@)
-
)
)
Q
-
O
@)
-
Q
s
7))
()
C
@)
-
©
=

APIls for Computational Steering

http://www.realitygrid.org

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/

Stephen Pickles [!ut f
SAGA-RG, GGF 11 I] 'I'Il] I

THE UNIVERSITY
9/ MANCHESTER



http://www.realitygrid.org/

SAGA and RealityGrid

e Share SAGA philosophy
« Our user interfaces require job submission and file transfer capabilities
— notice that developers continually wrap lower level commands, eg.
— Qt launcher shells out to wrapper scripts, which choose between GRAM and ssh
— writing KIO-Slave for KDE (C++) demands very different APIs to GridFTP
 We also do Computational Steering

— only approach acceptable to owners of application code is to instrument code for
steering through calls to a library

—— N
i M
2 SAGA-RG, 7 June 2004, GGF11  THE UNIVERSITY

9f MANCHESTER



Control

Status

Application

Data in / Data out

SAGA-RG, 7 June 2004, GGF11

THE UNIVERSITY
9f MANCHESTER



Architecture

Steering GS Simulation

bind Steering library ]
publish
Client .s
_____________ Q .e
g 3
[ Steering library 2
v find S .e
[N publish y
[N Steering library j
bind ~~.

Visualization

multiple clients: Qt/C++,
.NET on PocketPC,
GridSphere Portlet (Java)

4 SAGA-RG, 7 June 2004, GGF11

components start
independently and
attach/detach dynamically

data transfer

* Display

THE UNIVERSITY
9f MANCHESTER



Steering operations

 Library provides support for:

Pause/Resume and Stop commands

Set values of steerable parameters

Report values of monitored (read-only) parameters

Emit "samples" to remote systems for e.g. on-line visualization

Consume "samples" from remote systems for e.g. resetting boundary
conditions

Checkpoint and restart
Automatic emit/consume with steerable frequency
No restrictions on parallelism paradigm

* Bindings in Fortran & C (complete), and Java (client side only)
* You only implement what you need. @
A

SAGA-RG, 7 June 2004, GGF11  ZRANNIoIX



Standardisation of Steering?

Opportunities:
e Standardise an API for computational steering
e Standardise the WSDL of the Steering Grid Service

RealityGrid has documented API, library implementations and client tools
available for download at:

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/
These could be input to a “Simple API”

Questions:

* |s computational steering well understood?
* |Is it Simple? Could it be simpler?

e Is there critical mass?

6 SAGA-RG, 7 June 2004, GGF11  THE UNIVERSITY

9f MANCHESTER


http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/

Implementing steering, an example...

An overview of the basic steps required to make a FOO
application steerable

(i
I

THE UNIVERSITY
9/ MANCHESTER

@)
-
)
)
Q
-
O
@)
-
Q
s
7))
()
C
@)
-
©
=




Application pre-requisites (1)

Application code must be written in Fortran90, C, C++ or a mixture of these

Free to use any parallel-programming paradigm (e.g. message passing or
shared memory) or harness (e.g. MPIl, PVM, SHMEM)

The logical structure within the application must be such that there exists a

point (breakpoint) within a larger control loop at which it is feasible to insert
new functionality intended to:

— accept a change to one or more of the parameters of the simulation (steerable
parameters);

— emit a consistent representation of the current state of both the steerable
parameters and other variables (monitored quantities);

— emit a consistent representation of part of the system being simulated that may

be required by a downstream component (e.g. a visualization system or another
simulation).

SAGA-RG, 7 June 2004, GGF11  THE UNIVERSITY

9f MANCHESTER



Application pre-requisites (2)

* It must also be feasible, at the same point in the control loop, to:

— output a consistent representation of the system (checkpoint) containing
sufficient information to enable a subsequent restart of the simulation from its
current state;

— (in the case that the steered component is itself downstream of another
component), to accept a sample emitted by an upstream component.

9 SAGA-RG, 7 June 2004, GGF11  ZRANNESIX



Initializing the library

INTEGER (KIND=REG_SP_KIND) :: status
INTEGER (KIND=REG_SP_KIND) :: num_cmds

INTEGER (KIND=REG_SP_KIND), &
DIMENSION(REG_INITIAL_NUM_CMDS) :: commands

! Enable the steering library

CALL steering_enable f(reg true)

! Initialize the library and register which of the buirlt-in
commands this application supports

num_cmds = 2
commands(1l) = REG_STR_STOP
commands(2) = REG_STR PAUSE

CALL steering_ initialize f(*my_sim v1.0”, num_cmds, &

commands, status) Fﬂﬁ;
I 1

10 SAGA-RG, 7 June 2004, GGF11  ZRANNESIX



Registering a variable as a steerable parameter

CHARACTER(LEN=REG_MAX_STRING_LENGTH) :: param_label

INTEGER (KIND=REG_SP_KIND) - - param_type
INTEGER (KIND=REG_SP_KIND) - - param_strbl
INTEGER (KIND=REG_SP_KIND) 22 dum_iInt
param_label = "test iInteger”

param_type = REG_INT
param_strbl = reg true ! This parameter 1s steerable

CALL register_param_f(param_label, param strbl, &
, param_type, &
“r, “7”, & 1 no lower or upper bound
status)

— N
i‘\
11 SAGA-RG, 7 June 2004, GGF11  THEUNIVERSITY

9f MANCHESTER



Registering an 10Type (for data 10)

INTEGER (KIND=REG_SP_KIND)

CHARACTER(LEN=REG_MAX_ STRING_LENGTH),
DIMENSION(REG_INITTAL_NUM IOTYPES)

INTEGER (KIND=REG_SP_KIND), &
DIMENSION(REG_INITIAL_NUM_I10TYPES)

INTEGER (KIND=REG_SP_KIND), &
DIMENSION(REG_INITIAL _ NUM _I0TYPES)

INTEGER (KIND=REG_SP_KIND), &
DIMENSION(REG_INITIAL_NUM_I0TYPES)

hum_types =1

22 num_types
&
10_labels
1otype_handles
10 _dirn

10_freqs

10_labels(1) = "VTK_STRUCTURED_POINTS_OUTPUT”

10 dirn(1l) = REG 10 OUT

10 fregs(l) = 5 1 Automatically (attempt to) output every 5 steps

CALL register_iotypes fT(num_types,

out freq,

12

10 labels, 10 dirn, 10 fregs &

iotype_handles(l), status)
] Iil 1
i R

SAGA-RG, 7 June 2004, GGF11 THE UNIVERSITY

9f MANCHESTER



Instrumenting the main simulation loop

I Enter main "simulation® loop
DO WHILE(iloop<num_sim_loops .AND. (finished .ne. 1))

IF(my _rank .eq. O)THEN

CALL steering control f(iloop, num _params_changed, &
changed param_labels, num_recvd cmds, &

recvd_cmds, recvd_cmd_params, status)

IF(status == REG_SUCCESS .AND. num_params_changed > O)THEN
I Tell other processes about changed parameters here

END IF
IF(status == REG_SUCCESS .AND. num_recvd cmds > 0)THEN

I Respond to steering commands here

END IF
ELSE

END IF
I Do some science here..
END DO L
illllh
O 1

13 SAGA-RG, 7 June 2004, GGF11 9 MANCHESTER



Emitting a data sample

I Attempt to start emitting data using an 10Type registered previously
CALL emit_start f(iotype handles(l1), i1loop, iohandle, status)

IF(status == REG_SUCCESS)THEN
I Send ASCII1 header to describe data
data _count = LEN_TRIM(header)
data type = REG_CHAR
CALL emit _data_slice f(iohandle, data type, data count, &
header, status)

I Send data

data _type = REG_INT

data_count = NX*NY*NZ;

CALL emit _data slice f(iohandle, data type, data count, &
1_array, status)

CALL emit _stop_ T(iohandle, status)

END IF Fi
1 alla]i
O 1

14 SAGA-RG, 7 June 2004, GGF11  THE UNIVERSITY

9f MANCHESTER



Consuming a data sample

I "Open® the channel to consume data
CALL consume_start f(iotype handle(l), 1ohandle, status)

IF( status == REG_SUCCESS )THEN
I Data i1s available to read...get header describing it
CALL consume_data_slice_header_ f(iohandle, data type, data count, status)

DO WHILE ( status == REG_SUCCESS )
I Now Read the data i1tself
IF( data type == REG_CHAR )THEN
I This assumes c_array i1s a CHARACTER string of at least data count chars..
CALL consume_data_slice_f(iohandle, data_type, data count, c_array, status)
ELSE 1F( data_type == REG_INT)THEN
I This assumes i1_aray is an array of iIntegers, at least data count in length
CALL consume_data_slice f(iohandle, data type, data count, 1_array, status)
END IF
I Get the header of the next slice
CALL consume_data_slice header_ f(iohandle, data type, data count, status)
END DO
I Reached the end of this data set; "close”™ the channel
CALL consume_stop_ fT(iohandle, status)
END IF

15 SAGA-RG, 7 June 2004, GGF11  ZRANNESIX



PER_STEP
=
4]

=
o

=
S

<
o

Steerer

“: ReG Steerer

CPU_TIME
NN NN N A A |

=]

Save jpeq |

Save postscript |

Exit |

Data rate: 11.36 MB/s

Render time: 0.7 5

Crop x min

-

Crop ¥ min

-

Crop z min

-

Opacity stg

]

Red stop

]

16

Ibe3d |

—Commands

Pause | Resumel Dl][._'u:hl Close | TEIIAIIl Stop | Restartl

Monitored Parameters

Name |‘~.-"a|ue |
SEQUEMCE_MNUM 93
CPU_TIME_FPER_STEP I 1.120
timestep 93
Steered Parameters
MName |‘u’alue New Value |
steer_tau_s 1.00000000
steer_rock_colour 0.00000000
steer_g_br 0.08000000
Data IO
Mame | Freq | Mew Freq | 10 Type |

Tell

|

Consume

ReG_Sample_file

CheckPoint Types

10 Output

MName

| Freq | Mew Freq

Checkpoint

Emit

Tell Freg's

Create

il kE

Tell Freg's

Attached - user requested pause

SAGA-RG, 7 June 2004, GGF11

THE UNIVERSITY
9f MANCHESTER



Summary

« Existing FO0/C/C++ codes may be made steerable with relatively little effort
« Amount of steering functionality is related to how much code scientist wishes
to write
— Low barrier to overcome
— Scientist retains control of their code
* Value-added functionality
— Automatic emit/consume of samples and checkpoints
— Checkpoint logging
« Several physics-based simulation codes have been instrumented for
steering within the RealityGrid project to date
« Steering library and client available for download from:
http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/

17 SAGA-RG, 7 June 2004, GGF11  ZRANNESIX



	APIs for Computational Steering
	SAGA and RealityGrid
	
	Architecture
	Steering operations
	Standardisation of Steering?
	Implementing steering, an example…
	Application pre-requisites (1)
	Application pre-requisites (2)
	Initializing the library
	Registering a variable as a steerable parameter
	Registering an IOType (for data IO)
	Instrumenting the main simulation loop
	Emitting a data sample
	Consuming a data sample
	
	Summary

