
M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

APIs for Computational SteeringAPIs for Computational Steering

http://www.realitygrid.org

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/

Stephen Pickles

SAGA-RG, GGF 11

http://www.realitygrid.org/

SAGA-RG, 7 June 2004, GGF112

SAGA and RealityGrid

• Share SAGA philosophy
• Our user interfaces require job submission and file transfer capabilities

– notice that developers continually wrap lower level commands, eg.
– Qt launcher shells out to wrapper scripts, which choose between GRAM and ssh
– writing KIO-Slave for KDE (C++) demands very different APIs to GridFTP

• We also do Computational Steering
– only approach acceptable to owners of application code is to instrument code for

steering through calls to a library

SAGA-RG, 7 June 2004, GGF113

Application

Steering library
Steering

GS

Control

Status

Data in / Data out

SAGA-RG, 7 June 2004, GGF114

Architecture

Steering
client

Simulation

Steering library

VisualizationVisualization

Registry

Steering GS

Steering GS

connect

publish

find

bind

publish

bind

data transfer
Client

Steering library

Steering library

Steering library

Display

Display

Display

components start
independently and

attach/detach dynamically

multiple clients: Qt/C++,
.NET on PocketPC,
GridSphere Portlet (Java)

SAGA-RG, 7 June 2004, GGF115

Steering operations

• Library provides support for:
– Pause/Resume and Stop commands
– Set values of steerable parameters
– Report values of monitored (read-only) parameters
– Emit "samples" to remote systems for e.g. on-line visualization
– Consume "samples" from remote systems for e.g. resetting boundary

conditions
– Checkpoint and restart
– Automatic emit/consume with steerable frequency
– No restrictions on parallelism paradigm

• Bindings in Fortran & C (complete), and Java (client side only)
• You only implement what you need.

SAGA-RG, 7 June 2004, GGF116

Standardisation of Steering?

Opportunities:
• Standardise an API for computational steering
• Standardise the WSDL of the Steering Grid Service

RealityGrid has documented API, library implementations and client tools
available for download at:

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/
These could be input to a “Simple API”

Questions:
• Is computational steering well understood?
• Is it Simple? Could it be simpler?
• Is there critical mass?

http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/

M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

Implementing steering, an example…Implementing steering, an example…

An overview of the basic steps required to make a F90
application steerable

SAGA-RG, 7 June 2004, GGF118

Application pre-requisites (1)

• Application code must be written in Fortran90, C, C++ or a mixture of these
• Free to use any parallel-programming paradigm (e.g. message passing or

shared memory) or harness (e.g. MPI, PVM, SHMEM)
• The logical structure within the application must be such that there exists a

point (breakpoint) within a larger control loop at which it is feasible to insert
new functionality intended to:
– accept a change to one or more of the parameters of the simulation (steerable

parameters);
– emit a consistent representation of the current state of both the steerable

parameters and other variables (monitored quantities);
– emit a consistent representation of part of the system being simulated that may

be required by a downstream component (e.g. a visualization system or another
simulation).

SAGA-RG, 7 June 2004, GGF119

Application pre-requisites (2)

• It must also be feasible, at the same point in the control loop, to:
– output a consistent representation of the system (checkpoint) containing

sufficient information to enable a subsequent restart of the simulation from its
current state;

– (in the case that the steered component is itself downstream of another
component), to accept a sample emitted by an upstream component.

SAGA-RG, 7 June 2004, GGF1110

Initializing the library
INTEGER (KIND=REG_SP_KIND) :: status
INTEGER (KIND=REG_SP_KIND) :: num_cmds
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_CMDS) :: commands
.

! Enable the steering library
CALL steering_enable_f(reg_true)
.
.
.

! Initialize the library and register which of the built-in
! commands this application supports
num_cmds = 2
commands(1) = REG_STR_STOP
commands(2) = REG_STR_PAUSE

CALL steering_initialize_f(“my_sim v1.0”, num_cmds, &
commands, status)

SAGA-RG, 7 June 2004, GGF1111

Registering a variable as a steerable parameter

CHARACTER(LEN=REG_MAX_STRING_LENGTH) :: param_label
INTEGER (KIND=REG_SP_KIND) :: param_type
INTEGER (KIND=REG_SP_KIND) :: param_strbl
INTEGER (KIND=REG_SP_KIND) :: dum_int
.
.
.

dum_int = 5
param_label = "test_integer”
param_type = REG_INT
param_strbl = reg_true ! This parameter is steerable

CALL register_param_f(param_label, param_strbl, &
dum_int, param_type, &
“”, “”, & ! no lower or upper bound
status)

SAGA-RG, 7 June 2004, GGF1112

Registering an IOType (for data IO)
INTEGER (KIND=REG_SP_KIND) :: num_types
CHARACTER(LEN=REG_MAX_STRING_LENGTH), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: io_labels
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: iotype_handles
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: io_dirn
INTEGER (KIND=REG_SP_KIND), &

DIMENSION(REG_INITIAL_NUM_IOTYPES) :: io_freqs
.
.

num_types = 1
io_labels(1) = "VTK_STRUCTURED_POINTS_OUTPUT”
io_dirn(1) = REG_IO_OUT
io_freqs(1) = 5 ! Automatically (attempt to) output every 5 steps

CALL register_iotypes_f(num_types, io_labels, io_dirn, io_freqs &
out_freq, iotype_handles(1), status)

SAGA-RG, 7 June 2004, GGF1113

Instrumenting the main simulation loop
! Enter main 'simulation' loop
DO WHILE(iloop<num_sim_loops .AND. (finished .ne. 1))

IF(my_rank .eq. 0)THEN
CALL steering_control_f(iloop, num_params_changed, &

changed_param_labels, num_recvd_cmds, &
recvd_cmds, recvd_cmd_params, status)

IF(status == REG_SUCCESS .AND. num_params_changed > 0)THEN
! Tell other processes about changed parameters here

END IF
IF(status == REG_SUCCESS .AND. num_recvd_cmds > 0)THEN

! Respond to steering commands here
END IF

ELSE
…

END IF

! Do some science here…
END DO

SAGA-RG, 7 June 2004, GGF1114

Emitting a data sample
! Attempt to start emitting data using an IOType registered previously
CALL emit_start_f(iotype_handles(1), iloop, iohandle, status)

IF(status == REG_SUCCESS)THEN
! Send ASCII header to describe data
data_count = LEN_TRIM(header)
data_type = REG_CHAR
CALL emit_data_slice_f(iohandle, data_type, data_count, &

header, status)

! Send data
data_type = REG_INT
data_count = NX*NY*NZ;
CALL emit_data_slice_f(iohandle, data_type, data_count, &

i_array, status)

CALL emit_stop_f(iohandle, status)
END IF

SAGA-RG, 7 June 2004, GGF1115

Consuming a data sample

! 'Open' the channel to consume data
CALL consume_start_f(iotype_handle(1), iohandle, status)

IF(status == REG_SUCCESS)THEN
! Data is available to read...get header describing it
CALL consume_data_slice_header_f(iohandle, data_type, data_count, status)

DO WHILE (status == REG_SUCCESS)
! Now Read the data itself
IF(data_type == REG_CHAR)THEN
! This assumes c_array is a CHARACTER string of at least data_count chars…
CALL consume_data_slice_f(iohandle, data_type, data_count, c_array, status)

ELSE IF(data_type == REG_INT)THEN
! This assumes i_aray is an array of integers, at least data_count in length
CALL consume_data_slice_f(iohandle, data_type, data_count, i_array, status)

END IF
! Get the header of the next slice
CALL consume_data_slice_header_f(iohandle, data_type, data_count, status)

END DO
! Reached the end of this data set; 'close' the channel
CALL consume_stop_f(iohandle, status)

END IF

SAGA-RG, 7 June 2004, GGF1116

SAGA-RG, 7 June 2004, GGF1117

Summary

• Existing F90/C/C++ codes may be made steerable with relatively little effort
• Amount of steering functionality is related to how much code scientist wishes

to write
– Low barrier to overcome
– Scientist retains control of their code

• Value-added functionality
– Automatic emit/consume of samples and checkpoints
– Checkpoint logging

• Several physics-based simulation codes have been instrumented for
steering within the RealityGrid project to date

• Steering library and client available for download from:
http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/

	APIs for Computational Steering
	SAGA and RealityGrid
	
	Architecture
	Steering operations
	Standardisation of Steering?
	Implementing steering, an example…
	Application pre-requisites (1)
	Application pre-requisites (2)
	Initializing the library
	Registering a variable as a steerable parameter
	Registering an IOType (for data IO)
	Instrumenting the main simulation loop
	Emitting a data sample
	Consuming a data sample
	
	Summary

