
GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG July 2005

Resource Namespace Service Specification

Status of This Memo

This memo provides information to the Grid community about resource namespace services. It
does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.

Abstract

This document describes the specification of a Resource Namespace Service (RNS), which is a
WSRF compliant Web service capable of providing namespace services for any addressable entity
by registering an Endpoint Reference or URL with an easily accessible, hierarchically managed,
name. This service, previously referred to as a virtual filesystem directory service (VFDS), has
been updated to incorporate an interface design that utilizes document style messages as
described in the WSRF specification. RNS is intended to facilitate namespace services for a wide
variety of Grid services, with an initial emphasis as one of the essential services for Grid file
systems or virtual file systems in the Grid environment. It can be employed to manage the
namespace of federated and virtualized data, services, or effectively any resource capable of being
referenced in a Grid/Web environment. This document proposes a set of operations and essential
resource property definitions that define the Resource Namespace Service.

Contents

Resource Namespace Service Specification .. 1
Abstract ... 1
Introduction.. 3
1 Resource Namespace Services... 4

1.1 Basic Namespace Components ... 5
1.1.1 Virtual Directories .. 5
1.1.2 Junctions.. 5
1.1.3 Pathnames... 7

1.2 Document Style Messaging .. 9
1.2.1 WSRF Compliant Service.. 9
1.2.2 Resource Properties Documents... 10

1.3 Operations of the Resource Namespace Service .. 13
1.3.1 Operation Parameters ... 13
1.3.2 Namespace Operations... 16
1.3.3 Implicit Operations ... 27
1.3.4 Iterator Context Operations ... 29
1.3.5 Profile Extension Operations ... 31

1.4 Operation Faults of the Resource Namespace Service ... 35
1.4.1 RNSFault ... 35

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG July 2005

1.4.2 RNSDirectoryNotEmptyFault ... 35
1.4.3 RNSEntryExistsFault ... 35
1.4.4 RNSEntryNotFoundFault ... 35
1.4.5 RNSInvalidPropertyFault ... 35
1.4.6 RNSJunctionFault.. 36
1.4.7 RNSTypeFault ... 36

2 Federation of Resource Namespace Services .. 37
2.1 Distributed Namespace Repositories ... 37
2.2 Resolution Spanning Namespace Services.. 37

2.2.1 Service Referrals ... 37
2.2.2 Delegated Resolution .. 39

3 Resource Endpoint Resolution Service ... 40
3.1 RNS Resolver Basic Components.. 40

3.1.1 Logical Reference.. 40
3.1.2 Endpoint Reference... 40

3.2 Document Style Messaging .. 40
3.3 Operations of RNS Resolver .. 40

3.3.1 Operation Parameters ... 41
3.3.2 RNS Resolver Operations ... 41

Considerations... 44
Summary and Conclusion ... 44
Appendix: RNS WSDL 1.1 .. 45
Acknowledgements ... 53
Author Information... 53
Intellectual Property Statement ... 53
Full Copyright Notice ... 53
References .. 54

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R June 2005

Introduction

The Resource Namespace Service (RNS) encompasses a multi-faceted approach for addressing the
needs of access to resources within a distributed network or grid by way of a universal name that
ultimately resolves to a meaningful address, with a particular emphasis on hierarchically managed names
that may be used in human interface applications.

RNS is intended to facilitate namespace services for a wide variety of Grid applications and can be
employed to manage the namespace of federated and virtualized data, services, or effectively any
resource capable of being referenced in a grid/web environment.

The practical necessity of conveniently accessing the growing number of Web services, corresponding
applications, service artifacts and other service resources, has manifest an escalating need for a
generalized resource namespace service. Additionally, the ever-increasing appreciation for resource
virtualization has amplified the benefits of this service, which is capable of maintaining a name to multi-
address mapping, since the namespace thereby virtualizes all endpoint references or resource
addresses.

The Resource Namespace Service utilizes document style messaging that takes advantage of XML,
avoids unnecessary constraints (such as inflexible operation parameters and rigid return types), is fully
WSRF-compliant, and allows for extensibility via resource property profiling. This document proposes a
set of document style operations exploiting well-defined resource properties that define the RNS service.

The RNS specification document has emerged from the Grid File System Working Group (GFS-WG);
principally based on the Virtual Filesystem Directory Service (VFDS) specification from that group. Two
major deliverables of the WG are (1) architecture of Grid File System Services and (2) specification of
namespace services. The VFDS specification was intended to address (2) by proposing a namespace
service that would easily satisfy the rudimentary need of managing a namespace of federated and
virtualized data, access control mechanisms, and a minimal set of associated meta-data [1]. As the
specification matured, it became more and more obvious that a generalized namespace service would
have substantial application in a wide variety of Grid services. Consequently, the filesystem and data
specific features of VFDS have been factored out of this specification, yielding a generic resource
namespace service that is no longer limited to data related applications. However, RNS features an
extensible design allowing normative profile specifications, such as OGSA Basic Profiles [5], to define a
standard set of resource properties for specific instantiations of the namespace service. For this reason,
this document will not address any data related namespace requirements.

The GFS-WG will propose a RNS profile for use with Grid File Systems. The overall architecture of the
Grid File System will be specified later in GFS-WG, which provides infrastructure of virtual file systems
facilitating federation and sharing of virtualized data from file systems in the Grid environment by using
Resource Namespace Services.

The reader is assumed to be familiar with WSRF and SOAP, see references [3] and [4] for background.

Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC2119.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 3

http://www.ietf.org/rfc/rfc2119.txt

GWD-R June 2005

1 Resource Namespace Services

The Resource Namespace Service, which will henceforth be referred to as RNS, enables construction of
a uniform, global, hierarchical namespace.[1] This directory service or namespace service enables
federation of essentially any Web or Grid resource. RNS embodies a three-tier naming architecture,
which consists of human interface names, logical reference names, and endpoint references.

Name-to-resource mapping in RNS features the optional arrangement of two levels of indirection. The
first level of indirection is realized by mapping human interface names directly to endpoint references or
resource reference addresses. Since the properties of the endpoint reference may be modified without
altering the RNS entries that refer to them, this simple approach offers a convenient means of name-to-
resource mapping with a single level of indirection or resource virtualization. A second level of indirection
may be appreciated when mapping human interface names to logical references (identified by logical or
abstract names), which in turn map logical names to endpoint references and hence the second level of
indirection. The advantage of using a logical name to represent a logical reference is that logical names
may be referenced and resolved independent of the hierarchical namespace. This means that logical
names may be used as a globally unique logical resource identifier and be referenced directly by both the
RNS namespace as well as other services. Although the RNS specification includes an optional port type
that services logical resource to endpoint resolution, as an independent service, it is not required that
clients use this RNS resolution service, since the logical name can potentially be resolved by a separate
logical to endpoint resolution service. In contrast, note that mapping information and associated pointer
handles for directly mapped human interface name to endpoint references are not exposed by RNS and
are therefore only used internally by RNS.

Following is a diagram that illustrates the three-tier naming architecture; please note that this diagram is
strictly intended to illustrate the levels of the naming architecture and is not limited to the types of
references shown:

Figure 1 - Three-Tier Naming Architecture

mpereira@us.ibm.com o.tatebe@aist.go.jp
 4

GWD-R June 2005

1.1 Basic Namespace Components

RNS is comprised of two fundamental namespace components: virtual directories and junctions. These
two essential namespace components, also referred to as RNS entries* or namespace entries*, are
employed to federate existing resources and construct a uniform hierarchy.

In all cases, junctions are capable of maintaining a list of references (EPRs/URLs) per entry, that is a
single junction my render several available EPRs, each of which represent replicas, copies of the same
resource, or operationally identical services. A description of each follows:

QName [SOAP 1.2] Section

Entry* Entry Properties Message

Alias 1.1.2.4

Junction 1.1.2.1

LogicalReference 1.1.2.2

Referral 1.1.2.3

VirtualDirectory 1.1.1

* When the word “entry” is italic, this connotes reference to the basic namespace entry described above. The
QName Entry is used in response messages to enclose the properties of an entry in the message structure.

1.1.1 Virtual Directories
A virtual directory is an RNS entry that is represented as a non-leaf node in the hierarchical namespace
tree. When rendered by a filesystem client, a virtual directory appears as a standard filesystem directory;
however, it does not have any corresponding position in any physical filesystem; hence it is virtual. A
virtual directory, therefore, is purely a namespace entity that functions in much the same way as a
conventional filesystem directory by maintaining a list of subentries, which thereby demonstrate a
hierarchical relationship. There are no restrictions regarding the layout of the namespace tree; both
virtual directories and junctions can be nested within nested virtual directories recursively.

A virtual directory may be considered analogous to a collection, category, or context—to the extent that
these terms are used in most directory or catalogue contexts. Virtual directories do not have any time or
space existence outside of the namespace and strictly serve to facilitate hierarchy. Namespace
hierarchies offer categorization or grouping of entries, by presenting the illusion of compartments, which
may contain sub-compartments as well as junctions.

Corresponding resource property QName = VirtualDirectory

1.1.2 Junctions
A junction is an RNS entry that interconnects a reference to an existing resource into the global
namespace. It functions in much the same way as a traditional distributed file system mount point with
the unique property of maintaining uniform namespace representation while facilitating two levels of
indirection. There are four basic types of junctions: endpoint references, logical references, referrals,
and aliases.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 5

GWD-R June 2005

1.1.2.1 Endpoint Reference Junction
An endpoint reference junction is an entry that maps to at least one Web or Grid resource by way of a
WS-Addressing[2] Endpoint Reference (EPR) or URL. This is a many-to-many mapping, meaning that
one namespace entry may reference many resources and one resource may be referenced by many
namespace entries. There is no limitation as to what may be referenced by RNS provided that a WS-
Addressing compliant EPR, or an RFC 1738 compliant URL, is used to register the reference mapping.

Corresponding resource property QName = Junction

1.1.2.2 Logical Reference Junction
A logical reference junction is a junction that contains a context unique (potentially global) logical name
and may contain either an endpoint reference (EPR) or universal resource locator (URL) that points to a
secondary resolver service, like the companion Resource Endpoint Resolution Service (see section 3), for
name-to-address resolution. Each logical reference junction MUST therefore embody one logical name
and MAY identify any number of corresponding resolution contexts for the logical name to be resolved.
The logical name value is retrieved using the LogicalName property, while the values of the resolver
EPRs may be retrieved using the LogicalResolvers property. If a resolution context is not specified, the
service SHOULD attempt to resolve the logical name using a default logical name resolution service, like
the companion Resource Endpoint Resolution Service already noted (see section 3). This specification
does not mandate a required format for the logical name nor the target resolver property value of a logical
reference. In other words, the format of the LogicalName property is not mandated and neither is the
format of the resolver EPRs.

This RNS specification includes the description of a non-hierarchical name-to-address resolution service,
defined in an independent port type that facilitates simple logical name resolution as an optional adjunct
service. (see section 3)

Corresponding resource property QName = LogicalReference

1.1.2.3 Referral Junction
Referral junctions are junctions that link to other RNS instances, thereby facilitating such features as
symbolic links (or soft links), federation of independent domains of control, scalability of a single domain
of control, availability of redundant service instances that may or may not be geographically distributed,
etc. An example referral is illustrated in Figure 1 as “secured”, its URL might look something like:
rns://rns.secured.acme-research.org/.

Since referral junctions point to other service instances, and the state and condition of these other service
instances is not known, referral junctions may refer to unavailable or unresponsive service instances. To
help guard against broken link conditions, multiple targets may be associated with a single referral
junction to provide redundancy for greater availability.

For information regarding how the service handles referral junctions, please see Service Referrals in
section 2.2.1.

Corresponding resource property QName = Referral

1.1.2.4 Alias Junction
An alias junction is a junction that references another entry within the same RNS service provider
instance to provide the feature of representing a single entry in multiple locations in the namespace
hierarchy or simply by multiple names; this effect is comparable to conventional Unix filesystem hard
links.

Support of alias junctions is optional. If an implementation chooses to support alias junctions, it
SHOULD ensure referential validity for the lifetime of the alias. This means that the prescribed behaviour

mpereira@us.ibm.com o.tatebe@aist.go.jp
 6

GWD-R June 2005

of alias junctions within the RNS namespace SHOULD prevent and/or correct conditions that would
orphan aliases, thereby yielding broken or invalid references.

Corresponding resource property QName = Alias

1.1.3 Pathnames
This specification relies heavily on the concept of paths and pathnames. In this context, a path is the
route to a particular entry within the namespace, denoted by a string of characters signifying a series of
names (representing namespace entries, most commonly virtual directories) that are separated by a
delimiting character (the forward slash “/”). A pathname is the path of a namespace entry used as a,
potentially global, unique identifier or “qualified name”; path and pathname may be used synonymously in
this document.

1.1.3.1 Types of Pathnames
To qualify the scope of a path, thereby identifying its meaningful context, the following modifiers are used
in this document: full, absolute, and global.

1.1.3.1.1 Full Path
A full path signifies the route to an entry from the root of the current namespace service instance.
1.1.3.1.2 Absolute Path
An absolute path denotes a complete path starting from the root of the entire namespace. Absolute paths
may span several namespace boundaries or namespace service instances.
1.1.3.1.3 Global Path
A global path or globally unique path is simply an absolute path within a global namespace. A global path
represents a globally unique namespace entry identifier, which ultimately symbolizes a globally unique
resource name.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 7

GWD-R June 2005

1.1.3.2 Entry Name Restrictions
Entry names are composed of a simple string of human readable characters. Since certain characters
serve special purposes both within the namespace service and within a number of systems that may use
this service, this section describes the mandatory restrictions for all entry names*:

Section Names MUST NOT…

1.1.3.2.1 Contain any of the following characters:
\ / : ; * ? “ < > |

1.1.3.2.2 Contain any non-readable characters, such as the carriage return (ANSI 13) or line
feed (ANSI 10) or tab (ANSI 9)

1.1.3.2.3 Be greater than 255 characters in length (Unicode)

 Names SHOULD…

1.1.3.2.4 Accommodate Unicode characters

1.1.3.2.5 Be easily readable by a human user, suggesting less than 32 characters per name

 Names MAY…

1.1.3.2.6 Contain space (ANSI 32) characters

* Notice these restrictions apply to entry names and are not describing paths. Paths are constructed of
one or more entry names separated by the forward slash character (/). (see 1.1.3)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 8

GWD-R June 2005

The following sections explore the objects and interface definitions that exemplify the operations of RNS.
This material is not comprehensive, is subject to change, and does not examine the internal procedures
of the service.

1.2 Document Style Messaging

RNS exploits a document style message exchange approach to services. In so doing, it offers useful
features whose benefits are beyond the flexibility of traditional remote procedure call (RPC) style
services. In this approach RNS leverages the capabilities of XML to communicate messages that may be
tailored according to the request. Additionally, greater flexibility is realized in the exchange of parameters
and complex types or objects. A document style interface facilitates a greater extensibility of the service
without breaking calling applications.

Access to RNS entry metadata is achieved by using a resource properties request document that
indicates which properties to retrieve. This means that only the properties the client is interested in are
retrieved. Furthermore, when submitting a change request message to the service, only the properties
specified will be SOAP encoded and sent to the service. As a result, a greater efficiency, with respect to
the sheer size of the SOAP message, may be realized.

1.2.1 WSRF Compliant Service
In addition to a document style interface, RNS provides standard access and manipulation of stateful
resource properties via Web Service Resource Framework (WSRF). The RNS interface implements most
of the WS-ResourceProperties[3] document types. The previous object oriented model has been
subsumed by a stateful exchange of SOAP messages. With the implementation of the WS-Resource
specification, RNS offers stateful interaction by maintaining a stateful resource referred to as an
IteratorContext.

The RNS IteratorContext resource is designed specifically for the purpose of maintaining stateful
properties related to iterative operations. This is particularly necessary when listing a potentially large
directory, since the application may not want to have all of the subentries returned in a single message
and therefore may request to receive the list in segments. To ensure each segment is internally
consistent within a projected list, the RNS service MUST support a point-in-time result-set reflecting the
entire list at the time the initial list request was processed. The IteratorContext then enables subsequent
list requests to be made that retrieve segment by segment from the point-in-time result-set maintained on
the service end. For every new list request a new IteratorContext MUST be constructed and SHOULD be
destroyed after the iterator has been exhausted. The resource properties document associated with the
IteratorContext resource is described in further detail in the next section.

The RNS port type (RNSPortType) extends the GetResourceProperty port type defined by WS-
ResourceProperties[3], implementing the GetResourceProperty, GetMultipleResourceProperties, and
SetResourceProperties operations. Additionally, for lifetime management, the RNS port type also
implements the Destroy, CurrentTime, TerminationTime, and SetTerminationTime.

The reader is assumed to be familiar with WSRF and SOAP, see references [3] and [4] for background.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 9

GWD-R June 2005

1.2.2 Resource Properties Documents
A resource properties document is the XML document representing a logical composition of resource
property elements for a given resource.[3].

1.2.2.1 RNS IteratorContext – The WS-Resource
As described in section 1.2.1, RNS defines a stateful resource referred to as an IteratorContext. The
instantiation of an IteratorContext resource is facilitated by the createIteratorContext() operation (see
1.3.4.3).

The following resource properties MUST be supported and available in the WS-Resource message
exchange:

QName Description

ChildCount Integer value that denotes the number of subentries found in the
current directory being listed.

DirectoryPath String representing the full path of the current directory being listed.

IteratorContextID String value that denotes the resource identifier of the IteratorContext
WS-Resource. The value SHOULD be considered transient and only
unique in its corresponding service instance for the lifetime of the
resource.

IteratorIndex Integer representing the current index or marker corresponding to a
current iterator operation; can be queried between iterator messages.
 [default value is “0”]

Following is the resource properties document associated with the RNS IteratorContext WS-Resource.

 <!-- "Context" Resource for Maintaining State -->
 <xsd:element name="IteratorContext">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:childCount" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:directoryPath" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorIndex" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The following simply lists the resource property element declarations referred to by the resource
properties document above.

 <!-- Resource property element declarations -->
 <xsd:element name="childCount" type="xsd:int"/>
 <xsd:element name="directoryPath" type="xsd:string"/>
 <xsd:element name="iteratorContextID" type="xsd:string"/>
 <xsd:element name="iteratorIndex" type="xsd:int"/>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 10

GWD-R June 2005

1.2.2.2 Resource Properties for Namespace Entries
The previous section describes the resource properties document associated with the WS-Resource of
the RNSService port type, used for stateful communication. RNS facilitates access and manipulation of
namespace entries by way of document style messaging. As indicated in the description of the RNS WS-
Resource, the standard WSRF operations do not involve directly accessing or modifying namespace
entries but rather an RNS IteratorContext.

RNS specifies two fundamental service objects: (1) the first is the RNS IteratorContext resource, which
was described in section 1.2.2.1, and (2) the second is a namespace component referred to as an RNS or
namespace entry. Each entry represents a namespace node that symbolizes either a virtual directory or
a junction (see Basic Namespace Components 1.1).

Information about namespace entries is exchanged using document style messaging rather than RPC
style object serialization. We only refer to entries as “objects” in a conceptual manner, understanding that
they are not classes that will be instantiated in the client runtime environment. For this reason this
specification does not define an object or complex type that can be acted on directly by any application.
Instead, the specification will exhibit a profile approach by defining the static list of resource properties
corresponding to the namespace entry object or resource.

1.2.2.2.1 Required Entry Properties
All of the following properties MUST be implemented to represent properties of a namespace entry by an
RNS service implementation. Please notice that each of the following namespace entry properties
SHOULD be considered to represent transient values.
(Entry signifies an instance of a valid namespace entry.)

QName Description

Basic Properties

AliasCount Integer: Number of known aliases of Entry. The default value of this
property is zero “0”.

ChildCount Integer: Number of subentries corresponding to Entry, if and only if
Entry is a VirtualDirectory; zero or NULL otherwise.

Description String: Description of Entry

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp of Entry

Name String: Representation of the human interface name of Entry

Type String: Value denoting a type of entry; valid values are: Junction,
LogicalReference, Alias, Referral, and VirtualDirectory. (which are also
the “local part” values of the respective QNames)

Reference Properties – Properties that host target information

EPR String: Used to set or add a single Endpoint Reference

EPRs* String: Used to retrieve all Endpoint References associated with Entry

LogicalName String: Used to set , add, or retrieve the logical name of a
LogicalReference

LogicalResolver String: Used to set or add a single resolver of a LogicalReference

LogicalResolvers* String: Used to retrieve all resolvers of a LogicalReference

Target* String: Used to retrieve the target entry of an Alias.

TargetPath String: Full path that identifies the target entry of an Alias junction.
Since all aliases MUST be serviced by the same namespace service
instance, this property is relative to the current working service instance
(see 1.1.3.1.1)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 11

GWD-R June 2005

* In a response message, these QNames are presented as SOAP message elements that hierarchically
enclose child elements which represent complete embedded messages containing resource property
values corresponding to the resource type denoted. For example, the Target property within a response
message serves only to enclose an embedded message that contains all of the properties for the target
entry of a given Alias. For an example of a response message that demonstrates this feature, see
section 1.3.1.3 QueryResponse.

1.2.2.2.2 Extensible Entry Properties
In addition to the well-defined properties for namespace entries, an RNS service MUST implement
operations that enable administrative applications to add and remove user-defined properties that may
correspond to a profile definition. Thus the resource properties document design is extensible in that
user-defined properties can be added and removed without requiring modification of the core service.
These properties are also referred to as adjunct resource properties. (See section 1.3.5)

1.2.2.2.3 Property Relationships
Property relationships describe how certain properties relate to one another. Since RNS is SOAP 1.1
compliant and allows for message exchanges between heterogeneous runtime environments, it does not
enforce appropriate property relationships, dependencies, or exclusivities. Unlike programming objects,
which may maintain accessors and mutators that enforce prescribed conditions between data members of
an object, SOAP messages do not. Conditional relationships may be necessary, for instance, when
preparing a message as an input parameter to an operation. The service MUST enforce such
relationship requirements on the service side.

1.2.2.3 Properties for Operation Parameters
In addition to IteratorContext and entry resource properties, an RNS service MUST implement the
following properties and accommodate their use in the designated service operations listed in section 1.3.

QName Description

All Boolean: Used in place of enumerating all of the available properties
(signified by QNames) of a given resource

AutoResolve Boolean value that if “true” will cause this operation to attempt to
resolve any virtualized resources by their logical name using the
companion Resource Endpoint Resolution Service. Only one level of
resolution is required, so if a logical reference resolves to a virtualized
address/reference only the first level of abstraction is resolved.
[default value is “false”]

BaseDirectory String: Full path of the current working directory or BaseDirectory,
relative to the current service instance. Construction of an absolute
path may be realized by concatenating the BaseDirectory with an entry
name. If an absolute path spans multiple service instances, the
BaseDirectory value only reflects the path relative to the root of
the current service instance. This property MUST be exchanged in
all query operations (see 1.3.1.3) and can therefore be leveraged for
use in input parameters.

EndOfList Boolean: Value that if “true” indicates an iterative list operation has
reached the end of the list. This property MUST be returned in
response to all query operations (see 1.3.1.3).

Name String: Simple character string representation of a context dependant
name property.

Path String: Value representing a path or sequence of hierarchical tree
levels in the namespace tree; used as a generic parameter property for
most operations. Generally represents the only globally unique
persistent namespace entry identifier.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 12

GWD-R June 2005

1.3 Operations of the Resource Namespace Service

RNS is composed of the following types of operations:

1) Operations for querying namespace entry information.
2) Operations for creating, removing, moving/renaming, and updating entries.
3) Operations for managing properties or status of an entry.

To retrieve information about a particular namespace entry, a standard SOAP message exchange
(operation) is initiated by a message request containing a list of all of the property names (QNames)
whose values are to be retrieved. The operation completes by returning a message containing the values
of all of the properties requested. The returned values may contain nested value arrays and therefore are
properly decoded by traversing the entire SOAP message, which is comprised of nest-able message
elements.

1.3.1 Operation Parameters

Please note that in the current WSRF implementation by Globus, in the Globus Toolkit 3.9.4, only one
parameter is permitted per operation. Before examining the purposed operations, it is necessary to
review the associated operation parameters. All RNSService port type operations take one of the
following messages as an input parameter: QueryInput and ChangeInput, and returns one of the following
messages respectively: QueryResonse and ChangeResponse.

1.3.1.1 QueryInput
This is a document literal service compliant message (complexType) that contains two elements:

Parameter Name Description

parameterList A complexType that encapsulates an unbound array of name-value
pairs

propertyTypes An unbound array of (xsd:QName) strings

 <xsd:complexType name="QueryInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- Array of QNames used to indicate what properties to retrieve -->
 <xsd:element ref="tns:propertyTypes" minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 13

GWD-R June 2005

1.3.1.2 ChangeInput
This is a document literal service compliant message (complexType) that contains two elements:

Parameter Name Description

parameterList A complexType that encapsulates an unbound array of name-value
pairs

changeProperties A wsrp:SetResourceProperties message [3]

 <xsd:complexType name="ChangeInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

The changeProperties message allows the processing of a single request message to make multiple
changes to the target resource properties document. There are three types of changes:

o Insert: wherein a new property element is inserted into the resource properties document
o Update: wherein existing property element(s) are modified
o Delete: wherein an existing property element(s) are removed

Therefore, property values MUST be sent using the appropriate change type for the request. In other
words, if the caller desires to add a new property value to a given resource they must set the value in the
Insert element. Only one change type message can be sent at a time.

The format of this request message MUST be:

<wsrp:SetResourceProperties>
 {
 <wsrp:Insert >
 {any}*
 </wsrp:Insert> |
 <wsrp:Update >
 {any}*
 </wsrp:Update> |
 <wsrp:Delete ResourceProperty=”QName” />
 }+
</wsrp:SetResourceProperties>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 14

GWD-R June 2005

1.3.1.3 QueryResponse
This is a document literal service compliant message (complexType) that contains four components:
BaseDirectory, EndOfList, ReferralEPR, and an array of unrestrained message elements. If the response
message signifies a referral message (see 2.2.1.1), then it will contain one or more referral EPRs. The
following is the WSDL representation of the QueryResponse:

 <xsd:complexType name="QueryResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:endOfList" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:any minOccurs="0" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

An example QueryResponse message might look something like this, provided that the following
properties were specified: Name, ChildCount, Description, Type, EPRs, Target, TargetPath

<ns1:BaseDirectory xmlns:ns1="http://rns.ggf.org"> /ggf.org/ogsa/ </ns1:BaseDirectory>
<ns1:EndOfList xmlns:ns1="http://rns.ggf.org"> true </ns1:EndOfList>
<ns1:ReferralEPR xmlns:ns1="http://rns.ggf.org"> </ns1:ReferralEPR>
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name> rns </ns1:Name>
 <ns1:ChildCount> 5 </ns1:ChildCount >
 <ns1:Description> This is the RNS project directory </ns1:Description>
 <ns1:Type> VirtualDirectory </ns1:Type>
</ns1:Entry>
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name> some-resource </ns1:Name >
 <ns1:ChildCount> </ns1:ChildCount >
 <ns1:Description> This is a junction that points to some resource </ns1:Description>
 <ns1:Type> Junction </ns1:Type>
 <ns1:EPRs>
 <ns1:EPR> http://abc.com/some-resource </ns1:EPR>
 <ns1:EPR> http://xyz.com/some-resource </ns1:EPR>
 </ns1:EPRs>
</ns1:Entry>
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name> rns-alias </ns1:Name>
 <ns1:Description> This is an alias to the RNS directory </ns1:Description>
 <ns1:Type> Alias </ns1:Type>
 <ns1:TargetPath> /ggf.org/ogsa/rns </ns1:TargetPath>
 <ns1:Target>
 <ns1:Name> rns </ns1:Name>
 <ns1:ChildCount> 5 </ns1:ChildCount >
 <ns1:Description> This is the RNS project directory </ns1:Description>
 <ns1:Type> irtualDirectory </ns1:Type> V
 </ns1:Target>
</ns1:Entry>

1.3.1.4 ChangeResponse
This is a document literal service compliant message (complexType) that contains two components:
BaseDirectory and a string message. If the response message signifies a referral message (see 2.2.1.1),
then it will contain one or more referral EPRs. The following is the WSDL representation of the
ChangeResponse:

 <xsd:complexType name="ChangeResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:element ref="tns:message" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 15

GWD-R June 2005

1.3.2 Namespace Operations
The following is a comprehensive list of operations defined in the RNS namespace port type
(RNSPortType) specification.

1.3.2.1 create

Enables an application to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be created and persistently stored by the service host.
This operation is primarily used for the creation of namespace entries, but may also effect the creation of
other datastore objects (like Endpoint Reference entries if the service implementation utilizes a separate
entry for storing EPR information).

If Type is Alias, then this operation MUST abort and return a fault message if the TargetPath value refers
to any direct ancestor in the hierarchy, or refers to another Alias entry that ultimately refers to any direct
ancestor in the hierarchy, or refers to an entry in another service instance. The first two conditions are
intended to guard from circular referencing and since the AliasCount property and control is currently only
possible within a single service instance, the last condition is necessary to ensure Aliases only reference
other namespace entries within the same service instance.

This operation modifies namespace repository content and therefore SHOULD support update semantics
that ensure atomic updates to namespace content. (See section 2.1 for details)

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)
Faults: RNSJunctionFault (see 1.4.2), RNSInvalidPropertyFault (see 1.4.5),
 RNSEntryExistsFault (see 1.4.2), RNSTypeFault (see 1.4.7)

There are no changeProperties used in this operation.

Path MUST be specified in the parameterList of ChangeInput. If Name is specified, the service will
implicitly append the value of Name to the value of Path to derive the full path of the entry to create; if
Name is not specified, the service simply uses the value of Path as the full path of the entry to create.
(for values see 1.2.2.3):

QName Description

Path If Name is specified, this is the full path of the parent virtual directory of
which Name will be created as a child entry; otherwise this is the full
path of the entry to be created.

Name String representation of the human interface name of the entry to
create. Optional: If used denotes the name of the entry to be created
as a child of Path; otherwise if not used, Path MUST represent the full
path of the entry to create, including the entry name.

Type String: Value denoting a type of entry; valid values are: Junction,
LogicalReference, Alias, Referral, and VirtualDirectory

Exactly one type (LogicalReference, Junction, Alias, Referral, or VirtualDirectory) MUST be specified.

(continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 16

GWD-R June 2005

(continued from previous page – create operation)

The following entry properties MAY be specified in the parameterList of ChangeInput (see 1.3.1.2).
(for values see 1.2.2.2.1):

QName Description

Description String: Optional description

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp

EPR* Value of a single Endpoint Reference to be associated with Entry

LogicalName Value of the logical name to be associated with Entry, if Entry is a
LogicalReference

LogicalResolver* Value of a single LogicalReference to be associated with Entry

TargetPath The full path of the target entry. Set only if Entry is an Alias.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.5

* Note that more than one EPR and LogicalResolver elements MAY be included in a single message
exchange, effectively representing a list of values.

Properties within the parameter list of the ChangeInput message SHOULD correspond to the Type of
entry created. If a property specified does not appropriately relate to the Type of entry designated, then a
fault MAY be returned. For example, if the Type specified is Junction and a TargetPath or LogicalName
property is also specified, an RNSTypeFault MAY be returned.

Example
The following example demonstrates how to create an Endpoint Reference Junction entry with two EPRs
associated with it:

Abstract update ChangeInput message to create entry with two EPRs:
<ns1:ChangeInput xmlns:ns1="http://rns.ggf.org">
 <ns1:ParameterList xmlns:ns1="http://rns.ggf.org">
 <ns1:Path> /ggf.org/proj/rns/reports </ns1:Path>
 <ns1:Type> Junction </ns1:Type>
 <ns1:Description> This is a junction to RNS reports </ns1:Description>
 <ns1:EPR> gsiftp://xyz.com/rns/reports </ns1:EPR>
 <ns1:EPR> gsiftp://ns2.xyz.com/rns/reports </ns1:EPR>
 </ns1:ParameterList>
</ns1:ChangeInput>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 17

GWD-R June 2005

1.3.2.2 delete

Enables an application to submit a request message that contains the path of the entry to delete. If the
entry represents a virtual directory, then the designated virtual directory MUST NOT have any subentries
associated with it; otherwise an RNSDirectoryNotEmptyFault MUST be returned.

This operation modifies namespace repository content and therefore SHOULD support update semantics
that ensure atomic updates to namespace content. (See section 2.1 for details)

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)
Faults: RNSJunctionFault (see 1.4.2), RNSInvalidPropertyFault (see 1.4.5),
 RNSDirectoryNotEmptyFault (see 1.4.2), RNSEntryNotFoundFault (see 1.4.4)

The following parameter MUST be specified in the parameterList of ChangeInput.
(for values see 1.2.2.3):

QName Description

Path The full path of Entry to be deleted.

There are no changeProperties used in this operation.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 18

GWD-R June 2005

1.3.2.3 list

Enables an application to submit a request message that contains an array of property names whose
values are to be retrieved for each namespace entry, which is a subentry of the virtual directory entry
denoted by the path value specified as an input parameter. If the path specified does not denote a virtual
directory then a fault MAY be thrown.

Since directories may contain a very large number of subentries, this operation enables the caller to
specify the maximum number of subentries allowable per message exchange (IteratorMaxAtOnce). If this
parameter property is specified as a non-zero value, then the number of entries returned will be limited to
this value. This feature is most useful when used in conjunction with an IteratorContext, which allows for
sequential iteration through the result set of a list operation.

An IteratorContext is constructed and operated on using standard WSRF mechanisms for stateful
resource interaction. In this case, the stateful resource is the point-in-time result set of a list operation.
This result set embodies a “snapshot” of namespace subentries relative to the path specified, at the point
in time in which the original list() operation was invoked. This ensures that if the namespace is modified
between list() operations while using an IteratorContext, the list of subentries MUST remain coherent,
corresponding to the result set derived at the time of the initial message exchange.

An IteratorContext MUST first be constructed, using the createIteratorContext() operation of the
namespace port-type (see 1.3.4.3), followed by the use of the Endpoint Reference (EPR), derived from
the IteratorContextResponse, to exchange messages with this list() operation. Once an IteratorContext is
established and its corresponding EPR used for message exchanging, the list() operation MUST
automatically maintain stateful result set information corresponding to the IteratorContext resource.

There are two basic methods of iterating through the point-in-time result set of the initial list() operation
when using an IteratorContext:

1. Implicit Iteration – This method allows simple iteration in a convenient sequential fashion wherein

the IteratorIndex advances implicitly. In this mode of operation, after the client or application
exchanges an initial message with the list() operation using an IteratorContext EPR, thereby
establishing a new IteratorContext resource, all subsequent messages to the list() operation using the
IteratorContext EPR MUST return the next set of entries from the point-in-time result set. If a
subsequent message is sent using a previously established IteratorContext EPR, with all parameters
remaining the same, the service MUST automatically iterate progressively, according to the maximum
number of subentries allowed per exchange, thereby responding with the maximum allowable number
of entries starting at the first index that immediately follows the last interval and advancing the
IteratorIndex value per operation message exchange.

For example, if the IteratorMaxAtOnce property is set to a value of 5 and a new IteratorContext
resource is constructed during an initial message to the list() operation, which yielded 10 entries in its
point-in-time result set, then the iteration would look something like this:

[message][EPR] --> [list operation] --> Result set compiled and
 <-- [entries 0,1,2,3,4] state stored in
 IteratorContext resource
 with IteratorIndex = 5
[message][EPR] --> [list operation]
 <-- [entries 5,6,7,8,9 + EndOfList message]
[message][EPR] --> [destroy IteratorContext resource*]

(continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 19

GWD-R June 2005

(continued from previous page – list operation)

Where [message] doesn’t change and contains value like:
<Message>
 <wsa:EndpointReference>...</wsa:EndpointReference>
 <rns:Path>/foo/bar</rns:Path>
 <rns:IteratorMaxAtOnce>5</rns:IteratorMaxAtOnce>
</Message>

*Since the IteratorContext resource is a WSRF resource, it is managed using standard WSRF mechanisms.

2. Explicit Iteration – This method offers more control over the iteration process by allowing the
application or client to explicitly specify what segment of a given point-in-time result set should be
returned. This is accomplished by specifying a base zero value for the IteratorIndex parameter. If a
base zero value for the IteratorIndex parameter is specified, the service MUST set the internal list
index marker, corresponding to the result set associated with the IteratorContext resource, to this
value prior to responding to the request. The response MUST contain all entries from the specified
IteratorIndex up to the index whose value is (IteratorIndex + IteratorMaxAtOnce) or up to the end of
the list if the end of the list is reached prior to the value of (IteratorIndex + IteratorMaxAtOnce). As
long as the IteratorContext resource is valid, the result set associated with the initial list() operation
using the IteratorContext may be operated on, allowing overlapping or same segments to be returned
in different message exchanges. Consequently, the application or client must guard from infinite loop
conditions resulting from improper values specified for the IteratorIndex, such as specifying the same
value repeatedly.

For example, if the IteratorMaxAtOnce property is set to a value of 3 and 7 respectively and a new
IteratorContext resource is constructed during an initial message to the list() operation, which yielded
10 entries in its point-in-time result set, then the iteration would look something like this:

[message1][EPR] --> [list operation] --> Result set compiled and
 <-- [entries 0,1,2] state stored in
 IteratorContext resource
[message2][EPR] --> [list operation]
 <-- [entries 3,4,5,6,7,8,9 + EndOfList message]
[message3][EPR] --> [destroy IteratorContext resource*]

Where [message1] contains value like:
<Message>
 <wsa:EndpointReference>...</wsa:EndpointReference>
 <rns:Path>/foo/bar</rns:Path>
 <rns:IteratorIndex>0</rns:IteratorIndex>
 <rns:IteratorMaxAtOnce>3</rns:IteratorMaxAtOnce>
</Message>

Where [message2] contains value like:
<Message>
 <wsa:EndpointReference>...</wsa:EndpointReference>
 <rns:Path>/foo/bar</rns:Path>
 <rns:IteratorIndex>3</rns:IteratorIndex>
 <rns:IteratorMaxAtOnce>7</rns:IteratorMaxAtOnce>
</Message>

*Since the IteratorContext resource is a WSRF resource, it is managed using standard WSRF mechanisms.

(continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 20

GWD-R June 2005

(continued from previous page – list operation)

Summary
In its simplest form, this operation returns a list of subentries relative to the path specified.

Large lists MAY be handled using an IteratorContext resource, via standard WSRF mechanisms, for
stateful interaction with a point-in-time result set compiled during the initial list() operation request.

Automatic progressive sequential iteration MAY be realized by repeated message exchanges to the list()
operation, provided a valid IteratorContext is used.

Specific iteration intervals and list segments MAY be rendered by setting the IteratorIndex parameter to a
base zero value. The length of the segment returned is determined by the value of the
IteratorMaxAtOnce parameter.

In all cases, if the end of the list is reached, the EndOfList element value is set to “true” and sent in the
response message.

This operation only responds to requests whose path value denotes a namespace virtual directory (type:
QName=VirtualDirectory). If the path specified does not denote a virtual directory then an RNSTypeFault
SHOULD be returned.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)
Faults: RNSJunctionFault (see 1.4.2), RNSInvalidPropertyFault (see 1.4.5),
 RNSEntryNotFoundFault (see 1.4.4), RNSTypeFault (see 1.4.7)

The following parameter(s) MAY be specified in the parameterList of QueryInput. Path value MUST be
specified.
(for values see 1.2.2.1 & 1.2.2.3):

QName Description

Path The full path of the virtual directory to list. Required.

AutoResolve Boolean value that if “true” will cause this operation to (1) attempt to
resolve any virtualized resources (one level) by their logical name using
the companion Resource Endpoint Resolution Service and (2) resolve
all Alias TargetPath values if an Alias points to another Alias, thereby
returning the ultimate or “final destination” TargetPath.
[default value is “false”]

IteratorMaxAtOnce Integer indicating the maximum number of entries allowed in a single
message; used in iterative list operations. A value of zero “0” indicates
no maximum limit.
[default value is “0”]

IteratorIndex Integer indicating the (base zero) index of the result set corresponding
with a valid IteratorContext. A positive value of this parameter MUST
override the current list index marker in the IteratorContext maintained
on the service end. A value greater than the total count of entries in
the result set MAY throw a fault.

At least one entry property type MUST be specified for this operation (see below).

(continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 21

GWD-R June 2005

(continued from previous page – list operation)

The following entry properties MAY be specified in the propertyTypes of QueryInput
(for values see 1.2.2.2.1):

QName Description

All Used in place of enumerating all of the available properties (signified by
QNames); indicates ALL properties should be returned.

AliasCount Number of known aliases of Entry

ChildCount Number of subentries corresponding to Entry, if and only if Entry is a
VirtualDirectory; zero or NULL otherwise.

Description Optional description of Entry

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp of Entry

Name String representation of the human interface name of Entry

Type String value denoting the type of entry; valid values are: Junction,
LogicalReference, Alias, Referral, and VirtualDirectory

EPRs Used to retrieve all Endpoint References associated with Entry

LogicalName Used to retrieve the logical name associated with Entry, if Entry is a
LogicalReference

LogicalResolvers Used to retrieve all resolvers corresponding to the logical name
associated with Entry, if Entry is a LogicalReference

TargetPath The full path of the target entry; if and only if Entry is an Alias; empty or
NULL otherwise.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.5

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list includes
all of the Required Entry Properties (see 1.2.2.2.1):

QName AliasCount, ChildCount, Description, EPR, EPRs, LogicalName,
LogicalResolver, LogicalResolvers, ModificationTime, Name,
Target, TargetPath, Type

An example return message might look something like the following (if the propertyTypes of QueryInput
included Name, ChildCount, Description, and Type):

<ns1:BaseDirectory xmlns:ns1="http://rns.ggf.org"> /ggf.org/ogsa/ </ns1:BaseDirectory>
<ns1:EndOfList xmlns:ns1="http://rns.ggf.org"> true </ns1:EndOfList>
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name>rns</ns1:Name>
 <ns1:ChildCount>5</ns1:ChildCount >
 <ns1:Description>This is the RNS project directory</ns1:Description>
 <ns1:Type>VirtualDirectory</ns1:Type>
</ns1:Entry>
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name>byteio</ns1:Name>
 <ns1:ChildCount>3</ns1:ChildCount >
 <ns1:Description>This is the ByteIO project directory</ns1:Description>
 <ns1:Type> irtualDirectory</ns1:Type> V
</ns1:Entry>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 22

GWD-R June 2005

1.3.2.4 lookup

Enables an application to submit a request message that contains an array of property names to be
retrieved for the namespace entry denoted by the path value within the input parameter.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)
Faults: RNSJunctionFault (see 1.4.2), RNSInvalidPropertyFault (see 1.4.5),
 RNSEntryNotFoundFault (see 1.4.4)

The AutoResolve parameter MAY be specified in the parameterList of QueryInput. The Path parameter
MUST be specified.
(for values see 1.2.2.1 & 1.2.2.3):

QName Description

Path The full path of the entry to lookup. Required.

AutoResolve Boolean value that if “true” will cause this operation to (1) attempt to
resolve any virtualized resources (one level) by their logical name using
the companion Resource Endpoint Resolution Service and (2) resolve
all Alias TargetPath values if an Alias points to another Alias, thereby
returning the ultimate or “final destination” TargetPath.
[default value is “false”]

At least one entry property type MUST be specified for this operation (see below).
The following entry properties MAY be specified in the propertyTypes of QueryInput
(for values see 1.2.2.2.1):

QName Description

All Used in place of enumerating all of the available properties (signified by
QNames); indicates ALL properties should be returned.

AliasCount Number of known aliases of Ent

ChildCount Number of subentries corresponding to Entry, if and only if Entry is a
VirtualDirectory; zero or NULL otherwise.

Description Optional description of Entry

ModificationTime DateTime (xsd:dateTime) representation of the last modified
timestamp of Entry

Name String representation of the human interface name of Entry

Type String value denoting the type of entry; valid values are: Junction,
LogicalReference, Alias, Referral, and VirtualDirectory

EPRs Used to retrieve all Endpoint References associated with Entry

LogicalName String representation of the logical name of Entry, if Entry is a
LogicalReference

LogicalResolvers Used to retrieve all resolvers associated with the logical name of Entry

TargetPath The full path of the target entry; if and only if Entry is an Alias; empty or
NULL otherwise.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.5

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list includes
all of the Required Entry Properties (see 1.2.2.2.1):

QName AliasCount, ChildCount, Description, EPR, EPRs, LogicalName,
LogicalResolver, LogicalResolvers, ModificationTime, Name,
Target, TargetPath, Type

mpereira@us.ibm.com o.tatebe@aist.go.jp
 23

GWD-R June 2005

1.3.2.5 update

Enables an application to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be used to update an existing entry in the database.

This operation modifies namespace repository content and therefore SHOULD support update semantics
that ensure atomic updates to namespace content. (See section 2.1 for details)

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)
Faults: RNSJunctionFault (see 1.4.2), RNSInvalidPropertyFault (see 1.4.5),
 RNSDirectoryNotEmptyFault (see 1.4.2), RNSEntryNotFoundFault (see 1.4.4),
 RNSEntryExistsFault (see 1.4.2), RNSTypeFault (see 1.4.7)

The following parameter MUST be specified in the parameterList of ChangeInput.
(for values see 1.2.2.3):

QName Description

Path The full path of the entry to update. Required.

The following entry properties MAY be specified in the changeProperties of ChangeInput in one of the
following change types: InsertType (I), UpdateType (U), and DeleteType (D) (see 1.3.1.2).
(for values see 1.2.2.2.1):

QName Description I U D

Description Optional description

ModificationTime DateTime (xsd:dateTime) representation of the last
modified timestamp

Name String representation of the human interface name of
Entry

Path The full path the entry should be changed to. Used in
“move” operations

EPR* Add a single Endpoint Reference to be associated with
Entry

EPRs** Modify the entire list of Endpoint References associated
with Entry

LogicalName String representation of the logical name associated with
Entry, if Entry is a LogicalReference

LogicalResolver* Add a single resolver EPR if Entry is a LogicalReference

LogicalResolvers** Modify the entire list of resolver EPRs associated with
Entry, if Entry is a LogicalReference

TargetPath Set the full path of the target entry. Set only if Entry is an
Alias.

Type*** String: Value denoting a type of entry; valid values are:
Junction, LogicalReference, Alias, Referral, and
VirtualDirectory

Any adjunct resource property QNames and respective values set at runtime. See 1.3.5

Each property MUST be enclosed in the appropriate change type message indicated by the I, U, and D
columns. Only one change type message can be processed per request (see 1.3.1.2). If a property is
enclosed in a change type message that is not marked with a check in the table above, the service
SHOULD return a fault message. (continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 24

GWD-R June 2005

(continued from previous page – update operation)

* Note that more than one EPR and LogicalResolver elements MAY be included in a single message
exchange, effectively representing a list of values. Notice that a single EPR or LogicalResolver cannot be
deleted or updated, since they are not identified by any corresponding
handle or name. To remove or reorder these properties use the UpdateType message, which MUST
reassign the comprehensive list of properties represented, ie. multiple EPRs.

** When these QNames are used the entire list will be affected. When using an UpdateType message,
the service MUST reassign the list count and values to the count and values presented in the UpdateType
message. For example, if an entry had the following EPRs assigned: A, B, and C and the user wanted to
delete B, then the user would send an UpdateType message for QName “EPRs” that only contains A and
C; this would effectively delete B. To delete all of the EPRs associated with an entry, simply use a
DeleteType message for QName “EPRs”.

*** If Type denotes a VirtualDirectory, indicating that the Type property will change, then the designated
virtual directory MUST NOT have any subentries associated with it; otherwise an
RNSDirectoryNotEmptyFault MUST be returned. Additionally, the ChildCount property MUST be nullified
if changing from Type=VirtualDirectory to another. If Type denotes an Alias, the corresponding
TargetPath property must be nullified when changed to another Type. If Type denotes a Junction, the
corresponding EPRs properties must be nullified when changed to another Type. If Type denotes a
LogicalReference, the corresponding LogicalName and LogicalResolver properties must be nullified when
changed to another Type. If Type denotes a Referral, the corresponding EPRs properties must be
nullified when changed to another Type.

When an entry is updated with a property type that is inconsistent with the entry Type, an RNSTypeFault
SHOULD be returned. For example, if the Type is VirtualDirectory then inserting an EPR or
LogicalResolver or LogicalName SHOULD cause an RNSTypeFault.

The ChangeInput parameter is fully capable of inserting, updating, and deleting multiple properties on a
per message exchange basis via the changeProperties component. Values MUST be represented by the
appropriate change type: Insert, Update, or Delete. Only a single change type message can be per
exchange (see section 1.3.1.2)

Example
The following example demonstrates how to add two EPRs to an existing Endpoint Reference Junction
entry:

Entry before update:
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name> reports </ns1:Name>
 <ns1:EPRs> <ns1:EPR>gsiftp://abc.com/rns/reports</ns1:EPR> </ns1:EPRs>
 <ns1:Type> Junction </ns1:Type>
</ns1:Entry>

Abstract update ChangeInput message to simply add two EPRs:
<ns1:ChangeInput xmlns:ns1="http://rns.ggf.org">
 <ns1:ParameterList xmlns:ns1="http://rns.ggf.org">
 <ns1:Path> /ggf.org/proj/rns/reports </ns1:Path>
 </ns1:ParameterList>
 <ns1:ChangeProperties wsrp:SetResourceProperties>
 <wsrp:Insert wsrp:Insert>
 <ns1:EPR> gsiftp://xyz.com/rns/reports </ns1:EPR>
 <ns1:EPR> gsiftp://ns2.xyz.com/rns/reports </ns1:EPR>
 </wsrp:Insert>
 </ns1:ChangeProperties>
</ns1:ChangeInput>

(continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 25

GWD-R June 2005

(continued from previous page – update operation)

Entry after update:
<ns1:Entry xmlns:ns1="http://rns.ggf.org">
 <ns1:Name> reports </ns1:Name>
 <ns1:EPRs>
 <ns1:EPR>gsiftp://abc.com/rns/reports</ns1:EPR>
 <ns1:EPR>gsiftp://xyz.com/rns/reports</ns1:EPR>
 <ns1:EPR> siftp://ns2.xyz.com/rns/reports</ns1:EPR> g
 </ns1:EPRs>
 <ns1:Type> Junction </ns1:Type>
</ns1:Entry>

Example Java snippet corresponding to the ChangeInput message listed above:

// Input values
String addr1 = "gsiftp://xyz.com/rns/reports";
String addr2 = "gsiftp://ns2.xyz.com/rns/reports";
String path = "/ggf.org/proj/rns/reports";
// RNS, WSRF, and Axis Complex Types
ChangeInput in = new ChangeInput();
InsertType insert = new InsertType();
SetResourceProperties_Element srp = new SetResourceProperties_Element();
MessageElement[] me = new MessageElement[1];
// Set input parameter of parameterList
me[0] = (MessageElement)ObjectSerializer.toSOAPElement(path, PATH_QNAME);
in.setParameterList(new ParameterList(me));
// Set change parameter
me = new MessageElement[2];
me[0] = (MessageElement)ObjectSerializer.toSOAPElement(addr1, EPR_QNAME);
me[1] = (MessageElement)ObjectSerializer.toSOAPElement(addr2, EPR_QNAME);
insert.set_any(me);
srp.setInsert(insert);
in.setChangeProperties(srp);
// Submit request message to RNS service
rns.update(in);

mpereira@us.ibm.com o.tatebe@aist.go.jp
 26

GWD-R June 2005

1.3.3 Implicit Operations

This specification attempts to maximize the flexible capabilities of document style messaging while
maintaining a simple, clearly defined API. Unlike traditional RPC based approaches, RNS utilizes a
minimal set of operations used for exchanging messages that are potentially capable of performing
multiple tasks in a single exchange. Rather than defining a separate operation for each task, this
specification describes a number of implicit operations, which are essentially descriptions of how to
perform conventional directory service tasks using the well defined service operations.

1.3.3.1 move

Move a namespace entry from one location in the hierarchical namespace tree to another.

Operation: update (see 1.3.2.5)

The following parameter MUST be specified in the parameterList of ChangeInput.
(for values see 1.2.2.3):

QName Description

Path The full path of the entry to update. Required.

The following properties MUST be specified in the changeProperties of ChangeInput
(for values see 1.2.2.2.1):

QName Description

Path The full path the entry should be changed to. Used in “move”
operations. Value MUST be expressed in the Update element of
changeProperties.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 27

GWD-R June 2005

1.3.3.2 rename

Rename a namespace entry.

Operation: update (see 1.3.2.5)

The following parameter(s) MAY be specified in the parameterList of ChangeInput. Path MUST be
specified.
(for values see 1.2.2.3):

QName Description

Path The full path of the entry to update. Required.

At least one of the following properties MUST be specified in the changeProperties of ChangeInput
(for values see 1.2.2.2.1):

QName Description

Name String representation of the human interface name of Entry. Used only
if a BaseDirectory is specified and the value of the Name input
parameter is non-NULL.

Path The full path denoting the new path/name of the entry.

1.3.3.3 mkdir

Make a directory entry in the namespace; a virtual directory.

Operation: create (see 1.3.2.1)

The following parameters MUST be specified in the parameterList of ChangeInput.
 (for values see 1.2.2.3 and 1.2.2.2.1):

QName Description

Path The full path of the virtual directory to create.

Type Set with a value of VirtualDirectory.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 28

GWD-R June 2005

1.3.4 Iterator Context Operations

RNS facilitates the use of and interaction with a stateful resource, referred to as an IteratorContext (see
1.2.2.1), for the purpose of maintaining state information, such as the list index marker, while iterating
large lists. In order to instantiate a new IteratorContext resource, an application or client must first send a
message to the RNS service. The following operation provides this feature.

The RNS service MUST be able to support use of an IteratorContext and therefore MUST support the
createIteratorContext() operation.

This is a document literal service compliant message (complexType) that contains one element:

Parameter Name Description

iteratorContextID String: This is an unconstrained string used to uniquely identify a
particular IteratorContext instance. The format or syntax of this
property is NOT mandated by this specification.

1.3.4.1 IteratorContextRequest
The following is the WSDL representation of the IteratorContextRequest:

 <xsd:complexType name="IteratorContextRequest">
 <xsd:sequence>
 <!-- Iterator Context ID -->
 <xsd:element ref="tns:iteratorContextID" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="iteratorContextID" type="xsd:string" />

1.3.4.2 IteratorContextResponse
This is a document literal service compliant message (complexType) that contains two elements: an
Endpoint Reference corresponding to the IteratorContext resource in context and the iterator context
identification string.

The following is the WSDL representation of the IteratorContextResponse:

 <xsd:complexType name="IteratorContextResponse">
 <xsd:sequence>
 <xsd:element ref="wsa:EndpointReference"/>
 <!-- Iterator Context ID -->
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 29

GWD-R June 2005

1.3.4.3 createIteratorContext

Instantiate a new IteratorContext. This operation will create a new IteratorContext, using the provided
iteratorContextID if specified, to be used in subsequent list operations. If an iteratorContextID is specified
and already exists within the current instance of the service, then a fault message is returned. The
response message of this operation embodies an Endpoint Reference that corresponds to the said
service side IteratorContext resource.

Parameter: IteratorContextRequest (see 1.3.4.1)
Returns: IteratorContextResponse (see 1.3.4.2)

The following iteratorContextID MAY be specified; if iteratorContextID is not specified, then the service
MUST generate a point-in-time unique identification string that signifies the iteratorContextID. If an
iteratorContextID is generated by the service, the application or client can retrieve the iteratorContextID
from the IteratorContextResponse message (see 1.3.4.2). The EPR contained in the response message
MUST be used for all subsequent message exchanges that intend to interact with the IteratorContext
resource.

QName Description

IteratorContextID Identification string of the IteratorContext to be created. Optional.

1.3.4.4 getIteratorContext

Open an existing IteratorContext. This operation will open the IteratorContext corresponding to the
IteratorContextID specified. If a valid IteratorContext does not exists according to the IteratorContextID
specified, then a fault message is returned. The response message of this operation embodies an
Endpoint Reference that corresponds to the said service side IteratorContext resource.

Parameter: IteratorContextRequest (see 1.3.4.1)
Returns: IteratorContextResponse (see 1.3.4.2)

The following iteratorContextID MUST be specified. The EPR contained in the response message MUST
be used for all subsequent message exchanges that intend to interact with the IteratorContext resource.

QName Description

IteratorContextID Identification string of the IteratorContext to be retrieved. Required.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 30

GWD-R June 2005

1.3.5 Profile Extension Operations

RNS features an extensible design allowing normative profile specifications, such as OGSA Basic Profiles
[5], to define a standard set of resource properties for specific instantiations of the namespace service.
This feature facilitates extensibility without requiring modification to the RNS specification or
implementation, eliminates the necessity to draft a design specification, and eliminates the necessity to
develop any implementation code that “extends” or “subclasses” any RNS component. Traditional
software engineering practices generally extend a service class or component by subclassing it and
adding specific functionality tailored for a particular purpose. This approach usually requires that each
time a new function is added, software development and deployment is necessary.

In an effort to leverage the flexibility and abstractness of document style Web services, RNS proposes a
mechanism that facilitates dynamic runtime extensibility with the use of adjunct resource properties.
These adjunct resource properties may be defined by a Basic Profile [5]. An adjunct resource property
may be added to the effectual resource properties document of the RNS entry properties document. This
means that an administrator of the RNS service may define resource properties that will be used in
addition to the required entry properties [Required Entry Properties 1.2.2.2.1], thereby effectively
augmenting the representation of the RNS Entry resource and extending the resource properties
associated with it to include the newly added adjunct resource properties.

The RNS service MUST be able to support use of any dynamically added adjunct resource property, by
properly allowing the use of message elements identified by QNames that represent the adjunct resource
property. Values MUST be expressible in XML compatible data types [6].

1.3.5.1 Profile Extension Operation Parameters
The following table defines the properties used as parameters in the RNS profile extension operations.

QName Description

DataType WSDL compatible representation of the XML data type. Possible
values are: string, boolean, base64Binary, hexBinary, float, decimal,
double, anyURI, QName, duration, dateTime, time, and date.
Example: “string” See [6].

Description String description of the adjunct resource property

Name Name of the adjunct resource property, serving as the QName (local
part) used to represent the property in general operations.

Profile Optional string value denoting the Profile this adjunct resource property
is associated with.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 31

GWD-R June 2005

Following are the operations that enable management of adjunct resource properties defined in the RNS
port type (RNSPortType) specification:

1.3.5.2 deleteProperty

Delete an existing adjunct resource property from the registry. This operation will delete ALL instances of
the property even if more than one entry has stored values corresponding to the property.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 1.3.5.1)::

QName Description

Name Name of the adjunct resource property to be deleted. (QName)

1.3.5.3 insertProperty

Store a new adjunct resource property to the registry. An exception is thrown if the adjunct resource
property specified already exists in the service’s persistent database.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 1.3.5.1):

QName Description

Name Name of the adjunct resource property to be inserted. (QName)

DataType WSDL compatible representation of the XML data type.

The following properties MAY be specified in the parameterList of ChangeInput
(for values see 1.3.5.1):

QName Description

Description Description of the adjunct resource property

Profile Optional string value denoting the Profile this adjunct resource property
is associated with.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 32

GWD-R June 2005

1.3.5.4 listProperties

Lists all currently registered adjunct resource properties.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of QueryInput serving as query
filters.
 (for values see 1.3.5.1):

QName Description

DataType Use as a list filter. Only adjunct resource properties that match the
value of this parameter will be returned.

Name Use to identify a specific adjunct resource property to list. Only the
property that matches the value of this parameter will be returned.

Profile Use as a list filter. Only adjunct resource properties that match the
value of this parameter will be returned.

At least one property type MUST be specified for this operation (see below).
The following properties MAY be specified in the propertyTypes of QueryInput to specify what
properties of the returning adjunct resource properties should be listed.
 (for values see 1.3.5.1):

QName Description

DataType WSDL compatible representation of the XML data type.

Description Description of the adjunct resource property

Name Name of the adjunct resource property. (QName)

Profile String value denoting the Profile this adjunct resource property is
associated with.

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list includes
all of the Profile Extension Operation Parameters (see 1.3.5.1):

QName DataType, Description, Name, Profile

mpereira@us.ibm.com o.tatebe@aist.go.jp
 33

GWD-R June 2005

1.3.5.5 updateProperty

Updates an existing adjunct resource property.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of ChangeInput.
(for values see 1.3.5.1):

QName Description

Name Name of the adjunct resource property to be updated. (QName)

The following properties MAY be specified in the changeProperties of ChangeInput
(for values see 1.3.5.1):

QName Description

DataType WSDL compatible representation of the XML data type.

Description Description of the adjunct resource property

Name Name of the adjunct resource property. (QName)

Profile String value denoting the Profile this adjunct resource property is
associated with.

The ChangeInput parameter is fully capable of inserting, updating, and deleting properties in a single
message exchange via the changeProperties component. Values MUST be represented by the
appropriate change type: Insert, Update, or Delete. (see section 1.3.1.2)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 34

GWD-R June 2005

1.4 Operation Faults of the Resource Namespace Service

This section describes the use of faults in RNS. All RNS defined faults are based on Web Services
standards, being fully compliant with WS-BaseFault[7]. This approach ensures all fault messages are
constructed and handled in a common, standard complaint, way.

An RNS compliant implementation MUST employ all of the following faults:

1.4.1 RNSFault

This is the base fault defined by the RNS specification, providing a “superclass” for all other RNS faults.

Extends wsbf:BaseFaultType

Element Description

Path String representation of the current working path where the service
encountered the fault.

1.4.2 RNSDirectoryNotEmptyFault

This fault MUST be returned when a delete or update operation is targeted at a virtual directory that has
subentries associated with it.

Extends RNSFault

1.4.3 RNSEntryExistsFault

This fault MUST be returned when a create or update operation attempts to create an entry that already
exists in the namespace or attempts to rename/move an entry to a path that corresponds to an existing
entry.

Extends RNSFault

1.4.4 RNSEntryNotFoundFault

This fault MUST be returned when any operation fails to resolve a path. This fault is only applicable to
paths that correspond to the context of the current service instance namespace. Please see section 2.2.1
for more information regarding connecting multiple RNS namespaces and the use of service referrals to
redirect applications and clients to other service instances that may precede or succeed the current
service instance in terms of path name hierarchy.

Extends RNSFault

1.4.5 RNSInvalidPropertyFault

This fault MUST be returned when any operation is issued a QName as a resource property name that is
invalid. In addition to the predefined resource properties (1.2.2.2.1) RNS facilitates the ability to
dynamically create user defined resource properties (1.2.2.2.2); this fault SHOULD only be returned if the
property name specified does not exist in both the predefined and the user defined resource property lists.

Extends RNSFault

mpereira@us.ibm.com o.tatebe@aist.go.jp
 35

GWD-R June 2005

Element Description

PropertyName The invalid property QName that was specified.

1.4.6 RNSJunctionFault

This fault MUST be returned when any operation is issued a path that traverses beyond a Junction entry
in the RNS namespace. As the service attempts to resolve an absolute path, and encounters a Junction
entry before the path is fully resolved, then a fault message containing all of the EPRs associated with the
junction encountered MUST be returned. This fault is only applicable to paths that traverse Junction
entries, not referrals. Please see section 2.2.1 for more information regarding connecting multiple RNS
namespaces and the use of service referrals. Regardless of the Type of Junction entry, this fault MUST
always contain all of the EPRs associated; if the junction is a LogicalReference, for example, the service
MUST first attempt to resolve the logical name to its respective endpoint reference(s).

Extends RNSFault

Element Description

EPRs All EPRs registered with the Junction entry that was traversed during
path resolution.

1.4.7 RNSTypeFault

This fault SHOULD be returned when a list operation specifies a path that resolves to an entry with a
Type value not equal to VirtualDirectory. This fault SHOULD be returned when a create operation
specifies a properties for an entry that are invalid for that entry Type.

Extends RNSFault

mpereira@us.ibm.com o.tatebe@aist.go.jp
 36

GWD-R June 2005

2 Federation of Resource Namespace Services

A global namespace service directly implies the employment of a multitude of namespace servers by
virtue of geographical distribution, segregated domains of ownership and control, scalability, and
redundancy/availability. A principal goal of a global namespace service is to provide a location
independent view of consistent access paths to resources. Since these access paths are represented by
hierarchal path names, symbolizing a globally unique identifier to a given resource, it is a natural
extension of the design to consider an architecture that federates multiple namespace servers in a
hierarchical fashion. Similar to the well established DNS model, RNS service providers can be interlinked
by referrals whilst providing a seamless and transparent view of the namespace.

2.1 Distributed Namespace Repositories

A namespace service that accommodates scalability, redundancy/availability, and geographic
dissemination implicitly necessitates the distribution of servers in a grid or network. Duplicate or replica
copies of namespace content, which embody namespace entries and their associated properties, MAY
need to be distributed within a network and therefore the specification of the namespace service MUST
mandate provisions to make such configurations possible.

Namespace content is persistently stored in what is referred to in this document as a repository. Each
RNS service provider provides services for a namespace derived by the names and associated mappings
that are contained within the corresponding repository. This specification does not prescribe the type of
data store to be used as the repository of namespace content. Furthermore, implementation specific
arrangements, such as sharing a single repository between multiple RNS service providers or enable a
single RNS service provider to leverage multiple repositories, are not mandated by this specification.

This specification does not mandate how namespace content is to be distributed. It does not specify how
to distribute, replicate, or maintain consistency between multiple repository replicas. However, since the
specification does describe operations that allow for namespace content to be updated, it must therefore
require that all updated operations comply with the following update semantics. Any operation that
modifies namespace repository content SHOULD support update semantics that ensure atomic updates
to namespace content. This means that operations like create, delete, and update SHOULD guarantee
synchronized processing that prevents update contingencies based on concurrent execution.

2.2 Resolution Spanning Namespace Services

Once several instances of the namespace service are interlinked, the most obvious challenge is related to
path name resolution when dealing with paths that cross repository boundaries. There are two
fundamental approaches to resolving path names that span multiple namespace domains or service
instances: service referrals and delegated resolution.

2.2.1 Service Referrals
The most straightforward and arguably the most secure and truly scalable approach to resolving path
names that span multiple domains or service instances is to place the onus of handling RNS referrals on
the RNS client. In this approach, the namespace server would simply return an RNS referral to the RNS
client when a junction to another namespace server is encountered. The client implementing the RNS
API is then responsible for continuing the task of resolving the original path name by connecting to the
namespace server indicated by the RNS referral and querying the newly connected server for further
(relative) path name resolution.

One clear advantage of this approach is the direct management of namespace service connections,
which implies authentication and authorization control per connection, rather than accessing a referred
namespace server via proxied security. Additionally, this approach promotes distributed work load

mpereira@us.ibm.com o.tatebe@aist.go.jp
 37

GWD-R June 2005

balancing; instead of requiring RNS servers to handle namespace requests for both locally managed
namespace and remotely managed namespace via proxy.

This specification mandates that a compliant implementation MUST facilitate the capability of service
referrals as described here. In particular, the mechanism MUST use the ReferralEPR element featured in
both the QueryResponse and ChangeResponse messages.

2.2.1.1 Referral Messages
Since all namespace entities are uniquely distinguished by a globally unique pathname, and pathnames
are the only option for identifying namespace entries, this specification REQUIRES that all service
operations accommodate the use of absolute pathnames. However, since RNS namespace service
providers MAY be distributed and arranged as a hierarchy of namespace services, secondary and tertiary
service providers will represent subsections of the total namespace, each with respectively different root
directories. If absolute pathnames span multiple service providers then the service must use a
mechanism to interrupt the operation with a referral message that redirects the client or application to the
appropriate service instance of the next repository; provided that the path can be resolved by the current
operating RNS service provider and a referral junction is encountered while attempting to resolve the
path.

In the case where the beginning of a path specified cannot be resolved, and the RNS service provider is a
secondary or tertiary instance, the service MUST either (1) return a referral message referencing its
parent service provider with a BaseDirectory value of “/” or (2) return an RNSEntryNotFoundFault
message (see section 1.4.4). To reference a parent or superior (upper level) service provider requires
that the implementation is aware of, and can produce a valid ReferralEPR to, the parent service provider.
This is an implementation specific configuration option that is not mandated by this specification.

Each referral message MUST contain a BaseDirectory value (see 1.2.2.3), which is a full path of the current
working directory (see 1.1.3.1.1), relative to the current service provider. Notice that the BaseDirectory does
not denote the global path from the perspective of the client or application (see 1.1.3.1.3), but rather the
full path relative to the root of the current service provider.

All namespace requests are responded to using a QueryResponse or ChangeResponse message. Both
of these message types define a ReferralEPR element, which is ONLY used when the message denotes
a referral message. If a request is made using a path that traverses a referral namespace entry, the
request MUST be interrupted with a referral message. A referral message is therefore defined as a
response message that contains one or more referral EPRs. If a QueryResponse or ChangeResponse
message defines a non-null value for the ReferralEPR element, the application or client MUST redirect
the request to the service provider specified by the referral EPR. The application or client is responsible
for handling all details related to connecting to multiple service providers and maintaining a mapping
between each provider’s BaseDirectory and the absolute path.

The following illustration provides a very basic example of how a referral message is used:

mpereira@us.ibm.com o.tatebe@aist.go.jp
 38

GWD-R June 2005

Application RNS
rns1.acme.org

RNS
research.acme.org

Operation = list()
Path = /acme.org/research/projects/rns

<QueryResponse>
ReferralEPR = research.acme.org
BaseDirectory = /acme.org/research
</QueryResponse>

Redirect request to research.acme.org
Operation = list()
Path = /projects/rns

<QueryResponse>
baseDirectory = /projects/rns
. . . list response . . .
</QueryResponse>

Figure 2

A good understanding regarding the use of absolute paths and the BaseDirectory value of each response
message is essential to the understanding of spanning multiple service providers and handling referral
messages. The values of a QueryResponse or ChangeResponse message are relative to the context of
the service provider that retuned it. For example, in Figure 2, the BaseDirectory value of
“/acme.org/research” is the full path relative to the service provider “rns1.acme.org”. Secondly, the value
of ReferralEPR, which is “research.acme.org”, represents the secondary service provider to redirect the
request to.

Since the BaseDirectory value in a referral message is the full path relative to the service provider that
returned it, it signifies the portion of the absolute pathname that should be factored out of the pathname to
be used in the redirected operation. In the example presented in Figure 2, the BaseDirectory value of
“/acme.org/research” is factored out of the absolute path “/acme.org/research/projects/rns” to yield the
pathname “/projects/rns” to be used in the redirected operation. Notice that if the new pathname spans
yet another repository boundary and therefore redirected to another service, this already factored path
must undergo refactoring to be used within the context of the next service provider that is serving the third
repository.

Notice that each user or application initiated operation MAY use an absolute path since the provider
specific pathnames are automatically derived by the service when necessary. Optionally, a client
implementation MAY choose to retain connection information per service provider and therefore
incorporate the necessary functionality to derive the appropriate context specific full path that corresponds
to the connection serving that previously visited portion of the namespace.

2.2.2 Delegated Resolution
Another possible approach to resolving path names that span multiple domains or service instances is to
empower the RNS server to delegate queries to other RNS servers for complete resolution of any given
path. Although this approach is demonstrated in DNS, it should be noted that the security requirements
are quite different. Since DNS generally operates in a public read-only manner without authentication and
authorization per DNS server, it is not too unreasonable to endorse such an approach. RNS, however,
facilitates the possibility of requiring authentication per service instance and enforcing access control per
entry. Nevertheless, an approach that allows for the possibility of delegated resolution should be
considered as at least an optional mode of operation; incidentally DNS is capable of both approaches.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 39

GWD-R June 2005

3 Resource Endpoint Resolution Service

The Resource Endpoint Resolution Service, which will henceforth be referred to as RNS Resolver, is a
companion service to RNS providing operations that enable management and resolution of logical
references. The RNS Resolver service is independent of RNS, and RNS is independent of it. RNS
Resolver MAY be used by RNS and other services and applications, at the same service URL as the RNS
namespace service, using a different port type (RNSResolverPortType).

As described in the RNS specification for namespace services, RNS Resolver only addresses the second
and third tiers of the overall naming scheme—that is the level of strictly mapping logical names to
endpoint references.

3.1 RNS Resolver Basic Components

RNS Resolver is comprised of two fundamental service components: logical names and endpoint
references or addresses. These two basic components when coupled together are referred to as logical
references and are used to serve a name-to-address resolution service, capable of a many-to-many
mapping between names and addresses. This service does not maintain any complex relationships
between components, but rather an intuitive mapping of logical names to endpoint references. One logical
name maps to at least one endpoint reference, but is unbound regarding the number of targets allowable.
It is also possible that a given endpoint reference is referenced by more than one logical name. A
description of each follows:

3.1.1 Logical Reference
A Logical Reference (LogicalReference) is characterized by its logical name, which is a logically unique—
potentially globally unique—identifier of some resource. A logical name does not have any intrinsic value
nor is it meaningful outside of the context for which it is intended—it is simply a unique name that is used
to identify a resource or set of resources that have been logically virtualized. Logical names may be used
in registries other than RNS Resolver and can potentially be interoperable amongst different resolution
services.

3.1.2 Endpoint Reference
An Endpoint Reference (EPR) in the context of Web services is fundamentally a formatted reference
string, usually represented in XML, that targets a referenceable entity, processor, or resource where Web
service messages can be exchanged. Endpoint References convey the information needed to
identify/reference a Web service endpoint[2]

3.2 Document Style Messaging

RNS Resolver exploits a document style message exchange approach to services.
(Please refer to section 1.2)

3.3 Operations of RNS Resolver

RNS Resolver is composed of the following operations:

1) An operation for resolving logical names to endpoint references.
2) Operations for creating, removing, and updating logical references.

To retrieve information about a particular logical reference, a standard message exchange (operation) is
initiated by a message request containing a list of all of the property names (QNames) whose values are
to be retrieved. The operation completes by returning a SOAP message containing the values of all of
the properties requested. The returned values may contain nested value arrays and therefore are
mpereira@us.ibm.com o.tatebe@aist.go.jp
 40

GWD-R June 2005

properly decoded by traversing the entire SOAP message, which is comprised of nest-able message
elements.

3.3.1 Operation Parameters

Please refer to section 1.3.1 for additional property definitions.

QName Description

Description String description of either a logical name or endpoint reference

EPR Used to set or add a single Endpoint Reference value

EPRs Used to retrieve an inclusive list of Endpoint References mapped by a
given logical name

LogicalName Used to set or update the logical name

3.3.2 RNS Resolver Operations

The following is a comprehensive list of operations defined in the RNS Resolver port type
(RNSResolverPortType) specification.

3.3.2.1 deleteEndpointReference
Delete an existing endpoint reference from all mappings, unless it represents the only endpoint reference
mapped by a given logical name in which case an exception is thrown.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 3.3.1):

QName Description

EPR The Endpoint Reference to be deleted

3.3.2.2 deleteLogicalReference
Delete an existing logical name to endpoint reference mapping.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 3.3.1):

QName Description

LogicalName The logical name to delete

mpereira@us.ibm.com o.tatebe@aist.go.jp
 41

GWD-R June 2005

3.3.2.3 insertLogicalReference
Store a new logical name to endpoint reference mapping. An exception is thrown if the logical name used
already exists in the service’s persistent database.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of ChangeInput is not used in this operation.

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 3.3.1):

QName Description

LogicalName The logical name of this LogicalReference

EPR* The Endpoint Reference to be mapped

The following properties MAY be specified in the parameterList of ChangeInput
(for values see 3.3.1):

QName Description

Description Description of the LogicalReference

* Note that a message MAY contain multiple EPR elements, which effectively represents a list.

3.3.2.4 resolve
Takes a logical name and returns all related endpoint references. Basic operation that resolves a unique
logical name to the corresponding address(es). One logical name maps to at least one endpoint
reference, but is unbound regarding the number of targets allowable. It is also possible that a given
endpoint reference is referenced by more than one logical name.

Parameter: QueryInput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MUST be specified in the parameterList of QueryInput
(for values see 3.3.1):

QName Description

LogicalName The logical name to resolve

The following properties MAY be specified in the propertyTypes of QueryInput
 (for values see 3.3.1):

QName Description

EPRs (returned by default, no need to specify in the propertyTypes list)

Description Description of the LogicalReference

The following properties MAY be included in the QueryResponse message (see 1.3.1.3), this list includes
some of the Resolver Operation Parameters (see 3.3.1):

QName Description, EPRs, EPR

mpereira@us.ibm.com o.tatebe@aist.go.jp
 42

GWD-R June 2005

3.3.2.5 updateEndpointReference
Updates all existing instances of the specified endpoint reference, affecting all Logical References
referring to this endpoint reference.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of ChangeInput.
(for values see 3.3.1):

QName Description

EPR The value representing the Endpoint Reference to update

The following properties MUST be specified in the changeProperties of ChangeInput
(for values see 3.3.1):

QName Description

EPR The new Endpoint Reference value to be stored. This property value
MUST be embedded in the Update change type element. (see section
1.3.1.2)

3.3.2.6 updateLogicalReference
Updates an existing logical name to endpoint reference mapping, enabling the caller to update the
description of the Logical Reference and add and/or remove associated EPRs.

Parameter: ChangeInput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of ChangeInput
(for values see 3.3.1):

QName Description

LogicalName The logical name denoting the LogicalReference to update

At least one property MUST be specified in the changeProperties of ChangeInput.
The following properties MAY be specified in the changeProperties of ChangeInput
(for values see 3.3.1):

QName Description

Description Description of the LogicalReference. This property value MUST be
embedded in the Update change type element. (see section 1.3.1.2)

EPR A single Endpoint Reference to be mapped or added to the mapping.
This property value MUST be embedded in the Update change type
element. (see section 1.3.1.2)

Note that more than one EPR element MAY be included in a single message exchange, effectively
representing a list of values.

The ChangeInput parameter is fully capable of inserting, updating, and deleting properties in a single
message exchange via the changeProperties component. This means that an EPR value may be used
for adding a new EPR while another EPR value is sent identifying an existing endpoint reference that
should be de-referenced. Values MUST be represented by the appropriate change type: Insert, Update,
or Delete. (see section 1.3.1.2)

mpereira@us.ibm.com o.tatebe@aist.go.jp
 43

GWD-R June 2005

Considerations

There are several issues to consider, with respect to RNS, which have not been explored in this
document.

• Security – The topic of security as a whole is not discussed in this specification document.
Security is recognized as a substantial area of interest and will require further investigation.

• Backup – Backup of RNS data may be required.

• Replication – Replication of namespace repository data is not discussed however may be
necessary for redundancy in high availability deployments.

• Repository Consistency – As a namespace service that is intended to enable federation of
multiple, hierarchical, namespace services, coherency of namespace repository data between
distributed service instance datastores is essential. This specification does not mandate where
nor how namespace repository data is stored. Therefore, coherency between redundant and
delegated RNS services is not addressed.

• Discussion of access control lists (ACLs) within RNS, their purpose, scope, representation, and
enforcement. There are two fundamental levels of consideration, (1) access control to
namespace information and (2) access control to the target resource that the namespace refers
to. The latter case most often is protected independent of the namespace referring to it.

Summary and Conclusion

This document is intended to describe the specification of the Resource Namespace Service, a
fundamental namespace service that is capable of addressing a wide variety of namespace related needs
from virtualized services and artifacts to federated global data.

This document proposed a set of operations needed to be supported by RNS. It also purposed a set of
operations needed to provide a companion service to the basic RNS namespace services for resolving
logical, or abstract, names; the Resource Endpoint Resolution Service (RNS Resolver). Additionally, it
proposed two approaches to federation of RNS service instances for scalable, large-scale and distributed
namespace management.

Further detailed discussions regarding this specification and the potential evaluation of reference
implementations are needed. Additionally, an evaluation should be conducted that examines the aspects
of security, performance, consistency, scalability, and reliability. The evaluation needs also to consider
functionality of a client library, especially, with and without client attribute cache.

mpereira@us.ibm.com o.tatebe@aist.go.jp
 44

GWD-R June 2005

Appendix: RNS WSDL 1.1

The following illustrates the Web Services Description Language (WSDL 1.1) for the Web service
methods described in this specification.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="RNS"
 targetNamespace="http://rns.ggf.org"
 xmlns:tns="http://rns.ggf.org"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:gtwsdl="http://www.globus.org/namespaces/2004/01/GTWSDLExtensions"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsrlw=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 xmlns:wsrp=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 xmlns:wsbf=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"
 xmlns:wsntw=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- RNS Web Service Description File -->
 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 location="../wsrf/properties/WS-ResourceProperties.wsdl" />

 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 location="../wsrf/lifetime/WS-ResourceLifetime.wsdl" />

 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 location="../wsrf/notification/WS-BaseN.wsdl" />

 <!-- Value Types -->
 <types>
 <xsd:schema targetNamespace="http://rns.ggf.org"
 xmlns:tns="http://rns.ggf.org"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing"
 schemaLocation="../ws/addressing/WS-Addressing.xsd" />

 <xsd:import namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 schemaLocation="../wsrf/properties/WS-ResourceProperties.xsd" />

 <xsd:import namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"
 schemaLocation="../wsrf/faults/WS-BaseFaults.xsd" />

 <!-- === RNS Elements Begin === -->

 <!-- "IteratorContextRequest" Object for Creating/Opening IteratorContexts -->
 <xsd:element name="IteratorContextRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:iteratorContextID" minOccurs="0" maxOccurs="1"/>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 </xsd:sequence>

 45

GWD-R June 2005

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="IteratorContextResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsa:EndpointReference"/>
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="ParameterList">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="QueryInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- Array of QNames used to indicate what properties to retrieve -->
 <xsd:element ref="tns:propertyTypes" minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ChangeInput">
 <xsd:sequence>
 <!-- Dynamic list of parameters -->
 <xsd:element ref="tns:parameterList" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="QueryResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:endOfList" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ChangeResponse">
 <xsd:sequence>
 <xsd:element ref="tns:baseDirectory" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:referralEPR" minOccurs="0" maxOccurs="unbound"/>
 <xsd:element ref="tns:message" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- RNS Fault declarations -->
 <xsd:complexType name="RNSFaultType">
 <xsd:complexContent>
 <xsd:extension base="wsbf:BaseFaultType">
 <xsd:sequence>
 <xsd:element name="path" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RNSDirectoryNotEmptyFaultType">
 <xsd:complexContent>
 <xsd:extension base="tns:RNSFaultType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RNSEntryExistsFaultType">
 <xsd:complexContent>
 <xsd:extension base="tns:RNSFaultType"/>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 46

GWD-R June 2005

 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RNSEntryNotFoundFaultType">
 <xsd:complexContent>
 <xsd:extension base="tns:RNSFaultType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RNSInvalidPropertyFaultType">
 <xsd:complexContent>
 <xsd:extension base="tns:RNSFaultType">
 <xsd:sequence>
 <xsd:element name="propertyName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RNSJunctionFaultType">
 <xsd:complexContent>
 <xsd:extension base="tns:RNSFaultType">
 <xsd:sequence>
 <xsd:element name="EPRs" type="xsd:string"
 minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="RNSTypeFaultType">
 <xsd:complexContent>
 <xsd:extension base="tns:RNSFaultType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="RNSFault" type="tns:RNSFaultType"/>
 <xsd:element name="RNSDirectoryNotEmptyFault"
 type="tns:RNSDirectoryNotEmptyFaultType"/>
 <xsd:element name="RNSEntryExistsFault" type="tns:RNSEntryExistsFaultType"/>
 <xsd:element name="RNSEntryNotFoundFault" type="tns:RNSEntryNotFoundFaultType"/>
 <xsd:element name="RNSInvalidPropertyFault" type="tns:RNSInvalidPropertyFaultType"/>
 <xsd:element name="RNSJunctionFault" type="tns:RNSJunctionFaultType"/>
 <xsd:element name="RNSTypeFault" type="tns:RNSTypeFaultType"/>

 <!-- Parameter element declarations -->
 <xsd:element name="propertyTypes" type="xsd:QName"/>
 <xsd:element name="parameterList" type="tns:ParameterList"/>

 <!-- Resource property element declarations -->
 <xsd:element name="autoChangeDir" type="xsd:boolean"/>
 <xsd:element name="autoResolve" type="xsd:boolean"/>
 <xsd:element name="baseDirectory" type="xsd:string"/>
 <xsd:element name="childCount" type="xsd:int"/>
 <xsd:element name="directoryPath" type="xsd:string"/>
 <xsd:element name="endOfList" type="xsd:boolean"/>
 <xsd:element name="iteratorContextID" type="xsd:string"/>
 <xsd:element name="iteratorIndex" type="xsd:int"/>
 <xsd:element name="iteratorMaxAtOnce" type="xsd:int"/>
 <xsd:element name="message" type="xsd:string"/>
 <xsd:element name="referralEPR" type="xsd:string"/>

 <!-- "Context" Resource for Maintaining State -->
 <xsd:element name="IteratorContext">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:childCount" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:directoryPath" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorContextID" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="tns:iteratorIndex" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>
 </types>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 47

GWD-R June 2005

 <!-- RNS Messages -->
 <message name="IteratorContextRequest">
 <part name="IteratorContextRequest" element="tns:IteratorContextRequest"/>
 </message>
 <message name="IteratorContextResponse">
 <part name="IteratorContextResponse" element="tns:IteratorContextResponse"/>
 </message>
 <message name="ListInputMessage">
 <part name="ListInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="ListResponseMessage">
 <part name="ListResponseMessage" type="tns:QueryResponse"/>
 </message>
 <message name="LookupInputMessage">
 <part name="LookupInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="LookupResponseMessage">
 <part name="LookupResponseMessage" type="tns:QueryResponse"/>
 </message>
 <message name="UpdateInputMessage">
 <part name="UpdateInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="UpdateResponseMessage">
 <part name="UpdateResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="CreateInputMessage">
 <part name="CreateInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="CreateResponseMessage">
 <part name="CreateResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="DeleteInputMessage">
 <part name="DeleteInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="DeleteResponseMessage">
 <part name="DeleteResponseMessage" type="tns:ChangeResponse"/>
 </message>

 <!-- Adjunct Resource Properties Messages -->
 <message name="DeletePropertyInputMessage">
 <part name="DeletePropertyInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="InsertPropertyInputMessage">
 <part name="InsertPropertyInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="ListPropertiesInputMessage">
 <part name="ListPropertiesInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="UpdatePropertyInputMessage">
 <part name="UpdatePropertyInputMessage" type="tns:ChangeInput"/>
 </message>

 <!-- RRS Messages -->
 <message name="ResolveInputMessage">
 <part name="ResolveInputMessage" type="tns:QueryInput"/>
 </message>
 <message name="ResolveResponseMessage">
 <part name="ResolveResponseMessage" type="tns:QueryResponse"/>
 </message>
 <message name="MapLogicalInputMessage">
 <part name="MapLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="MapLogicalResponseMessage">
 <part name="MapLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="CreateLogicalInputMessage">
 <part name="CreateLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="CreateLogicalResponseMessage">
 <part name="CreateLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 48

GWD-R June 2005

 <message name="DeleteLogicalInputMessage">
 <part name="DeleteLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="DeleteLogicalResponseMessage">
 <part name="DeleteLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="UpdateLogicalInputMessage">
 <part name="UpdateLogicalInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="UpdateLogicalResponseMessage">
 <part name="UpdateLogicalResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="DeleteEPRInputMessage">
 <part name="DeleteEPRInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="DeleteEPRResponseMessage">
 <part name="DeleteEPRResponseMessage" type="tns:ChangeResponse"/>
 </message>
 <message name="UpdateEPRInputMessage">
 <part name="UpdateEPRInputMessage" type="tns:ChangeInput"/>
 </message>
 <message name="UpdateEPRResponseMessage">
 <part name="UpdateEPRResponseMessage" type="tns:ChangeResponse"/>
 </message>

 <!-- WSDL messages for each distinct fault -->
 <wsdl:message name="RNSFaultMessage">
 <wsdl:part name="fault" element="tns:RNSFault"/>
 </wsdl:message>
 <wsdl:message name="RNSDirectoryNotEmptyFaultMessage">
 <wsdl:part name="fault" element="tns:RNSDirectoryNotEmptyFault"/>
 </wsdl:message>
 <wsdl:message name="RNSEntryExistsFaultMessage">
 <wsdl:part name="fault" element="tns:RNSEntryExistsFault"/>
 </wsdl:message>
 <wsdl:message name="RNSEntryNotFoundFaultMessage">
 <wsdl:part name="fault" element="tns:RNSEntryNotFoundFault"/>
 </wsdl:message>
 <wsdl:message name="RNSInvalidPropertyFaultMessage">
 <wsdl:part name="fault" element="tns:RNSInvalidPropertyFault"/>
 </wsdl:message>
 <wsdl:message name="RNSJunctionFaultMessage">
 <wsdl:part name="fault" element="tns:RNSJunctionFault"/>
 </wsdl:message>
 <wsdl:message name="RNSTypeFaultMessage">
 <wsdl:part name="fault" element="tns:RNSTypeFault"/>
 </wsdl:message>

 <!-- === Resource Namespace Service === -->
 <portType name="RNSPortType"
 gtwsdl:extends="wsrpw:GetResourceProperty"
 gtwsdl:implements="wsntw:NotificationProducer
 wsrlw:ImmediateResourceTermination
 wsrlw:ScheduledResourceTermination"
 wsrp:ResourceProperties="tns:IteratorContext">

 <!-- Operation for creating a new IteratorContext -->
 <operation name="createIteratorContext">
 <input message="tns:IteratorContextRequest"/>
 <output message="tns:IteratorContextResponse"/>
 </operation>

 <!-- Operation for retrieving an existing IteratorContext -->
 <operation name="getIteratorContext">
 <input message="tns:IteratorContextRequest"/>
 <output message="tns:IteratorContextResponse"/>
 </operation>

 <!-- WS-ResourceProperties Operations -->
 <operation name="getResourceProperty">
 <input message="wsrpw:GetResourcePropertyRequest"/>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 49

GWD-R June 2005

 <output message="wsrpw:GetResourcePropertyResponse"/>
 </operation>
 <operation name="getMultipleResourceProperties">
 <input message="wsrpw:GetMultipleResourcePropertiesRequest"/>
 <output message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 </operation>

 <!-- Create Operation -->
 <operation name="create">
 <input message="tns:CreateInputMessage"/>
 <output message="tns:CreateResponseMessage"/>
 <fault name="RNSJunctionFault"
 message="tns:RNSJunctionFaultMessage"/>
 <fault name="RNSEntryExistsFault"
 message="tns:RNSEntryExistsFaultMessage"/>
 <fault name="RNSInvalidPropertyFault"
 message="tns:RNSInvalidPropertyFaultMessage"/>
 <fault name="RNSTypeFault"
 message="tns:RNSTypeFaultMessage"/>
 <fault name="RNSFault"
 message="tns:RNSFaultMessage"/>
 </operation>

 <!-- Delete Operation -->
 <operation name="delete">
 <input message="tns:DeleteInputMessage"/>
 <output message="tns:DeleteResponseMessage"/>
 <fault name="RNSJunctionFault"
 message="tns:RNSJunctionFaultMessage"/>
 <fault name="RNSInvalidPropertyFault"
 message="tns:RNSInvalidPropertyFaultMessage"/>
 <fault name="RNSDirectoryNotEmptyFault"
 message="tns:RNSDirectoryNotEmptyFaultMessage"/>
 <fault name="RNSEntryNotFoundFault"
 message="tns:RNSEntryNotFoundFaultMessage"/>
 <fault name="RNSFault"
 message="tns:RNSFaultMessage"/>
 </operation>

 <!-- List Operation -->
 <operation name="list">
 <input message="tns:ListInputMessage"/>
 <output message="tns:ListResponseMessage"/>
 <fault name="RNSJunctionFault"
 message="tns:RNSJunctionFaultMessage"/>
 <fault name="RNSInvalidPropertyFault"
 message="tns:RNSInvalidPropertyFaultMessage"/>
 <fault name="RNSEntryNotFoundFault"
 message="tns:RNSEntryNotFoundFaultMessage"/>
 <fault name="RNSTypeFault"
 message="tns:RNSTypeFaultMessage"/>
 <fault name="RNSFault"
 message="tns:RNSFaultMessage"/>
 </operation>

 <!-- Lookup Operation -->
 <operation name="lookup">
 <input message="tns:LookupInputMessage"/>
 <output message="tns:LookupResponseMessage"/>
 <fault name="RNSJunctionFault"
 message="tns:RNSJunctionFaultMessage"/>
 <fault name="RNSInvalidPropertyFault"
 message="tns:RNSInvalidPropertyFaultMessage"/>
 <fault name="RNSEntryNotFoundFault"
 message="tns:RNSEntryNotFoundFaultMessage"/>
 <fault name="RNSFault"
 message="tns:RNSFaultMessage"/>
 </operation>

 <!-- Update Operation -->
 <operation name="update">
 <input message="tns:UpdateInputMessage"/>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 50

GWD-R June 2005

 <output message="tns:UpdateResponseMessage"/>
 <fault name="RNSJunctionFault"
 message="tns:RNSJunctionFaultMessage"/>
 <fault name="RNSInvalidPropertyFault"
 message="tns:RNSInvalidPropertyFaultMessage"/>
 <fault name="RNSDirectoryNotEmptyFault"
 message="tns:RNSDirectoryNotEmptyFaultMessage"/>
 <fault name="RNSEntryNotFoundFault"
 message="tns:RNSEntryNotFoundFaultMessage"/>
 <fault name="RNSEntryExistsFault"
 message="tns:RNSEntryExistsFaultMessage"/>
 <fault name="RNSTypeFault"
 message="tns:RNSTypeFaultMessage"/>
 <fault name="RNSFault"
 message="tns:RNSFaultMessage"/>
 </operation>

 <!-- Delete Adjunct Property Operation -->
 <operation name="deleteProperty">
 <input message="tns:DeletePropertyInputMessage"/>
 <output message="tns:DeleteResponseMessage"/>
 </operation>

 <!-- Insert Adjunct Property Operation -->
 <operation name="insertProperty">
 <input message="tns:InsertPropertyInputMessage"/>
 <output message="tns:CreateResponseMessage"/>
 </operation>

 <!-- List Adjunct Property Operation -->
 <operation name="listProperties">
 <input message="tns:ListPropertiesInputMessage"/>
 <output message="tns:ListResponseMessage"/>
 </operation>

 <!-- Update Adjunct Property Operation -->
 <operation name="updateProperty">
 <input message="tns:UpdatePropertyInputMessage"/>
 <output message="tns:UpdateResponseMessage"/>
 </operation>

 </portType>

 <!-- === Resource Endpoint Resolution Service === -->
 <portType name="RNSResolverPortType">

 <!-- Logical Reference Resolve Operation -->
 <operation name="resolve">
 <input message="tns:ResolveInputMessage"/>
 <output message="tns:ResolveResponseMessage"/>
 </operation>

 <!-- Logical Reference Create Operation -->
 <operation name="insertLogicalReference">
 <input message="tns:CreateLogicalInputMessage"/>
 <output message="tns:CreateLogicalResponseMessage"/>
 </operation>

 <!-- Logical Reference Delete Operation -->
 <operation name="deleteLogicalReference">
 <input message="tns:DeleteLogicalInputMessage"/>
 <output message="tns:DeleteLogicalResponseMessage"/>
 </operation>

 <!-- Logical Reference Update Operation -->
 <operation name="updateLogicalReference">
 <input message="tns:UpdateLogicalInputMessage"/>
 <output message="tns:UpdateLogicalResponseMessage"/>
 </operation>

 <!-- Endpoint Reference Delete Operation -->
 <operation name="deleteEndpointReference">

mpereira@us.ibm.com o.tatebe@aist.go.jp
 51

GWD-R June 2005

 <input message="tns:DeleteEPRInputMessage"/>
 <output message="tns:DeleteEPRResponseMessage"/>
 </operation>

 <!-- Endpoint Reference Update Operation -->
 <operation name="updateEndpointReference">
 <input message="tns:UpdateEPRInputMessage"/>
 <output message="tns:UpdateEPRResponseMessage"/>
 </operation>
 </portType>
</definitions>

mpereira@us.ibm.com o.tatebe@aist.go.jp
 52

GWD-R June 2005

Acknowledgements
Noriyuki Soda (SRA)
Takuya Ishibashi (SOUM)

Author Information

Osamu Tatebe
Grid Technology Research Center, AIST
1-1-1 Umezono, Tsukuba
Ibaraki 3058568 Japan
o.tatebe@aist.go.jp

Manuel Pereira, Leo Luan, Ted Anderson
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120, USA
mpereira@us.ibm.com
leoluan@us.ibm.com
ota@us.ibm.com

Jane Xu
IBM Systems and Technology Group
5600 Cottle Road
San Jose, CA 95193, USA
jxu@us.ibm.com

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Copies of claims of rights made available for
publication and any assurances of licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this
recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to the GGF or
other organizations, except as needed for the purpose of developing Grid Recommendations in which

mpereira@us.ibm.com o.tatebe@aist.go.jp
 53

mailto:o.tatebe@aist.go.jp
mailto:mpereira@us.ibm.com
mailto:leoluan@us.ibm.com
mailto:ota@us.ibm.com
mailto:jxu@us.ibm.com

GWD-R June 2005

case the procedures for copyrights defined in the GGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE GLOBAL
GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

References

[1] Leo Luan and Ted Anderson, “Grid Namespace for Files”, GGF working draft, GGF8, 2003
https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1

[2] Web Services Addressing 1.0 – Core (W3C Working Draft 31 March 2005)
http://www.w3.org/TR/ws-addr-core/

[3] Web Services Resource Properties (WS-ResourceProperties) Version 1.2 06/10/2004
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf

[4] SOAP Version 1.2 Part 1: Messaging Framework
http://www.w3.org/TR/soap12-part1/

[5] OGSA Basic Profile 1.0
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-wsrf-basic-profile/en/20

[6] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/xmlschema-2/

[7] (WS-BaseFaults) Web Services Base Faults 1.2 (Working Draft 02, June 24, 2004)
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-02.pdf

[WSDL] Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

[WS-BaseNotification 1.2] Web Service Base Notification 1.2 (Working Draft 03, 21 June 2004)
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf

mpereira@us.ibm.com o.tatebe@aist.go.jp
 54

https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1
http://www.w3.org/TR/ws-addr-core/
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf
http://www.w3.org/TR/soap12-part1/
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-wsrf-basic-profile/en/20
http://www.w3.org/TR/xmlschema-2/
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-02.pdf
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf

	Abstract
	Introduction
	1 Resource Namespace Services
	1.1 Basic Namespace Components
	1.1.1 Virtual Directories
	1.1.2 Junctions
	1.1.2.1 Endpoint Reference Junction
	1.1.2.2 Logical Reference Junction
	1.1.2.3 Referral Junction
	1.1.2.4 Alias Junction

	1.1.3 Pathnames
	1.1.3.1 Types of Pathnames
	1.1.3.1.1 Full Path
	1.1.3.1.2 Absolute Path
	1.1.3.1.3 Global Path

	1.1.3.2 Entry Name Restrictions

	1.2 Document Style Messaging
	1.2.1 WSRF Compliant Service
	1.2.2 Resource Properties Documents
	1.2.2.1 RNS IteratorContext – The WS-Resource
	1.2.2.2 Resource Properties for Namespace Entries
	1.2.2.2.1 Required Entry Properties
	1.2.2.2.2 Extensible Entry Properties
	1.2.2.2.3 Property Relationships

	1.2.2.3 Properties for Operation Parameters

	1.3 Operations of the Resource Namespace Service
	1.3.1 Operation Parameters
	1.3.1.1 QueryInput
	1.3.1.2 ChangeInput
	1.3.1.3 QueryResponse
	1.3.1.4 ChangeResponse

	1.3.2 Namespace Operations
	1.3.3 Implicit Operations
	1.3.4 Iterator Context Operations
	1.3.4.1 IteratorContextRequest
	1.3.4.2 IteratorContextResponse

	1.3.5 Profile Extension Operations
	1.3.5.1 Profile Extension Operation Parameters

	1.4 Operation Faults of the Resource Namespace Service
	1.4.1 RNSFault
	1.4.2 RNSDirectoryNotEmptyFault
	1.4.3 RNSEntryExistsFault
	1.4.4 RNSEntryNotFoundFault
	1.4.5 RNSInvalidPropertyFault
	1.4.6 RNSJunctionFault
	1.4.7 RNSTypeFault

	2 Federation of Resource Namespace Services
	2.1 Distributed Namespace Repositories
	2.2 Resolution Spanning Namespace Services
	2.2.1 Service Referrals
	2.2.1.1 Referral Messages

	2.2.2 Delegated Resolution

	3 Resource Endpoint Resolution Service
	3.1 RNS Resolver Basic Components
	3.1.1 Logical Reference
	3.1.2 Endpoint Reference

	3.2 Document Style Messaging
	3.3 Operations of RNS Resolver
	3.3.1 Operation Parameters
	3.3.2 RNS Resolver Operations
	3.3.2.1 deleteEndpointReference
	3.3.2.2 deleteLogicalReference
	3.3.2.3 insertLogicalReference
	3.3.2.4 resolve
	3.3.2.5 updateEndpointReference
	3.3.2.6 updateLogicalReference

	 Considerations
	Summary and Conclusion
	Appendix: RNS WSDL 1.1
	 Acknowledgements
	Author Information
	Intellectual Property Statement
	Full Copyright Notice
	References

