a traditional OS. However, traditional OS function is not adequate for
metering these end-to-end flows.
7.8.2 Requirements
An OGSA metering service must support metering the resource consumption of (configurable)
classes of end-to-end flows executing on widely distributed, loosely-coupled sets of server,
storage, and network resources. For example, in a departmental charge back scenario one may
partition incoming requests and their subsequent flows into account classes determined by
department.

In addition to traditional accounting applications, it is anticipated that end-to-end resource
consumption measurements will play an important role in dynamic provisioning, and pricing grid
services.

Key components of a metering grid service include modeling, obtaining (instrumentation),
correlating, and logging resource usage data for resources modeled in the OGSA Common
Resource Model (CRM).

7.9 Resource Management

References
1. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration, Globus Project, 2002.
www.globus.org/research/papers/ogsa.pdf.

2. Paton, N.W., Atkinson, M.P., Dialani, V., Pearson, D., Storey, T. and Watson, P.
Database Access and Integration Services on the Grid, U.K. National eScience Center,
2002. www.nesc.ac.uk.

3. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S. and Kesselman, C. Grid
Service Specification, 2002. www.globus.org/research/papers/gsspec.pdf.

