
GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp

Resource Namespace Service Specification

Status of This Memo

This memo provides information to the Grid community about resource namespace services. It
does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.

Abstract

This document describes the specification of a Resource Namespace Service (RNS), which is a
WSRF compliant Web service capable of providing namespace services for any addressable entity
by registering an Endpoint Reference or URL with an easily accessible, hierarchically managed,
name. This service, previously referred to as a virtual filesystem directory service (VFDS), has
been updated to incorporate an interface design that utilizes document style messages as
described in the WSRF specification. RNS is intended to facilitate namespace services for a wide
variety of Grid services, with an initial emphasis as one of the essential services for Grid file
systems or virtual file systems in the Grid environment. It can be employed to manage the
namespace of federated and virtualized data, services, or effectively any resource capable of being
referenced in a Grid/Web environment. This document proposes a set of operations and essential
resource property definitions that define the Resource Namespace Service.

Contents

Resource Namespace Service Specification .. 1
Abstract ... 1
Introduction.. 3
Resource Namespace Services .. 4

1.1 Basic Namespace Components ... 5
1.1.1 Virtual Directories .. 5
1.1.2 Junctions.. 5

1.2 Document Style Messaging .. 7
1.2.1 WSRF Compliant Service.. 7
1.2.2 Resource Properties Documents... 8

1.3 Operations of the Resource Namespace Service .. 11
1.3.1 Operation Parameters ... 11
1.3.2 Namespace Operations... 14
1.3.3 Implicit Operations ... 24
1.3.4 Context Operations.. 26
1.3.5 Profile Extension Operations ... 28

Federation of Resource Namespace Services.. 32
1.4 Distributed Namespace Repositories ... 32
1.5 Resolution Spanning Namespace Services.. 32

GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp

1.5.1 Service Referrals ... 32
1.5.2 Delegated Resolution .. 34

Resource Endpoint Resolution Service... 35
2.1 RNS Resolver Basic Components.. 35

2.1.1 Logical Reference.. 35
2.1.2 Endpoint Reference... 35

2.2 Document Style Messaging .. 35
2.3 Operations of RNS Resolver .. 35

2.3.1 Operation Parameters ... 36
2.3.2 RNS Resolver Operations ... 36

Considerations... 39
Summary and Conclusion ... 39
Appendix: Grid File System Profile.. 40
Appendix: RNS WSDL 1.1 .. 41
Acknowledgements ... 47
Author Information... 47
Intellectual Property Statement ... 47
Full Copyright Notice ... 47
References .. 48

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 3

Introduction

The Resource Namespace Service (RNS) encompasses a multi-faceted approach for addressing
the needs of access to resources within a distributed network or grid by way of a universal name
that ultimately resolves to a meaningful address, with a particular emphasis on hierarchically
managed names that may be used in human interface applications.

RNS is intended to facilitate namespace services for a wide variety of Grid applications and can be
employed to manage the namespace of federated and virtualized data, services, or effectively any
resource capable of being referenced in a grid/web environment.

The practical necessity of conveniently accessing the growing number of Web services,
corresponding applications, service artifacts and other service resources, has manifest an
escalating need for a generalized resource namespace service. Additionally, the ever-increasing
appreciation for resource virtualization has amplified the benefits of this service, which is capable of
maintaining a name to multi-address mapping, since the namespace thereby virtualizes all endpoint
references or resource addresses.

The Resource Namespace Service utilizes document style messaging that takes advantage of
XML, avoids unnecessary constraints (such as inflexible operation parameters and rigid return
types), is fully WSRF-compliant, and allows for extensibility via resource property profiling. This
document proposes a set of document style operations exploiting well-defined resource properties
that define the RNS service.

The RNS specification document has emerged from the Grid File System Working Group (GFS-
WG); principally based on the Virtual Filesystem Directory Service (VFDS) specification from that
group. Two major deliverables of the WG are (1) architecture of Grid File System Services and (2)
specification of namespace services. The VFDS specification was intended to address (2) by
proposing a namespace service that would easily satisfy the rudimentary need of managing a
namespace of federated and virtualized data, access control mechanisms, and a minimal set of
associated meta-data [1]. As the specification matured, it became more and more obvious that a
generalized namespace service would have substantial application in a wide variety of Grid services.
Consequently, the filesystem and data specific features of VFDS have been factored out of this
specification, yielding a generic resource namespace service that is no longer tailored to data
related applications. However, RNS features an extensible design allowing normative profile
specifications, such as OGSA Basic Profiles [5], to define a standard set of resource properties for
specific instantiations of the namespace service. For this reason, this document will not address
any data related namespace requirements but will initially include, in the appendix (see Appendix:
Grid File System Profile), a proposed profile for Grid File System instantiations of RNS.

The overall architecture of the Grid File System will be specified later in GFS-WG, which provides
infrastructure of virtual file systems facilitating federation and sharing of virtualized data from file
systems in the Grid environment by using Resource Namespace Services.

Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 4

Resource Namespace Services

The Resource Namespace Service, which will henceforth be referred to as RNS, enables
construction of a uniform, global, hierarchical namespace.[1] This directory service or namespace
service enables federation of essentially any Web or Grid resource. RNS embodies a three-tier
naming architecture, which consists of human interface names, virtualized reference names, and
endpoint references.

Name-to-resource mapping in RNS features the optional arrangement of two levels of indirection.
The first level of indirection is realized by mapping human interface names directly to endpoint
references or resource reference addresses. Since the properties of the endpoint reference may be
modified without altering the RNS entries that refer to them, this simple approach offers a
convenient means of name-to-resource mapping with a single level of indirection or resource
virtualization. A second level of indirection may be appreciated when mapping human interface
names to virtualized references (identified by logical or abstract names), which in turn map logical
names to endpoint references and hence the second level of indirection. The advantage of using a
logical name to represent a virtualized reference is that logical names may be referenced and
resolved independent of the hierarchical namespace. This means that logical names may be used
as a globally unique logical resource identifier and be referenced directly by both the RNS
namespace as well as other services. Although the RNS specification includes an optional port
type that services virtualized resource to endpoint resolution, as an independent service, it is not
required that clients use this RNS resolution service, since the logical name can potentially be
resolved by a separate logical to endpoint resolution service. In contrast, note that mapping
information and associated pointer handles for directly mapped human interface name to endpoint
references are not exposed by RNS and are therefore only used internally by RNS.

Following is a diagram that illustrates the three-tier naming architecture; please note that this
diagram is strictly intended to illustrate the levels of the naming architecture and is not limited to the
types of references shown:

Figure 1 - Three-Tier Naming Architecture

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 5

1.1 Basic Namespace Components

RNS is comprised of two fundamental namespace components: virtual directories and junctions.
These two essential namespace components, also referred to as RNS entries, are employed to
federate existing resources and construct a uniform hierarchy.

In all cases, junctions are capable of maintaining a list of references (EPRs/URLs) per entry, that is
a single junction my render several available EPRs, each of which represent replicas, copies of the
same resource, or operationally identical services. A description of each follows:

QName Section

Alias 1.1.2.4

Junction 1.1.2.1

LogicalReference 1.1.2.2

Referral 1.1.2.3

VirtualDirectory 1.1.1

1.1.1 Virtual Directories
A virtual directory is an RNS entry that is represented as a non-leaf node in the hierarchical
namespace tree. When rendered by a filesystem client, a virtual directory appears as a standard
filesystem directory, however does not have any corresponding position in any physical filesystem;
hence it is virtual. A virtual directory, therefore, is purely a namespace entity that functions in much
the same way as a conventional filesystem directory by maintaining a list of subentries, which
thereby demonstrate a hierarchical relationship. There are no restrictions regarding the layout of
the namespace tree; both virtual directories and junctions can be nested within nested virtual
directories recursively.

A virtual directory may be considered analogous to a collection, category, or context—to the extent
that these terms are used in most directory or catalogue contexts. Virtual directories do not have
any time or space existence outside of the namespace and strictly serve to facilitate hierarchy, and
thus categorization, by presenting the illusion of compartments, which may contain sub-
compartments as well as junctions.

Corresponding resource property QName = VirtualDirectory

1.1.2 Junctions
A junction is an RNS entry that interconnects a reference to an existing resource into the global
namespace. It functions in much the same way as a traditional distributed file system mount point
with the unique property of maintaining uniform namespace representation while facilitating two
levels of indirection. Junctions are categorized into four basic types: virtualized references,
endpoint references, referrals, and aliases.

1.1.2.1 Endpoint Reference Junction
An endpoint reference junction is an entry that maps to at least one Web or Grid resource by way of
a WS-Addressing[3] Endpoint Reference (EPR) or URL. This is a many-to-many mapping, meaning
that one entry may reference many resources and one resource may be referenced by many
entries. There is no limitation as to what may be referenced by RNS provided that a WS-
Addressing compliant EPR, or an RFC 1738 compliant URL, is used to register the reference
mapping.

Corresponding resource property QName = Junction

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 6

1.1.2.2 Virtualized Reference Junction
A virtualized reference junction is a junction that either contains an endpoint reference (EPR) or
universal resource locator (URL) that points to a secondary service, like a Replica Location Service
(RLS), for name-to-address resolution given a context unique (potentially global) logical name. This
specification does not mandate a required format for the target property value of a virtualized
reference. In other words, the format of the EPR is not mandated.

This RNS specification includes the description of a non-hierarchical name-to-address resolution
service, defined in an independent port type that facilitates simple logical name resolution as an
optional adjunct service. (see RNS Resolver Service)

Corresponding resource property QName = LogicalReference

1.1.2.3 Referral Junction
Referral junctions are junctions that link to other RNS instances, thereby facilitating such features
as symbolic links (or soft links), federation of independent domains of control, scalability of a single
domain of control, availability of redundant service instances that may or may not be geographically
distributed, etc. An example referral is illustrated in Figure 1 as “secured”, its URL might look
something like: rns://rns.secured.acme-research.org/.

Corresponding resource property QName = Referral

1.1.2.4 Alias Junction
An alias junction is a junction that references another entry within the same service instance to
provide the feature of representing a single entry in multiple locations in the namespace hierarchy
or simply by multiple names; this effect is comparable to the conventional Unix filesystem hard links.

Since an alias junction is intended to represent the entry it points to, the service implementation
MUST NOT allow an entry to be renamed, moved or deleted if one or more alias junctions point to
it. Therefore, if an entry’s AliasCount property is greater than zero, it may not be renamed, moved
or deleted unless the following exception is facilitated.

Optionally, the service MAY allow an entry to be renamed or moved if it has one or more alias
junctions pointing to it, if and only if the service dynamically updates the TargetPath property of
each corresponding alias junction pointing to the entry being renamed/moved. The service MAY
allow an entry to be deleted if it has one or more alias junctions pointing to it, if and only if it
dynamically reassigns all of the entry’s properties to one of the alias junctions, thereby transforming
the elected alias junction into a basic entry. Alias junction election in this context is not mandated
by this specification.

Corresponding resource property QName = Alias

The following sections explore the objects and interface definitions that exemplify the operations of
RNS. This material is not comprehensive, is subject to change, and does not examine the internal
procedures of the service.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 7

1.2 Document Style Messaging

RNS exploits a document style message exchange approach to services. In so doing, it offers
useful features whose benefits are beyond the flexibility of traditional remote procedure call (RPC)
style services. In this approach RNS leverages the capabilities of XML to communicate messages
that may be tailored according to the request. Additionally, greater flexibility is realized in the
exchange of parameters and complex types or objects. A document style interface facilitates a
greater extensibility of the service without breaking calling applications.

Access to RNS entry metadata is achieved by using a resource properties request document that
indicates which properties to retrieve. This means that only the properties the client is interested in
are retrieved. Furthermore, when submitting a change request message to the service, only the
properties specified will be SOAP encoded and sent to the service. As a result, a greater efficiency,
with respect to the sheer size of the SOAP message, may be realized.

1.2.1 WSRF Compliant Service
In addition to a document style interface, RNS provides standard access and manipulation of
stateful resource properties via Web Service Resource Framework (WSRF). The RNS interface
implements most of the WS-ResourceProperties[4] document types. The previous object oriented
model has been subsumed by a stateful exchange of SOAP messages. With the implementation of
the WS-Resource specification, RNS offers stateful interaction by maintaining a stateful resource
referred to as an IteratorContext.

The RNS IteratorContext resource is designed specifically for the purpose of maintaining stateful
properties related to iterative operations. This is particularly necessary when listing a potentially
large directory, since the application may not want to have all of the subentries returned in a single
message and therefore may request to receive the list in segments. To ensure each segment is
internally consistent within a projected list, the RNS service MUST support a point-in-time result-set
reflecting the entire list at the time the initial list request was processed. The IteratorContext then
enables subsequent list requests to be made that retrieve segment by segment from the point-in-
time result-set maintained on the service end. Consequently, IteratorContexts are automatically
constructed for every list request and SHOULD be destroyed after the iterator has been exhausted.
The resource properties document associated with the IteratorContext resource is described in
further detail in the next section.

RNS implements the following WSRF standard operations GetMultipleResourceProperties message
exchange for all query oriented operations and the SetMultipleResourceProperties message
exchange for all change oriented operations.

The RNS port type (RNSPortType) extends the GetResourceProperty port type defined by WS-
ResourceProperties[3], implementing the GetResourceProperty, GetMultipleResourceProperties,
and SetResourceProperty operations. Additionally, for lifetime management, the RNS port type
also implements the Destry, CurrentTime, TerminationTime, and SetTerminationTime.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 8

1.2.2 Resource Properties Documents
A resource properties document is the XML document representing a logical composition of
resource property elements for a given resource.[4]

1.2.2.1 RNS IteratorContext – The WS-Resource
As described in section 1.2.1, RNS defines a stateful resource referred to as an IteratorContext.
The instantiation of an IteratorContext resource is facilitated by the openContext() operation (see
1.3.4.3).

The following resource properties MUST be supported and available in the WS-Resource message
exchange:

QName Description

ChildCount Integer value that denotes the number of subentries found in the
current directory being listed.

DirectoryPath String representing the full path of the current directory being listed.

IteratorContextID String value that denotes the resource identifier of the IteratorContext
WS-Resource. The value SHOULD be considered transient and only
unique in its corresponding service instance for the lifetime of the
resource.

IteratorIndex Integer representing the current index or marker corresponding to a
current iterator operation; can be queried between iterator messages.
 [default value is “0”]

Following is the resource properties document associated with the RNS IteratorContext WS-
Resource.

 <!-- "Context" Resource for Maintaining State -->
 <xsd:element name="IteratorContext">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:childCount" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:directoryPath" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorIndex" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The following simply lists the resource property element declarations referred to by the resource
properties document above.

 <!-- Resource property element declarations -->
 <xsd:element name="childCount" type="xsd:int"/>
 <xsd:element name="directoryPath" type="xsd:string"/>
 <xsd:element name="iteratorContextID" type="xsd:string"/>
 <xsd:element name="iteratorIndex" type="xsd:int"/>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 9

1.2.2.2 Resource Properties for Namespace Entries
The previous section describes the resource properties document associated with the WS-
Resource of the RNSService port type, used for stateful communication. RNS facilitates access
and manipulation of namespace entries by way of document style messaging. As indicated in the
description of the RNS WS-Resource, the standard WSRF operations do not involve directly
accessing or modifying namespace entries but rather an RNS IteratorContext.

RNS specifies two fundamental service objects: (1) the first is the RNS IteratorContext resource,
which was described in section 1.2.2.1, and (2) the second is a namespace component referred to
as an RNS or namespace entry. Each entry represents a namespace node that symbolizes either a
virtual directory or a junction (see Basic Namespace Components 1.1).

Information about namespace entries is exchanged using document style messaging rather than
RPC style object serialization. We only refer to entries as “objects” in a conceptual manner,
understanding that they are not classes that will be instantiated in the client runtime environment.
For this reason this specification does not define an object or complex type that can be acted on
directly by any application. Instead, the specification will exhibit a profile approach by defining the
static list of resource properties corresponding to the namespace entry object or resource.

1.2.2.2.1 Required Entry Properties
All of the following properties MUST be implemented to represent properties of a namespace entry
by an RNS service implementation. Please notice that each of the following namespace entry
properties SHOULD be considered to represent transient values.
(Entry signifies a runtime instance of a valid namespace entry object.)

QName Description

Basic Properties

AliasCount Integer: Number of known aliases of Entry

ChildCount Integer: Number of subentries corresponding to Entry, if and only if
Entry is a Virtual Directory; zero or NULL otherwise.

Description String: Description of Entry

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp of Entry

Name String: Representation of the human interface name of Entry

Type String: Value denoting a type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory. (which
are also the “local part” values of the respective QNames)

Reference Properties – Properties that host target information

EPR String: Used to set or add a single Endpoint Reference

EPRs String: Used to retrieve all Endpoint References associated with Entry

LogicalReference String: Used to set or add a single Logical Reference

LogicalReferences String: Used to retrieve all Logical References associated with Entry

TargetPath String: Absolute path that identifies the target entry of an Alias junction.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 10

1.2.2.2.2 Extensible Entry Properties
In addition to the well-defined properties for namespace entries, an RNS service MUST implement
operations that enable administrative applications to add and remove user-defined properties that
may correspond to a profile definition. Thus the resource properties document design is extensible
in that user-defined properties can be added and removed without requiring modification of the core
service. (See section 1.3.4)

1.2.2.2.3 Property Relationships
Since RNS is SOAP 1.1 compliant and allows for message exchanges between heterogeneous
runtime environments, it does not enforce appropriate property relationships, dependencies, or
exclusivities. The service MUST however enforce such relationship requirements on the service
side, but a good understanding of what correct property relationships are is helpful.

1.2.2.3 Properties for Operation Parameters
In addition to IteratorContext and Entry resource properties, an RNS service MUST implement the
following properties and accommodate their use in the designated service operations listed in
section 1.3.

QName Description

All Boolean: Used in place of enumerating all of the available properties
(signified by QNames) of a given resource

AutoResolve Boolean value that if “true” will cause this operation to attempt to
resolve any virtualized resources by their logical name using the
companion RNS Resolver Service. Only one level of resolution is
required, so if a logical reference resolves to a virtualized
address/reference only the first level of abstraction is resolved.
[default value is “false”]

BaseDirectory String: Full path of the current working directory or BaseDirectory,
respective to the current service instance. Construction of an absolute
path may be realized by concatenating the BaseDirectory with a
relative entry name. If an absolute path spans multiple service
instances, the BaseDirectory value only reflects the path relative to
the root of the current service instance. This property MUST be
exchanged in all query operations (see 1.3.1.3) and can therefore be
leveraged for use in input parameters.

EndOfList Boolean: Value that if “true” indicates an iterative list operation has
reached the end of the list. This property MUST be exchanged in all
query operations (see 1.3.1.3).

Name String: Simple character string representation of a context dependant
name property.

Path String: Value representing a path or sequence of hierarchical tree
levels in the namespace tree; used as a generic parameter property for
most operations. Generally represents the only globally unique
persistent namespace entry identifier.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 11

1.3 Operations of the Resource Namespace Service

RNS is composed of the following types of operations:

1) Operations for querying namespace entry information.
2) Operations for creating, removing, moving/renaming, and updating entries.
3) Operations for managing attributes or status of an entry.

To retrieve information about a particular namespace entry, a standard message exchange
(operation) is initiated by a message request containing a list of all of the property names (QNames)
whose values are to be retrieved. The operation completes by returning a SOAP message
containing the values of all of the properties requested. The returned values may contain nested
value arrays and therefore are properly decoded by traversing the entire SOAP message, which is
comprised of nest-able message elements.

1.3.1 Operation Parameters

Please note that in the current WSRF implementation by Globus 3.9.4, only one parameter is
permitted per operation. Before examining the purposed operations, it is necessary to review the
associated operation parameters. All RNSService port type operations take one of the following
input parameters.

1.3.1.1 QueryInput
This is a document literal service compliant message (complexType) that contains two elements:

Parameter Name Description

parameterList A complexType that encapsulates an unbound array of name-value
pairs

propertyTypes An unbound array of (xsd:QName) strings

 <xsd:complexType name="QueryInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- Array of QNames used to indicate what properties to retrieve -->
 <xsd:element ref="tns:propertyTypes" minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 12

1.3.1.2 ChangeInput
This is a document literal service compliant message (complexType) that contains two elements:

Parameter Name Description

parameterList A complexType that encapsulates an unbound array of name-value
pairs

changeProperties A wsrp:SetResourceProperties message [4]

 <xsd:complexType name="ChangeInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

The changeProperties message allows the processing of a single request message to make
multiple changes to the target resource properties document. There are three types of changes:

o Insert: wherein a new property element is inserted into the resource properties document
o Update: wherein existing property element(s) are modified
o Delete: wherein an existing property element(s) are removed

Therefore, property values MUST be sent using the appropriate change type for the request. In
other words, if the caller desires to add a new property value to a given resource they must set the
value in the Insert element.

The format of this request message MUST be:

<wsrp:SetResourceProperties>
 {
 <wsrp:Insert >
 {any}*
 </wsrp:Insert> |
 <wsrp:Update >
 {any}*
 </wsrp:Update> |
 <wsrp:Delete ResourceProperty=”QName” />
 }+
</wsrp:SetResourceProperties>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 13

1.3.1.3 QueryResponse
This is a document literal service compliant message (complexType) that contains three
components: BaseDirectory, EndOfList and an array of unrestrained message elements. If the
response message signifies a referral message (see 1.5.1.1), then it will contain one or more
referral EPRs. The following is the WSDL representation of the QueryResponse:

 <xsd:complexType name="QueryResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:endOfList" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:any minOccurs="0" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

1.3.1.4 ChangeResponse
This is a document literal service compliant message (complexType) that contains two components:
BaseDirectory and a string message. If the response message signifies a referral message (see
1.5.1.1), then it will contain one or more referral EPRs. The following is the WSDL representation of
the ChangeResponse:

 <xsd:complexType name="ChangeResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:element ref="tns:message" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 14

1.3.2 Namespace Operations
The following is a comprehensive list of operations defined in the RNS namespace port type
(RNSPortType) specification.

1.3.2.1 create

Enables an application to submit a request message that contains an array of message elements,
each of which represent a property name/value pair, to be created and persistently stored by the
service host. This operation is primarily used for the creation of namespace entries, but may also
effect the creation of other datastore objects (like Endpoint Reference entries if the service
implementation utilizes a separate entry for storing EPR information).

If type is Alias, then this operation MUST abort the operation and return a fault message if the
TargetPath value refers to any direct ancestor in the hierarchy, or refers to another Alias entry that
ultimately refers to any direct ancestor in the hierarchy. This condition is intended to guard from
circular referencing.

This operation modifies namespace repository content and therefore MUST support update
semantics that ensure atomic updates to namespace content. (See section 1.4 for details)

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

There are no changeProperties used in this operation.

Path MUST be specified in the parameterList of ChangeInput. If Name is specified, the service
will implicitly appends the value of Name to the value of Path to derive the absolute path of the entry
to create; if Name is not specified, the service simply uses the value of Path as the absolute path of
the entry to create.
(for values see 1.2.2.3):

QName Description

Path If Name is specified, this is the absolute path of the parent
VirtualDirectory of which Name will be created as a child entry;
otherwise this is the absolute path of the entry to be created.

Name String representation of the human interface name of the entry to
create. Optional: If used denotes the name of the entry to be created
as a child of Path; otherwise if not used, Path MUST represent the
absolute path of the entry to create, including the entry name.

Type String: Value denoting a type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

Exactly one type (LogicalReference, EPR, Alias, Referral, or VirtualDirectory) MUST be specified.

The following entry properties MAY be specified in the parameterList of ChangeInput
(for values see 1.2.2.2.1):

QName Description

Description String: Optional description

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp

EPR Value of a single Endpoint Reference to be associated with Entry

LogicalReference Value of a single Logical Reference to be associated with Entry

TargetPath The absolute path of the target entry. Set only if Entry is an Alias.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 15

Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

Note that more than one EPR and LogicalReference elements MAY be included in a single
message exchange, effectively representing a list of values.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 16

1.3.2.2 delete

Enables an application to submit a request message that contains the path of the entry to delete.

This operation modifies namespace repository content and therefore MUST support update
semantics that ensure atomic updates to namespace content. (See section 1.4 for details)

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following parameter MUST be specified in the parameterList of ChangeInput.
(for values see 1.2.2.3):

QName Description

Path The absolute path of Entry to be deleted.

There are no changeProperties used in this operation.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 17

1.3.2.3 list

Enables an application to submit a request message that contains an array of property names
whose values are to be retrieved for each namespace entry, which is a subentry of the virtual
directory entry denoted by the path value specified as an input parameter. If the path specified
does not denote a virtual directory then a fault MAY be thrown.

Since directories may contain a very large number of subentries, this operation enables the caller to
specify the maximum number of subentries allowable per message exchange (IteratorMaxAtOnce).
If this parameter property is specified as a non-zero value, then the number of entries returned will
be limited to this value. This feature is most useful when used in conjunction with an
IteratorContext, which allows for sequential iteration through the result set of a list operation.

An IteratorContext is constructed and operated on using standard WSRF mechanisms for stateful
resource interaction. In this case, the stateful resource is the point-in-time result set of a list
operation. This result set embodies a “snapshot” of namespace subentries relative to the path
specified, at the point in time in which the original list() operation was invoked. This ensures that if
the namespace is modified between list() operations while using an IteratorContext, the list of
subentries MUST remain coherent, corresponding to the result set derived at the time of the initial
message exchange.

An IteratorContext MUST first be constructed, using the openContext() operation of the namespace
port-type (see 1.3.4.3), followed by the use of the Endpoint Reference (EPR), derived from the
IteratorContextResponse, to exchange messages with this list() operation. Once an IteratorContext
is established and its corresponding EPR used for message exchanging, the list() operation MUST
automatically maintain stateful result set information corresponding to the IteratorContext resource.

There are two basic methods of iterating through the point-in-time result set of the initial list()
operation when using an IteratorContext:

1. Implicit Iteration – This method allows simple iteration in a convenient sequential fashion

wherein the IteratorIndex advances implicitly. In this mode of operation, after the client or
application exchanges an initial message with the list() operation using an IteratorContext EPR,
thereby establishing a new IteratorContext resource, all subsequent messages to the list()
operation using the IteratorContext EPR MUST return the next set of entries from the point-in-
time result set. If a subsequent message is sent using a previously established IteratorContext
EPR, with all parameters remaining the same, the service MUST automatically iterate
progressively, according to the maximum number of subentries allowed per exchange, thereby
responding with the maximum allowable number of entries starting at the first index that
immediately follows the last interval and advancing the IteratorIndex value per operation
message exchange.

For example, if the IteratorMaxAtOnce property is set to a value of 5 and a new IteratorContext
resource is constructed during an initial message to the list() operation, which yielded 10 entries
in its point-in-time result set, then the iteration would look something like this:

[message][EPR] --> [list operation] --> Result set compiled and
 <-- [entries 0,1,2,3,4] state stored in
 IteratorContext resource
 with IteratorIndex = 5
[message][EPR] --> [list operation]
 <-- [entries 5,6,7,8,9 + EndOfList message]
[message][EPR] --> [destroy IteratorContext resource*]

(continued on next page)

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 18

(continued from previous page – list operation)

Where [message] doesn’t change and contains value like:
<Message>
 <wsa:EndpointReference>...</wsa:EndpointReference>
 <rns:Path>/foo/bar</rns:Path>
 <rns:IteratorMaxAtOnce>5</rns:IteratorMaxAtOnce>
</Message>

*Since the IteratorContext resource is a WSRF resource, it is managed using standard WSRF mechanisms.

2. Explicit Iteration – This method offers more control over the iteration process by allowing the
application or client to explicitly specify what segment of a given point-in-time result set should
be returned. This is accomplished by specifying a base zero value for the IteratorIndex
parameter. If a base zero value for the IteratorIndex parameter is specified, the service MUST
set the internal list index marker, corresponding to the result set associated with the
IteratorContext resource, to this value prior to responding to the request. The response MUST
contain all entries from the specified IteratorIndex up to the index whose value is (IteratorIndex
+ IteratorMaxAtOnce) or up to the end of the list if the end of the list is reached prior to the
value of (IteratorIndex + IteratorMaxAtOnce). As long as the IteratorContext resource is valid,
the result set associated with the initial list() operation using the IteratorContext may be
operated on, allowing overlapping or same segments to be returned in different message
exchanges. Consequently, the application or client must guard from infinite loop conditions
resulting from improper values specified for the IteratorIndex, such as specifying the same
value repeatedly.

For example, if the IteratorMaxAtOnce property is set to a value of 5 and a new IteratorContext
resource is constructed during an initial message to the list() operation, which yielded 10 entries
in its point-in-time result set, then the iteration would look something like this:

[message1][EPR] --> [list operation] --> Result set compiled and
 <-- [entries 0,1,2] state stored in
 IteratorContext resource
[message2][EPR] --> [list operation]
 <-- [entries 3,4,5,6,7,8,9 + EndOfList message]
[message3][EPR] --> [destroy IteratorContext resource*]

Where [message1] contains value like:
<Message>
 <wsa:EndpointReference>...</wsa:EndpointReference>
 <rns:Path>/foo/bar</rns:Path>
 <rns:IteratorIndex>0</rns:IteratorIndex>
 <rns:IteratorMaxAtOnce>3</rns:IteratorMaxAtOnce>
</Message>

Where [message2] contains value like:
<Message>
 <wsa:EndpointReference>...</wsa:EndpointReference>
 <rns:Path>/foo/bar</rns:Path>
 <rns:IteratorIndex>3</rns:IteratorIndex>
 <rns:IteratorMaxAtOnce>7</rns:IteratorMaxAtOnce>
</Message>

*Since the IteratorContext resource is a WSRF resource, it is managed using standard WSRF mechanisms.

(continued on next page)

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 19

(continued from previous page – list operation)

Summary
In its simplest form, this operation returns a list of subentries relative to the path specified.

Large lists MAY be handled using an IteratorContext resource, via standard WSRF mechanisms, for
stateful interaction with a point-in-time result set compiled during the initial list() operation request.

Automatic progressive sequential iteration MAY be realized by repeated message exchanges to the
list() operation, provided a valid IteratorContext is used.

Specific iteration intervals and list segments MAY be rendered by setting the IteratorIndex
parameter to a base zero value. The length of the segment returned is determined by the value of
the IteratorMaxAtOnce parameter.

In all cases, if the end of the list is reached, the EndOfList element value is set to “true” and sent in
the response message.

This operation only responds to requests whose path value denotes a namespace virtual directory
(type: QName=VirtualDirectory). If the path specified does not denote a virtual directory then a fault
MAY be thrown.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of QueryInput. Path value
MUST be specified.
(for values see 1.2.2.1 & 1.2.2.3):

QName Description

Path The absolute path of the virtual directory to list. Required.

AutoResolve Boolean value that if “true” will cause this operation to (1) attempt to
resolve any virtualized resources (one level) by their logical name using
the companion RNS Resolver Service and (2) resolve all Alias
TargetPath values if an Alias points to another Alias, thereby returning
the ultimate or “final destination” TargetPath.
[default value is “false”]

IteratorMaxAtOnce Integer indicating the maximum number of entries allowed in a single
message; used in iterative list operations. A value of zero “0” indicates
no maximum limit.
[default value is “0”]

IteratorIndex Integer indicating the (base zero) index of the result set corresponding
with a valid IteratorContext. A positive value of this parameter MUST
override the current list index marker in the IteratorContext maintained
on the service end. A value greater than the total count of entries in
the result set MAY throw a fault.

At least one entry property type MUST be specified for this operation (see below).

 (continued on next page)

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 20

(continued from previous page – list operation)

The following entry properties MAY be specified in the propertyTypes of QueryInput
(for values see 1.2.2.2.1):

QName Description

All Used in place of enumerating all of the available properties (signified by
QNames); indicates ALL properties should be returned.

AliasCount Number of known aliases of Entry

ChildCount Number of subentries corresponding to Entry, if and only if Entry is a
Virtual Directory; zero or NULL otherwise.

Description Optional description of Entry

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp of Entry

Name String representation of the human interface name of Entry

Type String value denoting the type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

EPRs Used to retrieve all Endpoint References associated with Entry

LogicalReferences Used to retrieve all Logical References associated with Entry

TargetPath The absolute path of the target entry; if and only if Entry is an Alias;
empty or NULL otherwise.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list
includes all of the Required Entry Properties (see 1.2.2.2.1):

QName AliasCount, ChildCount, Description, EPR, EPRs,
LogicalReference, LogicalReferences, ModificationTime, Name,
TargetPath, Type

An example return message might look something like the following (if the propertyTypes of
QueryInput included Name, ChildCount, Description, and Type):

<ns1:BaseDirectory xmlns:ns1="http://rns.ggf.org"> /ggf.org/ogsa/ </ns1:BaseDirectory>
<ns2:EndOfList xmlns:ns1="http://rns.ggf.org"> true </ns2:EndOfList>
<ns3:Entry xmlns:ns1="http://rns.ggf.org">
 <ns3:Name>rns</ns3:Name>
 <ns3:ChildCount>5</ns3:ChildCount >
 <ns3:Description>This is the RNS project directory</ns3:Description>
 <ns3:Type>VirtualDirectory</ns3:Type>
</ns3:Entry>
<nf4:Entry xmlns:ns1="http://rns.ggf.org">
 <nf4:Name>byteio</nf4:Name>
 <nf4:ChildCount>3</nf4:ChildCount >
 <nf4:Description>This is the ByteIO project directory</nf4:Description>
 <nf4:Type>VirtualDirectory</nf4:Type>
</nf4:Entry>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 21

1.3.2.4 lookup

Enables an application to submit a request message that contains an array of property names to be
retrieved for the namespace entry denoted by the path value within the input parameter.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of QueryInput. Path value
MUST be specified.
(for values see 1.2.2.1 & 1.2.2.3):

QName Description

Path The absolute path of the entry to lookup. Required.

AutoResolve Boolean value that if “true” will cause this operation to (1) attempt to
resolve any virtualized resources (one level) by their logical name using
the companion RNS Resolver Service and (2) resolve all Alias
TargetPath values if an Alias points to another Alias, thereby returning
the ultimate or “final destination” TargetPath.
[default value is “false”]

At least one entry property type MUST be specified for this operation (see below).
The following entry properties MAY be specified in the propertyTypes of QueryInput
(for values see 1.2.2.2.1):

QName Description

All Used in place of enumerating all of the available properties (signified by
QNames); indicates ALL properties should be returned.

AliasCount Number of known aliases of Entry

ChildCount Number of subentries corresponding to Entry, if and only if Entry is a
Virtual Directory; zero or NULL otherwise.

Description Optional description of Entry

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp of Entry

Name String representation of the human interface name of Entry

Type String value denoting the type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

EPR Used to set or add a single Endpoint Reference

EPRs Used to retrieve all Endpoint References associated with Entry

LogicalReference Used to set or add a single Logical Reference

LogicalReferences Used to retrieve all Logical References associated with Entry

TargetPath The absolute path of the target entry; if and only if Entry is an Alias;
empty or NULL otherwise.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list
includes all of the Required Entry Properties (see 1.2.2.2.1):

QName AliasCount, ChildCount, Description, EPR, EPRs,
LogicalReference, LogicalReferences, ModificationTime, Name,
TargetPath, Type

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 22

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 23

1.3.2.5 update

Enables an application to submit a request message that contains an array of message elements,
each of which represent a property name/value pair, to be used to update an existing entry in the
database.

This operation modifies namespace repository content and therefore MUST support update
semantics that ensure atomic updates to namespace content. (See section 1.4 for details)

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following parameter MUST be specified in the parameterList of ChangeInput.
(for values see 1.2.2.3):

QName Description

Path The absolute path of the entry to update. Required.

The following entry properties MAY be specified in the changeProperties of ChangeInput
(for values see 1.2.2.2.1):

QName Description

Description Optional description

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp

Name String representation of the human interface name of Entry

Path The absolute path the entry should be changed to. Used in “move”
operations

EPR Add a single Endpoint Reference to be associated with Entry

LogicalReference Add a single Logical Reference to be associated with Entry

TargetPath Set the absolute path of the target entry. Set only if Entry is an Alias.

Type String: Value denoting a type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

Note that more than one EPR and LogicalReference elements MAY be included in a single
message exchange, effectively representing a list of values.

The ChangeInput parameter is fully capable of inserting, updating, and deleting properties in a
single message exchange via the changeProperties component. Values MUST be represented by
the appropriate change type: Insert, Update, or Delete. (see section 1.3.1.2)

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 24

1.3.3 Implicit Operations

This specification attempts to maximize the flexible capabilities of document style messaging while
maintaining a simple, clearly defined API. Unlike traditional RPC based approaches, RNS utilizes a
minimal set of operations used for exchanging messages that are potentially capable of performing
multiple tasks in a single exchange. Rather than defining a separate operation for each task, this
specification describes a number of implicit operations, which are essentially descriptions of how to
perform conventional directory service tasks using the well defined service operations.

1.3.3.1 move

Move a namespace entry from one location in the hierarchical namespace tree to another.

Operation: update (see 1.3.2.5)

The following parameter MUST be specified in the parameterList of ChangeInput.
(for values see 1.2.2.3):

QName Description

Path The absolute path of the entry to update. Required.

The following properties MUST be specified in the changeProperties of ChangeInput
(for values see 1.2.2.2.1):

QName Description

Path The absolute path the entry should be changed to. Used in “move”
operations. Value MUST be expressed in the Update element of
changeProperties.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 25

1.3.3.2 rename

Rename a namespace entry.

Operation: update (see 1.3.2.5)

The following parameter(s) MAY be specified in the parameterList of ChangeInput. Path MUST
be specified.
(for values see 1.2.2.3):

QName Description

Path The absolute path of the entry to update OR the BaseDirectory if Name
is specified. Required.

Name String representation of the human interface name of Entry. Optional:
MAY be used to denote the subentry relative to the value of Path.

At least one of the following properties MUST be specified in the changeProperties of
ChangeInput
(for values see 1.2.2.2.1):

QName Description

Name String representation of the human interface name of Entry. Used only
if a BaseDirectory is specified and the value of the Name input
parameter is non-NULL.

Path The absolute path denoting the new path/name of the entry.

1.3.3.3 mkdir

Make a directory entry in the namespace; a virtual directory.

Operation: create (see 1.3.2.1)

The following parameters MUST be specified in the parameterList of ChangeInput.
 (for values see 1.2.2.3 and 1.2.2.2.1):

QName Description

Path The absolute path of the virtual directory to create.

Type Set with a value of VirtualDirectory.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 26

1.3.4 Iterator Context Operations

RNS facilitates the use of and interaction with a stateful resource, referred to as an IteratorContext
(see 1.2.2.1), for the purpose of maintaining state information, such as the list index marker, while
iterating large lists. In order to instantiate a new IteratorContext resource, an application or client
must first send a message to the RNS service. The following operation provides this feature.

The RNS service MUST be able to support use of an IteratorContext and therefore MUST support
the openContext() operation.

This is a document literal service compliant message (complexType) that contains one element:

Parameter Name Description

iteratorContextID String: This is an unconstrained string used to uniquely identify a
particular IteratorContext instance. The format or syntax of this
property is NOT mandated by this specification.

1.3.4.1 IteratorContextRequest
The following is the WSDL representation of the IteratorContextRequest:

 <xsd:complexType name="IteratorContextRequest">
 <xsd:sequence>
 <!-- Iterator Context ID -->
 <xsd:element ref="tns:iteratorContextID" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="iteratorContextID" type="xsd:string" />

1.3.4.2 IteratorContextResponse
This is a document literal service compliant message (complexType) that contains two elements: an
Endpoint Reference corresponding to the IteratorContext resource in context and the iterator
context identification string.

The following is the WSDL representation of the IteratorContextResponse:

 <xsd:complexType name="IteratorContextResponse">
 <xsd:sequence>
 <xsd:element ref="wsa:EndpointReference"/>
 <!-- Iterator Context ID -->
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 27

1.3.4.3 createIteratorContext

Instantiate a new IteratorContext. This operation will create a new IteratorContext, using the
provided iteratorContextID if specified, to be used in subsequent list operations. If an
iteratorContextID is specified and already exists within the current instance of the service, then a
fault message is returned. The response message of this operation embodies an Endpoint
Reference that corresponds to the said service side IteratorContext resource.

Parameter: IteratorContextRequest (see Error! Reference source not found.)
Returns: IteratorContextResponse (see Error! Reference source not found.)

The following iteratorContextID MAY be specified; if iteratorContextID is not specified, then the
service MUST generate a point-in-time unique identification string that signifies the
iteratorContextID. If an iteratorContextID is generated by the service, the application or client can
retrieve the iteratorContextID from the IteratorContextResponse message (see Error! Reference
source not found.). The EPR contained in the response message MUST be used for all subsequent
message exchanges that intend to interact with the IteratorContext resource.

QName Description

IteratorContextID Identification string of the IteratorContext to be created. Optional.

1.3.4.4 getIteratorContext

Open an existing IteratorContext. This operation will open the IteratorContext corresponding to the
IteratorContextID specified. If a valid IteratorContext does not exists according to the
IteratorContextID specified, then a fault message is returned. The response message of this
operation embodies an Endpoint Reference that corresponds to the said service side
IteratorContext resource.

Parameter: IteratorContextRequest (see Error! Reference source not found.)
Returns: IteratorContextResponse (see Error! Reference source not found.)

The following iteratorContextID MUST be specified. The EPR contained in the response message
MUST be used for all subsequent message exchanges that intend to interact with the
IteratorContext resource.

QName Description

IteratorContextID Identification string of the IteratorContext to be retrieved. Required.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 28

1.3.5 Profile Extension Operations

RNS features an extensible design allowing normative profile specifications, such as OGSA Basic
Profiles [5], to define a standard set of resource properties for specific instantiations of the
namespace service. This feature facilitates extensibility without requiring modification to the RNS
specification or implementation, eliminates the necessity to draft a design specification, and
eliminates the necessity to develop any implementation code that “extends” or “subclasses” any
RNS component. Traditional software engineering practices generally extend a service class or
component by subclassing it and adding specific functionality tailored for a particular purpose. This
approach usually requires that each time a new function is added, software development and
deployment is necessary.

In an effort to leverage the flexibility and abstractness of document style Web services, RNS
proposes a mechanism that facilitates dynamic runtime extensibility with the use of adjunct resource
properties. These adjunct resource properties may be defined by a Basic Profile [5]. An adjunct
resource property may be added to the effectual resource properties document of the RNS entry
properties document. This means that an administrator of the RNS service may define resource
properties that will be used in addition to the required entry properties [Required Entry Properties
1.2.2.2.1], thereby effectively augmenting the representation of the RNS Entry resource and
extending the resource properties associated with it to include the newly added adjunct resource
properties.

The RNS service MUST be able to support use of any dynamically added adjunct resource property,
by properly allowing the use of message elements identified by QNames that represent the adjunct
resource property. Values MUST be expressible in XML compatible data types [6].

1.3.5.1 Profile Extension Operation Parameters
The following table defines the properties used as parameters in the RNS profile extension
operations.

QName Description

DataType WSDL compatible representation of the XML data type. Possible
values are: string, boolean, base64Binary, hexBinary, float, decimal,
double, anyURI, QName, duration, dateTime, time, and date.
Example: “string” See [6].

Description String description of the adjunct resource property

Name Name of the adjunct resource property, serving as the QName (local
part) used to represent the property in general operations.

Profile Optional string value denoting the Profile this adjunct resource property
is associated with.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 29

Following are the operations that enable management of adjunct resource properties defined in the
RNS port type (RNSPortType) specification:

1.3.5.2 deleteProperty

Delete an existing adjunct resource property from the registry. This operation will delete ALL
instances of the property even if more than one entry has stored values corresponding to the
property.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 1.3.5.1)::

QName Description

Name Name of the adjunct resource property to be deleted. (QName)

1.3.5.3 insertProperty

Store a new adjunct resource property to the registry. An exception is thrown if the adjunct
resource property specified already exists in the service’s persistent database.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 1.3.5.1):

QName Description

Name Name of the adjunct resource property to be inserted. (QName)

The following properties MAY be specified in the parameterList of ChangeInput
(for values see 1.3.5.1):

QName Description

DataType WSDL compatible representation of the XML data type.

Description Description of the adjunct resource property

Profile Optional string value denoting the Profile this adjunct resource property
is associated with.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 30

1.3.5.4 listProperties

Lists all currently registered adjunct resource properties.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of QueryInput serving as query
filters.
 (for values see 1.3.5.1):

QName Description

DataType Use as a list filter. Only adjunct resource properties that match the
value of this parameter will be returned.

Name Use to identify a specific adjunct resource property to list. Only the
property that matches the value of this parameter will be returned.

Profile Use as a list filter. Only adjunct resource properties that match the
value of this parameter will be returned.

At least one property type MUST be specified for this operation (see below).
The following properties MAY be specified in the propertyTypes of QueryInput to specify what
properties of the returning adjunct resource properties should be listed.
 (for values see 1.3.5.1):

QName Description

DataType WSDL compatible representation of the XML data type.

Description Description of the adjunct resource property

Name Name of the adjunct resource property. (QName)

Profile String value denoting the Profile this adjunct resource property is
associated with.

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list
includes all of the Profile Extension Operation Parameters (see 1.3.5.1):

QName DataType, Description, Name, Profile

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 31

1.3.5.5 updateProperty

Updates an existing adjunct resource property.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of ChangeInput.
(for values see 1.3.5.1):

QName Description

Name Name of the adjunct resource property to be updated. (QName)

The following properties MUST be specified in the changeProperties of ChangeInput
(for values see 1.3.5.1):

QName Description

DataType WSDL compatible representation of the XML data type.

Description Description of the adjunct resource property

Name Name of the adjunct resource property. (QName)

Profile String value denoting the Profile this adjunct resource property is
associated with.

The ChangeInput parameter is fully capable of inserting, updating, and deleting properties in a
single message exchange via the changeProperties component. Values MUST be represented by
the appropriate change type: Insert, Update, or Delete. (see section 1.3.1.2)

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 32

Federation of Resource Namespace Services

A global namespace service directly implies the employment of a multitude of namespace servers
by virtue of geographical distribution, segregated domains of ownership and control, scalability, and
redundancy/availability. A principal goal of a global namespace service is to provide a location
independent view of consistent access paths to resources. Since these access paths are
represented by hierarchal path names, symbolizing a globally unique identifier to a given resource,
it is a natural extension of the design to consider an architecture that federates multiple namespace
servers in a hierarchical fashion. Similar to the well established DNS model, RNS service providers
can be interlinked by referrals whilst providing a seamless and transparent view of the namespace.

1.4 Distributed Namespace Repositories

A namespace service that accommodates scalability, redundancy/availability, and geographic
dissemination implicitly necessitates the distribution of servers in a grid or network. Duplicate or
replica copies of namespace content, which embody namespace entries and their associated
properties, MAY need to be distributed with a network and therefore the specification of the
namespace service MUST mandate provisions to make such configurations possible.

Namespace content is stored in what is referred to in this document as a repository. This
specification does not prescribe the type of data store to be used as the repository of namespace
content.

This specification does not mandate how namespace content is to be distributed. It does not
specify how to distribute, replicate, or maintain consistency between multiple repository replicas.
However, since the specification does describe operations that allow for namespace content to be
updated, it must therefore require that all updated operations comply with the following update
semantics. Any operation that modifies namespace repository content MUST support update
semantics that ensure atomic updates to namespace content. This means that operations like
create, delete, and update MUST guarantee synchronized processing that prevents update
contingencies based on concurrent execution.

1.5 Resolution Spanning Namespace Services

Once several instances of the namespace service are interlinked, the most obvious challenge is
related to path name resolution when dealing with paths that cross referral boundaries. There are
two fundamental approaches to resolving path names that span multiple namespace domains or
service instances: service referrals and delegated resolution.

1.5.1 Service Referrals
The most straightforward and arguably the most secure and truly scalable approach to resolving
path names that span multiple domains or service instances is to place the onus of handling RNS
referrals on the RNS client. In this approach, the namespace server would simply return an RNS
referral to the RNS client when a junction to another namespace server is encountered. The client
implementing the RNS API is then responsible for continuing the task of resolving the original path
name by connecting to the namespace server indicated by the RNS referral and querying the newly
connected server for further (relative) path name resolution.

One clear advantage of this approach is the direct management of namespace service connections,
which implies authentication and authorization control per connection, rather than accessing a
referred namespace server via proxied security. Additionally, this approach promotes distributed
work load balancing; instead of requiring RNS servers to handle namespace requests for both
locally managed namespace and remotely managed namespace via proxy.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 33

This specification mandates that a compliant implementation MUST facilitate the capability of
service referrals as described here. In particular, the mechanism MUST use the referralEPR
element featured in both the QueryResponse and ChangeResponse messages.

1.5.1.1 Referral Messages
Since all namespace entities are uniquely distinguished by a globally unique pathname, and
pathnames are the only option for identifying namespace entries, this specification REQUIRES that
all requests use an absolute pathname when dealing with namespace entries.

Each response message MUST contain a BaseDirectory value, which is a full path of the current
working directory, respective to the current service instance (see 1.2.2.3). Notice that the
BaseDirectory does not denote the global absolute path from the perspective of the client or
application, but rather the full path relative to the root of the current service instance.

A good understanding regarding the use of absolute paths and the BaseDirectory value of each
response message is essential to the understanding of spanning multiple service instances and
handling referral messages.

All namespace requests are responded to using a QueryResponse or ChangeResponse message.
Both of these message types define a referralEPR element, which is ONLY used when the
message denotes a referral message. If a request is made using a path that traverses a referral
namespace entry, the request MUST be interrupted with a referral message. A referral message is
therefore defined as a response message that contains one or more referral EPRs. If a
QueryResponse or ChangeResponse message defines a non-null value for the referralEPR
element, the application or client MUST redirect the request to the service instance specified by the
referral EPR. The application or client is responsible for handling all details related to connecting to
multiple service instances and maintaining a mapping between each instance’s BaseDirectory and
the global absolute path.

The following illustration provides a very basic example of how a referral message is used:

Application RNS
rns1.acme.org

RNS
research.acme.org

Operation = list()
Path = /acme.org/research/projects/rns

<QueryResponse>
referralEPR = research.acme.org
baseDirectory = /acme.org/research
</QueryResponse>

Redirect request to research.acme.org
Operation = list()
Path = /projects/rns

<QueryResponse>
baseDirectory = /projects/rns
. . . list response . . .
</QueryResponse>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 34

1.5.2 Delegated Resolution
Another possible approach to resolving path names that span multiple domains or service instances
is to empower the RNS server to delegate queries to other RNS servers for complete resolution of
any given path. Although this approach is demonstrated in DNS, it should be noted that the security
requirements are quite different. Since DNS generally operates in a public read-only manner
without authentication and authorization per DNS server, it is not too unreasonable to endorse such
an approach. RNS, however, facilitates the possibility of requiring authentication per service
instance and enforcing access control per entry. Nevertheless, an approach that allows for the
possibility of delegated resolution should be considered as at least an optional mode of operation;
incidentally DNS is capable of both approaches.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 35

Resource Endpoint Resolution Service

The Resource Endpoint Resolution Service, which will henceforth be referred to as RNS Resolver,
is a companion service to RNS providing operations that enable management and resolution of
virtualized references. The RNS Resolver service is independent of RNS, and RNS is independent
of it. RNS Resolver MAY be used by RNS and other services and applications, at the same service
URL as the RNS namespace service, using a different port type (RNSResolverPortType).

As described in the RNS specification for namespace services, RNS Resolver only addresses the
second and third tiers of the overall naming scheme—that is the level of strictly mapping logical
names to endpoint references.

2.1 RNS Resolver Basic Components

RNS Resolver is comprised of two fundamental service components: logical names and endpoint
references or addresses. These two basic components, also referred to as virtualized references,
are used to serve a name-to-address resolution service, capable of a many-to-many mapping
between names and addresses. This service does not maintain any complex relationships between
components, but rather an intuitive mapping of logical names to endpoint references. One logical
name maps to at least one endpoint reference, but is unbound regarding the number of targets
allowable. It is also possible that a given endpoint reference is referenced by more than one logical
name. A description of each follows:

2.1.1 Logical Reference
A Logical Reference is characterized by its logical name, which is a logically unique—potentially
globally unique—identifier of some resource. A logical name does not have any intrinsic value nor
is it meaningful outside of the context for which it is intended—it is simply a unique name that is
used to identify a resource or set of resources that have been logically virtualized. Logical names
may be used in registries other than RNS Resolver and can potentially be interoperable amongst
different resolution services.

2.1.2 Endpoint Reference
An Endpoint Reference in the context of Web services is fundamentally a formatted reference
string, usually represented in XML, that targets a referenceable entity, processor, or resource where
Web service messages can be exchanged. Endpoint References convey the information needed to
identify/reference a Web service endpoint.[3]

2.2 Document Style Messaging

RNS Resolver exploits a document style message exchange approach to services.
(Please refer to section 1.2)

2.3 Operations of RNS Resolver

RNS Resolver is composed of the following operations:

1) An operation for resolving logical names to endpoint references.
2) Operations for creating, removing, and updating virtualized references.

To retrieve information about a particular virtualized reference, a standard message exchange
(operation) is initiated by a message request containing a list of all of the property names (QNames)
whose values are to be retrieved. The operation completes by returning a SOAP message

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 36

containing the values of all of the properties requested. The returned values may contain nested
value arrays and therefore are properly decoded by traversing the entire SOAP message, which is
comprised of nest-able message elements.

2.3.1 Operation Parameters

Please refer to section 1.3.1 for additional property definitions.

QName Description

Description String description of either a logical name or endpoint reference

EPR Used to set or add a single Endpoint Reference value

EPRs Used to retrieve an inclusive list of Endpoint References mapped by a
given logical name

LogicalReference Used to set or add a single Logical Reference value according to its
logical name

LogicalReferences Used to retrieve an inclusive list of Logical References mapped by a
given logical name

2.3.2 RNS Resolver Operations

The following is a comprehensive list of operations defined in the RNS Resolver port type
(RNSResolverPortType) specification.

2.3.2.1 deleteEndpointReference

Delete an existing endpoint reference from all mappings, unless it represents the only endpoint
reference mapped by a given logical name in which case an exception is thrown.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 0):

QName Description

EPR The Endpoint Reference to be deleted

2.3.2.2 deleteLogicalReference

Delete an existing logical name to endpoint reference mapping.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 0):

QName Description

LogicalReference The logical name of the Logical Reference to delete

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 37

2.3.2.3 insertLogicalReference

Store a new logical name to endpoint reference mapping. An exception is thrown if the logical
name used already exists in the service’s persistent database.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 0):

QName Description

LogicalReference The logical name of this Logical Reference

EPR The single Endpoint Reference to be mapped

The following properties MAY be specified in the parameterList of ChangeInput
(for values see 0):

QName Description

Description Description of the Logical Reference

Note that a message MAY contain multiple EPR elements, which effectively represents a list.

2.3.2.4 resolve

Takes a logical name and returns all related endpoint references. Basic operation that resolves a
unique logical name to the corresponding address(es). One logical name maps to at least one
endpoint reference, but is unbound regarding the number of targets allowable. It is also possible
that a given endpoint reference is referenced by more than one logical name.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MUST be specified in the parameterList of QueryInput
(for values see 0):

QName Description

LogicalReference The logical name of the Logical Reference to resolve

The following properties MAY be specified in the propertyTypes of QueryInput
 (for values see 0):

QName Description

EPRs (returned by default, no need to specify in the propertyTypes list)

Description Description of the Logical Reference

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list
includes some of the Resolver Operation Parameters (see 0):

QName Description, EPRs, EPR

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 38

2.3.2.5 updateEndpointReference

Updates all existing instances of the specified endpoint reference, affecting all Logical References
referring to this endpoint reference.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of ChangeInput.
(for values see 0):

QName Description

EPR The value representing the Endpoint Reference to update

The following properties MUST be specified in the changeProperties of ChangeInput
(for values see 0):

QName Description

EPR The new Endpoint Reference value to be stored. This property value
MUST be embedded in the Update change type element. (see section
1.3.1.2)

2.3.2.6 updateLogicalReference

Updates an existing logical name to endpoint reference mapping, enabling the caller to update the
description of the Logical Reference and add and/or remove associated EPRs.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 0):

QName Description

LogicalReference The logical name of this Logical Reference

At least one property MUST be specified in the changeProperties of ChangeInput.
The following properties MAY be specified in the changeProperties of ChangeInput
(for values see 0):

QName Description

Description Description of the Logical Reference. This property value MUST be
embedded in the Update change type element. (see section 1.3.1.2)

EPR A single Endpoint Reference to be mapped or added to the mapping.
This property value MUST be embedded in the Update change type
element. (see section 1.3.1.2)

Note that more than one EPR element MAY be included in a single message exchange, effectively
representing a list of values.

The ChangeInput parameter is fully capable of inserting, updating, and deleting properties in a
single message exchange via the changeProperties component. This means that an EPR value
may be used for adding a new EPR while another EPR value is sent identifying an existing endpoint
reference that should be de-referenced. Values MUST be represented by the appropriate change
type: Insert, Update, or Delete. (see section 1.3.1.2)

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 39

Considerations

There are several issues to consider, with respect to RNS, which have not been explored in this
document.

• Security – The topic of security as a whole is not discussed in this specification document.
Security is recognized as a substantial are of interest and will require further investigation.

• Replication of RNS databases – To enhance fault tolerance and reliability, replication of
namespace service data is indispensable. The consistency model required by RNS needs
to be investigated.

• Backup – Backup of RNS data may be required.

• Discussion of access control lists (ACLs) within RNS, their purpose, scope, representation,
and enforcement. There are two fundamental levels of consideration, (1) access control to
namespace information and (2) access control to the target resource that the namespace
refers to. The latter case most often is protected independent of the namespace referring
to it.

Summary and Conclusion

This document is intended to describe the specification of the Resource Namespace Service, a
fundamental namespace service that is capable of addressing a wide variety of namespace related
needs from virtualized services and artifacts to federated global data.

This document proposed a set of operations needed to be supported by RNS. It also purposed a
set of operations needed to provide a companion service to the basic RNS namespace services for
resolving logical names; the Resource Endpoint Resolution Service (RNS Resolver). Additionally, it
proposed two approaches to federation of RNS service instances for scalable, large-scale and
distributed namespace management.

Further detailed discussions regarding this specification and the potential evaluation of reference
implementations are needed. Additionally, an evaluation should be conducted that examines the
aspects of security, performance, consistency, scalability, and reliability. The evaluation needs also
to consider functionality of a client library, especially, with and without client attribute cache.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 40

Appendix: Grid File System Profile

Data in the Grid can be of any format and be stored in any type of storage system. There can be
many hundreds of petabytes of data in grids, among which a very large percentage is stored in files.
A standard mechanism to describe and organize file-based data is essential for facilitating access to
this large amount of data. The Grid File System Working Group (GFS-WG) was established in GGF
data area to standardize a mechanism to address this need by providing a Grid File System (GFS)
or virtual file system in the Grid environment.

Two major deliverables of the WG are (1) architecture of Grid File System Services and (2)
specification of a file system namespace service. File system directory services will manage the
namespace of federated and virtualized data from file system resources [1]. It will provide features
such as (a) virtualized hierarchical namespaces for files or potentially other types of data (such as
live data feeds), (b) efficient and transparent file sharing, and (c) ability to describe and manage file-
system and application-specific metadata.

This document appendix intends to present a standard profile, for use with RNS, that describes a
Virtual Filesystem Directory Service (VFDS) specification. It proposes a list of resource properties
needed to be supported by file system directory services.

The following table presents a set of resource properties that MUST be supported for file system
directory service applications.

QName Description

Checksum String representation of the actual checksum corresponding to the physical file or
fileset symbolized by this data resource junction.

ChecksumType String representation of the checksum type or algorithm used to produce the
checksum.

Complete Identifies whether or not the file or filesystem source targeted by this VFDS entry is
complete. In the case of files, a value of true connotes all of the file content is
embodied in the file; for filesets (filesystem subtrees) this identifies whether or not
the fileset is complete in terms of number of files participating and the coherency of
these files.

MutableSource Identifies whether or not the file or filesystem source targeted by this VFDS entry
can change.

ReadOnly Identifies whether or not a local copy of the data should be locally read-only.

ReplicaCopy Identifies whether or not the file or filesystem source targeted by this VFDS entry is
a replica copy.

Size The physical size of the targeted data source. If the target data is in the form of a
file (implying a PFN) then this value discloses the size of the file in bytes. If the
target data is in the form of a fileset (implying a PFSN) then this value discloses
the summation size of all the contained files.

Timestamp The replica or fileset’s point-in-time timestamp corresponding to the time at which
the source snapshot was made.

Version The version number of the targeted data if available.

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 41

Appendix: RNS WSDL 1.1

The following illustrates the Web Services Description Language (WSDL 1.1) for the Web service
methods described in this specification.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="RNS"
 targetNamespace="http://rns.ws.ibm.com"
 xmlns:tns="http://rns.ws.ibm.com"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:gtwsdl="http://www.globus.org/namespaces/2004/01/GTWSDLExtensions"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsrlw=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 xmlns:wsrp=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 xmlns:wsbf=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"
 xmlns:wsntw=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- RNS Web Service Description File -->
 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 location="../wsrf/properties/WS-ResourceProperties.wsdl" />

 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 location="../wsrf/lifetime/WS-ResourceLifetime.wsdl" />

 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 location="../wsrf/notification/WS-BaseN.wsdl" />

 <!-- Value Types -->
 <types>
 <xsd:schema targetNamespace="http://rns.ws.ibm.com"
 xmlns:tns="http://rns.ws.ibm.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing"
 schemaLocation="../ws/addressing/WS-Addressing.xsd" />

 <xsd:import namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 schemaLocation="../wsrf/properties/WS-ResourceProperties.xsd" />

 <xsd:import namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"
 schemaLocation="../wsrf/faults/WS-BaseFaults.xsd" />

 <!-- === RNS Elements Begin === -->

 <!-- "IteratorContextRequest" Object for Creating/Opening IteratorContexts -->
 <xsd:element name="IteratorContextRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 42

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="IteratorContextResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsa:EndpointReference"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="ParameterList">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="QueryInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- Array of QNames used to indicate what properties to retrieve -->
 <xsd:element ref="tns:propertyTypes" minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ChangeInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="QueryResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:endOfList" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ChangeResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:element ref="tns:message" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Parameter element declarations -->
 <xsd:element name="propertyTypes" type="xsd:QName"/>
 <xsd:element name="parameterList" type="tns:ParameterList"/>

 <!-- Resource property element declarations -->
 <xsd:element name="autoChangeDir" type="xsd:boolean"/>
 <xsd:element name="autoResolve" type="xsd:boolean"/>
 <xsd:element name="baseDirectory" type="xsd:string"/>
 <xsd:element name="childCount" type="xsd:int"/>
 <xsd:element name="directoryPath" type="xsd:string"/>
 <xsd:element name="endOfList" type="xsd:boolean"/>
 <xsd:element name="iteratorContextID" type="xsd:string"/>
 <xsd:element name="iteratorIndex" type="xsd:int"/>
 <xsd:element name="iteratorMaxAtOnce" type="xsd:int"/>
 <xsd:element name="message" type="xsd:string"/>
 <xsd:element name="referralEPR" type="xsd:string"/>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 43

 <!-- "Context" Resource for Maintaining State -->
 <xsd:element name="IteratorContext">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:childCount" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:directoryPath" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorIndex" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>
 </types>

 <!-- RNS Messages -->
 <message name="IteratorContextRequest">
 <part name="IteratorContextRequest" element="tns:IteratorContextRequest"/>
 </message>
 <message name="IteratorContextResponse">
 <part name="IteratorContextResponse" element="tns:IteratorContextResponse"/>
 </message>
 <message name="ListInputMessage">
 <part name="ListInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="ListResponseMessage">
 <part name="ListResponseMessage" type="tns:QueryResponse"/>
 </message>
 <message name="LookupInputMessage">
 <part name="LookupInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="LookupResponseMessage">
 <part name="LookupResponseMessage" type="tns:QueryResponse"/>
 </message>
 <message name="UpdateInputMessage">
 <part name="UpdateInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="UpdateResponseMessage">
 <part name="UpdateResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="CreateInputMessage">
 <part name="CreateInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="CreateResponseMessage">
 <part name="CreateResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="DeleteInputMessage">
 <part name="DeleteInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="DeleteResponseMessage">
 <part name="DeleteResponseMessage" type="tns:ChangeResponse"/>
 </message>

 <!-- Adjunct Resource Properties Messages -->
 <message name="DeletePropertyInputMessage">
 <part name="DeletePropertyInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="InsertPropertyInputMessage">
 <part name="InsertPropertyInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="ListPropertiesInputMessage">
 <part name="ListPropertiesInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="UpdatePropertyInputMessage">
 <part name="UpdatePropertyInputMessage" type="tns:ChangeInput"/>
 </message>

 <!-- RRS Messages -->
 <message name="ResolveInputMessage">
 <part name="ResolveInputMessage" type="tns:QueryInput"/>
 </message>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 44

 <message name="ResolveResponseMessage">
 <part name="ResolveResponseMessage" type="tns:QueryResponse"/>
 </message>
 <message name="MapLogicalInputMessage">
 <part name="MapLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="MapLogicalResponseMessage">
 <part name="MapLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="CreateLogicalInputMessage">
 <part name="CreateLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="CreateLogicalResponseMessage">
 <part name="CreateLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="DeleteLogicalInputMessage">
 <part name="DeleteLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="DeleteLogicalResponseMessage">
 <part name="DeleteLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="UpdateLogicalInputMessage">
 <part name="UpdateLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="UpdateLogicalResponseMessage">
 <part name="UpdateLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="DeleteEPRInputMessage">
 <part name="DeleteEPRInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="DeleteEPRResponseMessage">
 <part name="DeleteEPRResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="UpdateEPRInputMessage">
 <part name="UpdateEPRInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="UpdateEPRResponseMessage">
 <part name="UpdateEPRResponseMessage" type="tns:ChangeResponse"/>
 </message>

 <!-- === Resource Namespace Service === -->
 <portType name="RNSPortType"
 gtwsdl:extends="wsrpw:GetResourceProperty"
 gtwsdl:implements="wsntw:NotificationProducer
 wsrlw:ImmediateResourceTermination
 wsrlw:ScheduledResourceTermination"
 wsrp:ResourceProperties="tns:IteratorContext">

 <!-- Operation invoked when creating the web service -->
 <operation name="openContext">
 <input message="tns:IteratorContextRequest"/>
 <output message="tns:IteratorContextResponse"/>
 </operation>

 <!-- WS-ResourceProperties Operations -->
 <operation name="getResourceProperty">
 <input message="wsrpw:GetResourcePropertyRequest"/>
 <output message="wsrpw:GetResourcePropertyResponse"/>
 </operation>
 <operation name="getMultipleResourceProperties">
 <input message="wsrpw:GetMultipleResourcePropertiesRequest"/>
 <output message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 </operation>

 <!-- Lookup Operation -->
 <operation name="lookup">
 <input message="tns:LookupInputMessage"/>
 <output message="tns:LookupResponseMessage"/>
 </operation>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 45

 <!-- List Operation -->
 <operation name="list">
 <input message="tns:ListInputMessage"/>
 <output message="tns:ListResponseMessage"/>
 </operation>

 <!-- Create Operation -->
 <operation name="create">
 <input message="tns:CreateInputMessage"/>
 <output message="tns:CreateResponseMessage"/>
 </operation>

 <!-- Delete Operation -->
 <operation name="delete">
 <input message="tns:DeleteInputMessage"/>
 <output message="tns:DeleteResponseMessage"/>
 </operation>

 <!-- Update Operation -->
 <operation name="update">
 <input message="tns:UpdateInputMessage"/>
 <output message="tns:UpdateResponseMessage"/>
 </operation>

 <!-- Delete Adjunct Property Operation -->
 <operation name="deleteProperty">
 <input message="tns:DeletePropertyInputMessage"/>
 <output message="tns:DeleteResponseMessage"/>
 </operation>

 <!-- Insert Adjunct Property Operation -->
 <operation name="insertProperty">
 <input message="tns:InsertPropertyInputMessage"/>
 <output message="tns:CreateResponseMessage"/>
 </operation>

 <!-- List Adjunct Property Operation -->
 <operation name="listProperties">
 <input message="tns:ListPropertiesInputMessage"/>
 <output message="tns:ListResponseMessage"/>
 </operation>

 <!-- Update Adjunct Property Operation -->
 <operation name="updateProperty">
 <input message="tns:UpdatePropertyInputMessage"/>
 <output message="tns:UpdateResponseMessage"/>
 </operation>

 </portType>

 <!-- === Resource Endpoint Resolution Service === -->
 <portType name="RNSResolverPortType">

 <!-- Logical Reference Resolve Operation -->
 <operation name="resolve">
 <input message="tns:ResolveInputMessage"/>
 <output message="tns:ResolveResponseMessage"/>
 </operation>

 <!-- Logical Reference Create Operation -->
 <operation name="insertLogicalReference">
 <input message="tns:CreateLogicalInputMessage"/>
 <output message="tns:CreateLogicalResponseMessage"/>
 </operation>

 <!-- Logical Reference Delete Operation -->
 <operation name="deleteLogicalReference">
 <input message="tns:DeleteLogicalInputMessage"/>
 <output message="tns:DeleteLogicalResponseMessage"/>
 </operation>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 46

 <!-- Logical Reference Update Operation -->
 <operation name="updateLogicalReference">
 <input message="tns:UpdateLogicalInputMessage"/>
 <output message="tns:UpdateLogicalResponseMessage"/>
 </operation>

 <!-- Endpoint Reference Delete Operation -->
 <operation name="deleteEndpointReference">
 <input message="tns:DeleteEPRInputMessage"/>
 <output message="tns:DeleteEPRResponseMessage"/>
 </operation>

 <!-- Endpoint Reference Update Operation -->
 <operation name="updateEndpointReference">
 <input message="tns:UpdateEPRInputMessage"/>
 <output message="tns:UpdateEPRResponseMessage"/>
 </operation>

 </portType>

</definitions>

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 47

Acknowledgements
Noriyuki Soda (SRA)
Takuya Ishibashi (SOUM)

Author Information

Osamu Tatebe
Grid Technology Research Center, AIST
1-1-1 Umezono, Tsukuba
Ibaraki 3058568 Japan
o.tatebe@aist.go.jp

Manuel Pereira, Leo Luan, Ted Anderson
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120, USA
mpereira@us.ibm.com
leoluan@us.ibm.com
ota@us.ibm.com

Jane Xu
IBM Systems and Technology Group
5600 Cottle Road
San Jose, CA 95193, USA
jxu@us.ibm.com

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to the GGF or other organizations, except as needed for the purpose of developing Grid

GWD-R May 2005

mpereira@us.ibm.com o.tatebe@aist.go.jp
 48

Recommendations in which case the procedures for copyrights defined in the GGF Document
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE."

References

[1] Leo Luan and Ted Anderson, “Grid Namespace for Files”, GGF working draft, GGF8, 2003
https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1

[2] S. Shepler, et al., “Network File System (NFS) version 4 Protocol”, RFC3530, 2003

[3] Web Services Addressing (WS-Addressing) http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810/

[4] Web Services Resource Properties (WS-ResourceProperties) Version 1.1 03/05/2003
http://www.globus.org/wsrf/specs/ws-resourceproperties.pdf

[SOAP 1.2] http://www.w3.org/TR/soap12-part1/

[State Paper] http://www-106.ibm.com/developerworks/webservices/library/ws-
resource/wsmodelingresources.pdf

[5] OGSA Basic Profile 1.0
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-basic-profile/en/

[6] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/xmlschema-2/

