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SAGA and RealityGrid

• Share SAGA philosophy
• Our user interfaces require job submission and file transfer capabilities

– notice that developers continually wrap lower level commands, eg.
– Qt launcher shells out to wrapper scripts, which choose between GRAM and ssh
– writing KIO-Slave for KDE (C++) demands very different APIs to GridFTP

• We also do Computational Steering
– only approach acceptable to owners of application code is to instrument code for 

steering through calls to a library
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Steering operations

• Library provides support for:
– Pause/Resume and Stop commands
– Set values of steerable parameters
– Report values of monitored (read-only) parameters
– Emit "samples" to remote systems for e.g. on-line visualization
– Consume "samples" from remote systems for e.g. resetting boundary 

conditions
– Checkpoint and restart
– Automatic emit/consume with steerable frequency
– No restrictions on parallelism paradigm

• Bindings in Fortran & C (complete), and Java (client side only)
• You only implement what you need.
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Standardisation of Steering?

Opportunities:
• Standardise an API for computational steering
• Standardise the WSDL of the Steering Grid Service

RealityGrid has documented API, library implementations and client tools 
available for download at:

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/
These could be input to a “Simple API”

Questions:
• Is computational steering well understood?
• Is it Simple? Could it be simpler?
• Is there critical mass?

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/
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Implementing steering, an example…Implementing steering, an example…

An overview of the basic steps required to make a F90 
application steerable
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Application pre-requisites (1)

• Application code must be written in Fortran90, C, C++ or a mixture of these
• Free to use any parallel-programming paradigm (e.g. message passing or 

shared memory) or harness (e.g. MPI, PVM, SHMEM)
• The logical structure within the application must be such that there exists a 

point (breakpoint) within a larger control loop at which it is feasible to insert
new functionality intended to:
– accept a change to one or more of the parameters of the simulation (steerable 

parameters);
– emit a consistent representation of the current state of both the steerable 

parameters and other variables (monitored quantities);
– emit a consistent representation of part of the system being simulated that may 

be required by a downstream component (e.g. a visualization system or another 
simulation).
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Application pre-requisites (2)

• It must also be feasible, at the same point in the control loop, to:
– output a consistent representation of the system (checkpoint) containing 

sufficient information to enable a subsequent restart of the simulation from its 
current state;

– (in the case that the steered component is itself downstream of another 
component), to accept a sample emitted by an upstream component.
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Initializing the library
INTEGER (KIND=REG_SP_KIND) :: status
INTEGER (KIND=REG_SP_KIND) :: num_cmds
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_CMDS) :: commands
.

! Enable the steering library
CALL steering_enable_f(reg_true)
.
.
.

! Initialize the library and register which of the built-in 
! commands this application supports
num_cmds = 2
commands(1) = REG_STR_STOP
commands(2) = REG_STR_PAUSE

CALL steering_initialize_f(“my_sim v1.0”, num_cmds, &
commands, status)
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Registering a variable as a steerable parameter

CHARACTER(LEN=REG_MAX_STRING_LENGTH) :: param_label
INTEGER (KIND=REG_SP_KIND) :: param_type
INTEGER (KIND=REG_SP_KIND) :: param_strbl
INTEGER (KIND=REG_SP_KIND) :: dum_int
.
.
.

dum_int     = 5
param_label = "test_integer”
param_type  = REG_INT
param_strbl = reg_true ! This parameter is steerable

CALL register_param_f(param_label, param_strbl, &
dum_int, param_type, &
“”, “”, & ! no lower or upper bound
status)
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Registering an IOType (for data IO)
INTEGER (KIND=REG_SP_KIND)         :: num_types
CHARACTER(LEN=REG_MAX_STRING_LENGTH), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: io_labels
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: iotype_handles
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: io_dirn
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_IOTYPES)     :: io_freqs
.
.

num_types = 1
io_labels(1) = "VTK_STRUCTURED_POINTS_OUTPUT”
io_dirn(1)  = REG_IO_OUT
io_freqs(1) = 5 ! Automatically (attempt to) output every 5 steps

CALL register_iotypes_f(num_types, io_labels, io_dirn, io_freqs &
out_freq, iotype_handles(1), status)
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Instrumenting the main simulation loop
! Enter main 'simulation' loop
DO WHILE(iloop<num_sim_loops .AND. (finished .ne. 1))

IF(my_rank .eq. 0)THEN
CALL steering_control_f(iloop, num_params_changed, &

changed_param_labels, num_recvd_cmds, &
recvd_cmds, recvd_cmd_params, status)

IF(status == REG_SUCCESS .AND. num_params_changed > 0)THEN
! Tell other processes about changed parameters here

END IF
IF(status == REG_SUCCESS .AND. num_recvd_cmds > 0)THEN

! Respond to steering commands here
END IF

ELSE
…

END IF

! Do some science here…
END DO
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Emitting a data sample
! Attempt to start emitting data using an IOType registered previously
CALL emit_start_f(iotype_handles(1), iloop, iohandle, status)

IF(status == REG_SUCCESS)THEN
! Send ASCII header to describe data
data_count = LEN_TRIM(header)
data_type = REG_CHAR
CALL emit_data_slice_f(iohandle, data_type, data_count, &

header, status)

! Send data
data_type = REG_INT
data_count = NX*NY*NZ;
CALL emit_data_slice_f(iohandle, data_type, data_count, &

i_array, status)

CALL emit_stop_f(iohandle, status)
END IF
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Consuming a data sample

! 'Open' the channel to consume data
CALL consume_start_f(iotype_handle(1), iohandle, status)

IF( status == REG_SUCCESS )THEN
! Data is available to read...get header describing it
CALL consume_data_slice_header_f(iohandle, data_type, data_count, status)

DO WHILE ( status == REG_SUCCESS )
! Now Read the data itself
IF( data_type == REG_CHAR )THEN
! This assumes c_array is a CHARACTER string of at least data_count chars…
CALL consume_data_slice_f(iohandle, data_type, data_count, c_array, status)

ELSE IF( data_type == REG_INT)THEN
! This assumes i_aray is an array of integers, at least data_count in length
CALL consume_data_slice_f(iohandle, data_type, data_count, i_array, status)

END IF 
! Get the header of the next slice
CALL consume_data_slice_header_f(iohandle, data_type, data_count, status)

END DO
! Reached the end of this data set; 'close' the channel
CALL consume_stop_f(iohandle, status)

END IF
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Summary

• Existing F90/C/C++ codes may be made steerable with relatively little effort
• Amount of steering functionality is related to how much code scientist wishes 

to write
– Low barrier to overcome
– Scientist retains control of their code

• Value-added functionality
– Automatic emit/consume of samples and checkpoints
– Checkpoint logging

• Several physics-based simulation codes have been instrumented for 
steering within the RealityGrid project to date

• Steering library and client available for download from: 
http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/
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