GWD-R March 2005

Resource Namespace Service Specification

Status of This Memo

This memo provides information to the Grid community about resource namespace services. It
does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.

Abstract

This document describes the specification of a Resource Namespace Service (RNS), which is a
WSRF compliant Web service capable of providing namespace services for any addressable entity
by registering an Endpoint Reference or URL with an easily accessible, hierarchically managed,
name. This service, previously referred to as a virtual filesystem directory service (VFDS), has
been updated to incorporate an interface design that utilizes document style messages as
described in the WSRF specification. RNS is intended to facilitate namespace services for a wide
variety of Grid services, with an initial emphasis as one of the essential services for Grid file
systems or virtual file systems in the Grid environment. It can be employed to manage the
namespace of federated and virtualized data, services, or effectively any resource capable of being
referenced in a Grid/Web environment. This document proposes a set of operations and essential
resource property definitions that define the Resource Namespace Service.

Contents
Resource Namespace Service SPECIfiCAtiON..........cuiiiiiiiiiiiieie e 1
F Y 0] 1 = Vo RO TPPRN 1
[oo 18 L1 o] o [P PSPPSR 3
RESOUICE NaMESPACE SEIVICESuuuvviiieieeeiiiiitieeeeee e st s st eeeaeeesaaaaa e ereaeessaasetaeereeessaannsraaeeeeeessannnrens 4
1.1 Basic NamesSpPace COMPONENTS......ciiiiiiiieiteiitaae e aiittteee e e e e s s atbeseeeae e e s s anbbeaeaeaeesaaannrreeeaaaaaas 5
1.11 ViU DIFECIOIIES ...ttt ettt e e e ettt e e e e e e e e e abb b e e e e e e e e e annbneeeas 5
1.1.2 [0 Tox 1o £ PR PPPRTTP 5
1.2 Document Style MESSAGING ...cocuuureiiiiieeiiittiee ittt e e e e e e e e e s et b be e e e e e e s e annbaaneaaaens 7
1.2.1 WSRF COMPIANT SEIVICE ...ttt e e e e e aneeees 7
1.2.2 Resource PropertieS DOCUMENTSccuiiiiiiiiiiiiie e ettt e et e e e e e s e sebbeeeeeae e e e aanes 8
1.3 Operations of the Resource NamespaCe SEIVICEuuuiiieeeiiiiciiiieieeeeieiiireeeree e e s e snnrneeees 11
13.1 OPEration Par@mMeLErS........uuuiiiie e it e e e e s sete e e e e e s s s e e e e e e s s st e e e e e e e s e annrnenneeaes 11
1.3.2 N =TS o F= (T @] o 1T - o] S SEE 13
1.3.3 0] o] [Tod) @] 1= = 11T 1RSSR 19
1.3.4 Profile EXtENSION OPEIatiONScccuvviiiiiieeieiitieie e e e e e s s s e e e e e e s s st r e e e e e s e snnnreneeeaees 21
Federation of ReSoUrce NameSPACE SEIVICESuuiiieeiiiiiiiieireeeeeiiieieeree e e s s sstereeeeeessesnraeeeeeaeesannnnes 25
1.4 SerViCe REEITAIS.ttt e e e e e e e e e e nne e ee s 25
1.5 Delegated RESOIULIONuuiiiiiiiiiiee ettt e e e e e et e e e e e e e s e e anbeneeeas 25
(070 0150 L= = 11T o S TP PPRTT 26
SUMMArY @Nd CONCIUSION.uuuiiiiiiii ittt e e e e e ettt e e e e e e e s bbabeeeaaaeasannbeaeeaeaeaans 26
Appendix: Grid File SYStem Profile ... 27
2 Appendix: Resource ReSOIULION SEIVICEuuiiiiiiiiiiiiii et 28
2.1 RNS Resolver BasiC COMPONENTScciceiiiiiiiiiiiieeessiitieereeeeesssssraeeeeseessansssneeeeeessssnssssseees 28
2.1.1 (oo o= U = L= (== o o = PR 28
2.1.2 ENAPOINt REFEIENCE e e e e s aeeeaee s 28
mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

2.2 Document Style MESSAQING ...ecceiicurrieiiiee e e iiitiee e e e e s s s st rr e e e e e s s s ae e e e e e s s arre e e e e e e e e nnrnnneees 28
2.3 Operations 0f RNS RESOIVETuuiiiiiieeieiiiiiee e e e e e e s e e e e e e e e ennnnaeees 28
231 OPEratioN Par@mMetErS........uuiiiiieeiiiiieiieie e e e e s set e e e e e s s s e e e e e e s s s e e e e e e e s e annrnnneeeees 29
2.3.2 RNS ReESOIVEr OPEIAtIONS.....cciiiiiiiiieeiiee e e s it e e e e e s st r e e e e e s st er e e e e e s sensnnreneeeaees 29
APPENTIX: RNS WSDL 1.6ttt ettt e e e e e s bttt e e e e e e s abbbe e e e e e e e e s nnbabeeeaaaeaannnrees 32
F U 11 q o) gl [0] (0] 4 aq = Ui o] o IRU TP TR TR 38
Intellectual Property SatemMENT...........u ettt e e e e e e e e e e e eanene e 38
(S| @o])Y ge] g 180\ o] i o] T TP TP RRTT 38
[C] (=1 1] [T T TP PTRR 39
mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

Introduction

The Resource Namespace Service (RNS) encompasses a multi-faceted approach for addressing
the needs of access to resources within a distributed network or grid by way of a universal name
that ultimately resolves to a meaningful address, with a particular emphasis on hierarchically
managed names that may be used in human interface applications.

RNS is intended to facilitate namespace services for a wide variety of Grid applications and can be
employed to manage the namespace of federated and virtualized data, services, or effectively any
resource capable of being referenced in a grid/web environment.

The practical necessity of conveniently accessing the growing number of Web services,
corresponding applications, service artifacts and other service resources, has manifest an
escalating need for a generalized resource namespace service. Additionally, the ever-increasing
appreciation for resource virtualization has amplified the benefits of this service, which is capable of
maintaining a name to multi-address mapping, since the namespace thereby virtualizes all endpoint
references or resource addresses.

The Resource Namespace Service utilizes document style messaging that takes advantage of
XML, avoids unnecessary constraints (such as inflexible operation parameters and rigid return
types), is fully WSRF-compliant, and allows for extensibility via resource property profiling. This
document proposes a set of document style operations exploiting well-defined resource properties
that define the RNS service.

The RNS specification document has emerged from the Grid File System Working Group (GFS-
WG); principally based on the Virtual Filesystem Directory Service (VFDS) specification from that
group. Two major deliverables of the WG are (1) architecture of Grid File System Services and (2)
specification of namespace services. The VFDS specification was intended to address (2) by
proposing a hamespace service that would easily satisfy the rudimentary need of managing a
namespace of federated and virtualized data, access control mechanisms, and a minimal set of
associated meta-data [1]. As the specification matured, it became more and more obvious that a
generalized namespace service would have substantial application in a wide variety of Grid services.
Consequently, the filesystem and data specific features of VFDS have been factored out of this
specification, yielding a generic resource hamespace service that is no longer tailored to data
related applications. However, RNS features an extensible design allowing normative profile
specifications, such as OGSA Basic Profiles [5], to define a standard set of resource properties for
specific instantiations of the namespace service. For this reason, this document will not address
any data related namespace requirements but will initially include, in the appendix (see Appendix:
Grid File System Profile), a proposed profile for Grid File System instantiations of RNS.

The overall architecture of the Grid File System will be specified later in GFS-WG, which provides
infrastructure of virtual file systems facilitating federation and sharing of virtualized data from file
systems in the Grid environment by using Resource Namespace Services.

Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119.

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

Resource Namespace Services

The Resource Namespace Service, which will henceforth be referred to as RNS, enables
construction of a uniform, global, hierarchical namespace.[1] This directory service or namespace
service enables federation of essentially any Web or Grid resource. RNS embodies a three-tier
naming architecture, which consists of human interface names, virtualized reference names, and
endpoint references.

Name-to-resource mapping in RNS features the optional arrangement of two levels of indirection.
The first level of indirection is realized by mapping human interface nhames directly to endpoint
references or resource reference addresses. Since the properties of the endpoint reference may be
modified without altering the RNS entries that refer to them, this simple approach offers a
convenient means of name-to-resource mapping with a single level of indirection or resource
virtualization. A second level of indirection may be appreciated when mapping human interface
names to virtualized references (identified by logical or abstract names), which in turn map logical
names to endpoint references and hence the second level of indirection. The advantage of using a
logical name to represent a virtualized reference is that logical names may be referenced and
resolved independent of the hierarchical namespace. This means that logical names may be used
as a globally unique logical resource identifier and be referenced directly by both the RNS
namespace as well as other services. Although the RNS specification includes an optional port
type that services virtualized resource to endpoint resolution, as an independent service, it is not
required that clients use this RNS resolution service, since the logical name can potentially be
resolved by a separate logical to endpoint resolution service. In contrast, note that mapping
information and associated pointer handles for directly mapped human interface name to endpoint
references are not exposed by RNS and are therefore only used internally by RNS.

Following is a diagram that illustrates the three-tier naming architecture; please note that this
diagram is strictly intended to illustrate the levels of the naming architecture and is not limited to the
types of references shown:

Human Interface MNames Virtualized References

Logical Name EPR / Address

;I acme-research.nrg . :
Ly QLN-0123456?89 Jgslﬂp:ﬁ"lablhobﬂl

= ;Iexperiments
= Jabe | gsiftpiiflabziiobol
= |_ldata-sets
B4 job0123456789 < | gsiftp:/flab3siobo1
+ |_] event-tags
I micro-data-sets

+

= [ram-data
&) iob0123456789-20041120 Endpoint References
@ | iob0123456759-20041121
ol cde EPR / Address
+ | xyz Jgsi&p:.-".-"labl.-"jnbﬂl
+ |_lpapers
+ [reports | gsiftpiiflab2sisbol
4 secured Jgsi'Ftp:,u".u’labl.l"ijDZ

e~ | warking-drafts

Figure 1 - Three-Tier Naming Architecture

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

1.1 Basic Namespace Components

RNS is comprised of two fundamental namespace components: virtual directories and junctions.
These two essential namespace components, also referred to as RNS entries, are employed to
federate existing resources and construct a uniform hierarchy.

In all cases, junctions are capable of maintaining a list of references (EPRs/URLS) per entry, that is
a single junction my render several available EPRs, each of which represent replicas, copies of the
same resource, or operationally identical services. A description of each follows:

1.1.1 Virtual Directories

A virtual directory is an RNS entry that is represented as a non-leaf node in the hierarchical
namespace tree. When rendered by a filesystem client, a virtual directory appears as a standard
filesystem directory, however does not have any corresponding position in any physical filesystem;
hence it is virtual. A virtual directory, therefore, is purely a namespace entity that functions in much
the same way as a conventional filesystem directory by maintaining a list of subentries, which
thereby demonstrate a hierarchical relationship. There are no restrictions regarding the layout of
the namespace tree; both virtual directories and junctions can be nested within nested virtual
directories recursively.

A virtual directory may be considered analogous to a collection, category, or context—to the extent
that these terms are used in most directory or catalogue contexts. Virtual directories do not have
any time or space existence outside of the namespace and strictly serve to facilitate hierarchy, and
thus categorization, by presenting the illusion of compartments, which may contain sub-
compartments as well as junctions.

Corresponding resource property QName = VirtualDirectory

1.1.2 Junctions

A junction is an RNS entry that interconnects a reference to an existing resource into the global
namespace. It functions in much the same way as a traditional distributed file system mount point
with the unique property of maintaining uniform namespace representation while facilitating two
levels of indirection. Junctions are categorized into four basic types: virtualized references,
endpoint references, referrals, and aliases.

1.1.2.1 Virtualized Reference Junction

A virtualized reference junction is a junction that either contains an endpoint reference (EPR) or
universal resource locator (URL) that points to a secondary service, like a Replica Location Service
(RLS), for name-to-address resolution given a context unique (potentially global) logical name. This
specification does not mandate a required format for the target property value of a virtualized
reference. In other words, the format of the EPR is not mandated.

This RNS specification includes the description of a non-hierarchical name-to-address resolution
service, defined in an independent port type that facilitates simple logical name resolution as an
optional adjunct service. (see RNS Resolver Service)

Corresponding resource property QName = LogicalReference

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

1.1.2.2 Endpoint Reference Junction

An endpoint reference junction is an entry that maps to at least one Web or Grid resource by way of
a WS-Addressing[3] Endpoint Reference (EPR) or URL. This is a many-to-many mapping, meaning
that one entry may reference many resources and one resource may be referenced by many
entries. There is no limitation as to what may be referenced by RNS provided that a WS-
Addressing compliant EPR, or an RFC 1738 compliant URL, is used to register the reference

mapping.
Corresponding resource property QName = EPR

1.1.2.3 Referral Junction

Referral junctions are junctions that link to other RNS instances, thereby facilitating such features
as symbolic links (or soft links), federation of independent domains of control, scalability of a single
domain of control, availability of redundant service instances that may or may not be geographically
distributed, etc. An example referral is illustrated in Figure 1 as “secured”, its URL might look
something like: rns://rns.secured.acme-research.org/.

Corresponding resource property QName = Referral

1.1.2.4 Alias Junction

An alias junction is a junction that references another entry within the same service instance to
provide the feature of representing a single entry in multiple locations in the namespace hierarchy
or simply by multiple names; this effect is comparable to the conventional Unix filesystem hard links.

Since an alias junction is intended to represent the entry it points to, the service implementation
MUST NOT allow an entry to be deleted if one or more alias junctions point to it. Therefore, if an
entry’s AliasCount property is greater than one, it may not be deleted. Optionally, the service MAY
allow an entry to be deleted if it has one or more alias junctions pointing to it, if and only if it
dynamically reassigns all of the entry’s properties to one of the alias junctions, thereby transforming
the elected alias junction into a basic entry. Alias junction election in this context is not mandated
by this specification.

Corresponding resource property QName = Alias

The following sections explore the objects and interface definitions that exemplify the operations of
RNS. This material is not comprehensive, is subject to change, and does not examine the internal
procedures of the service.

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

1.2 Document Style Messaging

RNS exploits a document style message exchange approach to services. In so doing, it offers
useful features whose benefits are beyond the flexibility of traditional remote procedure call (RPC)
style services. In this approach RNS leverages the capabilities of XML to communicate messages
that may be tailored according to the request. Additionally, greater flexibility is realized in the
exchange of parameters and complex types or objects. A document style interface facilitates a
greater extensibility of the service without breaking calling applications.

Access to RNS entry metadata is achieved by using a resource properties request document that
indicates which properties to retrieve. This means that only the properties the client is interested in
are retrieved. Furthermore, when submitting a change request message to the service, only the
properties specified will be SOAP encoded and sent to the service. As a result, a greater efficiency,
with respect to the sheer size of the SOAP message, may be realized.

1.2.1 WSRF Compliant Service

In addition to a document style interface, RNS provides standard access and manipulation of
stateful resource properties via Web Service Resource Framework (WSRF). The RNS interface
implements most of the WS-ResourceProperties[4] document types. The previous object oriented
model has been subsumed by a stateful exchange of SOAP messages. With the implementation of
the WS-Resource specification, RNS offers stateful interaction by maintaining a stateful resource
referred to as an IteratorContext.

The RNS lIteratorContext resource is designed specifically for the purpose of maintaining stateful
properties related to iterative operations. This is particularly necessary when listing a potentially
large directory, since the application may not want to have all of the subentries returned in a single
message and therefore may request to receive the list in segments. To ensure each segment is
internally consistent within a projected list, the RNS service MUST support a point-in-time result-set
reflecting the entire list at the time the initial list request was processed. The IteratorContext then
enables subsequent list requests to be made that retrieve segment by segment from the point-in-
time result-set maintained on the service end. Consequently, IteratorContexts are automatically
constructed for every list request and SHOULD be destroyed after the iterator has been exhausted.
The resource properties document associated with the IteratorContext resource is described in
further detail in the next section.

RNS implements the following WSRF standard operations GetMultipleResourceProperties message
exchange for all query oriented operations and the SetMultipleResourceProperties message
exchange for all change oriented operations.

The RNS port type (RNSPortType) extends the GetResourceProperty port type defined by WS-
ResourceProperties[3], implementing the GetResourceProperty, GetMultipleResourceProperties,
and SetResourceProperty operations. Additionally, for lifetime management, the RNS port type
also implements the Destry, CurrentTime, TerminationTime, and SetTerminationTime.

mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R

1.2.2

March 2005

Resource Properties Documents

A resource properties document is the XML document representing a logical composition of
resource property elements for a given resource.[4]

1221

RNS IteratorContext — The WS-Resource

As described in section 1.2.1, RNS defines a stateful resource referred to as an IteratorContext.
The following resource properties MUST be supported and available in the WS-Resource message

exchange:

QName Description

ChildCount Integer value that denotes the number of subentries found in the
current directory being listed.

DirectoryPath String representing the full path of the current directory being listed.

IteratorContextID String value that denotes the resource identifier of the IteratorContext
WS-Resource. The value SHOULD be considered transient and only
unique in its corresponding service instance for the lifetime of the
resource.

Iteratorindex Integer representing the current index or marker corresponding to a

current iterator operation; can be queried between iterator messages.
[default value is “0"]

Following is the resource properties document associated with the RNS IteratorContext WS-
Resource.

<l-- "Context" Resource for Maintaining State -->
<xsd: el enent name="Iterat or Cont ext ">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement ref="tns:chil dCount" m nCccurs="1" maxCccurs="1"/>
<xsd: el ement ref="tns:directoryPath" m nCccurs="0" maxCccurs="1"/>
<xsd: el ement ref="tns:iteratorlndex" m nCccurs="0" maxCccurs="1"/>

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

The following simply lists the resource property element declarations referred to by the resource
properties document above.

<l-- Resource property el enent declarations -->

<xsd: el enent nanme="chi | dCount " type="xsd:int"/>

<xsd: el ement nane="direct oryPat h" type="xsd:string"/>

<xsd: el ement nane="iteratorl ndex" type="xsd:int"/>
mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

1.2.2.2 Resource Properties for Namespace Entries

The previous section describes the resource properties document associated with the WS-
Resource of the RNSService port type, used for stateful communication. RNS facilitates access
and manipulation of namespace entries by way of document style messaging. As indicated in the
description of the RNS WS-Resource, the standard WSRF operations do not involve directly
accessing or modifying namespace entries but rather an RNS IteratorContext.

RNS specifies two fundamental service objects: (1) the first is the RNS IteratorContext resource,
which was described in section 1.2.2.1, and (2) the second is a namespace component referred to
as an RNS or namespace entry. Each entry represents a namespace node that symbolizes either a
virtual directory or a junction (see Basic Namespace Components 1.1).

Information about namespace entries is exchanged using document style messaging rather than
RPC style object serialization. We only refer to entries as “objects” in a conceptual manner,
understanding that they are not classes that will be instantiated in the client runtime environment.
For this reason this specification does not define an object or complex type that can be acted on
directly by any application. Instead, the specification will exhibit a profile approach by defining the
static list of resource properties corresponding to the namespace entry object or resource.

1.2.2.2.1 Required Entry Properties

All of the following properties MUST be implemented to represent properties of a namespace entry
by an RNS service implementation. Please notice that each of the following namespace entry
properties SHOULD be considered to represent transient values.

(Entry signifies a runtime instance of a valid namespace entry object.)

QName Description

Basic Properties

AliasCount Integer: Number of known aliases of Entry

ChildCount Integer: Number of subentries corresponding to Entry, if and only if
Entry is a Virtual Directory; zero or NULL otherwise.

Description String: Description of Entry

ModificationTime DateTime (xsd: dat eTi ne) representation of the last modified
timestamp of Entry

Name String: Representation of the human interface name of Entry

Type String: Value denoting a type of entry; valid values are:

LogicalReference, EPR, Alias, Referral, and VirtualDirectory. (which
are also the “local part” values of the respective QNames)

Reference Properties — Properties that host target information

EPR String: Used to set or add a single Endpoint Reference

EPRs String: Used to retrieve all Endpoint References associated with Entry

LogicalReference String: Used to set or add a single Logical Reference

LogicalReferences String: Used to retrieve all Logical References associated with Entry

TargetPath String: Absolute path that identifies the target entry of an Alias junction.
mpereira@us.ibm.com o.tatebe@aist.go.jp

GWD-R March 2005

1.2.2.2.2 Extensible Entry Properties

In addition to the well-defined properties for namespace entries, an RNS service MUST implement
operations that enable administrative applications to add and remove user-defined properties that
may correspond to a profile definition. Thus the resource properties document design is extensible
in that user-defined properties can be added and removed without requiring modification of the core
service. (See section 1.3.4)

1.2.2.2.3 Property Relationships

Since RNS is SOAP 1.1 compliant and allows for message exchanges between heterogeneous
runtime environments, it does not enforce appropriate property relationships, dependencies, or
exclusivities. The service MUST however enforce such relationship requirements on the service
side, but a good understanding of what correct property relationships are is helpful.

1.2.2.3 Properties for Operation Parameters

In addition to IteratorContext and Entry resource properties, an RNS service MUST implement the
following properties and accommodate their use in the designated service operations listed in
section 1.3.

QName Description

All Boolean: Used in place of enumerating all of the available properties
(signified by QNames) of a given resource

AutoChangeDir Boolean value that if “true” will cause the current working directory or
BaseDirectory to change to the directory being listed.
[default value is “true”]

AutoResolve Boolean value that if “true” will cause this operation to attempt to
resolve any virtualized resources by their logical name using the
companion RNS Resolver Service. Only one level of resolution is
required, so if a logical reference resolves to a virtualized
address/reference only the first level of abstraction is resolved.
[default value is “false”]

Name String: Simple character string representation of a context dependant
name property.

Path String: Value representing a path or sequence of hierarchical tree
levels in the namespace tree; used as a generic parameter property for
most operations. Generally represents the only globally unique
persistent namespace entry identifier.

BaseDirectory String: Fully qualified path of the current working directory or
BaseDirectory with which construction of an absolute path may be
realized by concatenating the BaseDirectory with a relative entry name.
This property MUST be exchanged in all query operations (see 1.3.1.3)
and can therefore be leveraged for use in input parameters.

EndOfList Boolean: Value that if “true” indicates an iterative list operation has
reached the end of the list. This property MUST be exchanged in all
query operations (see 1.3.1.3).

mpereira@us.ibm.com o.tatebe@aist.go.jp
10

GWD-R March 2005

1.3 Operations of the Resource Namespace Service
RNS is composed of the following types of operations:

1) Operations for querying namespace entry information.
2) Operations for creating, removing, moving/renaming, and updating entries.
3) Operations for managing attributes or status of an entry.

To retrieve information about a particular namespace entry, a standard message exchange
(operation) is initiated by a message request containing a list of all of the property names (QNames)
whose values are to be retrieved. The operation completes by returning a SOAP message
containing the values of all of the properties requested. The returned values may contain nested
value arrays and therefore are properly decoded by traversing the entire SOAP message, which is
comprised of nest-able message elements.

1.3.1 Operation Parameters

Please note that in the current WSRF implementation by Globus 3.9.4, only one parameter is
permitted per operation. Before examining the purposed operations, it is necessary to review the
associated operation parameters. All RNSService port type operations take one of the following
input parameters.

1.3.1.1 Querylnput
This is a document literal service compliant message (complexType) that contains two elements:

Parameter Name Description

parameterList A complexType that encapsulates an unbound array of name-value
pairs

propertyTypes An unbound array of (xsd:QName) strings

<xsd: conpl exType name="Queryl nput">
<xsd: sequence>

<l-- Dynamic list of paraneters -->
<xsd: el enent ref="tns:paraneterList” mnCccurs="1" maxCccurs="1"/>
<I-- Array of QNanes used to indicate what properties to retrieve -->

<xsd: el enent ref="tns:propertyTypes" m nCccurs="1" maxCccurs="unbound"/>
</ xsd: sequence>
</ xsd: conpl exType>

mpereira@us.ibm.com o.tatebe@aist.go.jp
11

GWD-R March 2005

1.3.1.2 Changelnput
This is a document literal service compliant message (complexType) that contains two elements:

Parameter Name Description
parameterList A complexType that encapsulates an unbound array of name-value
pairs

changeProperties Awsrp: Set Resour ceProperti es message [4]

<xsd: conpl exType name="Changel nput ">
<xsd: sequence>

<l-- Dynamic list of paraneters -->
<xsd: el ement ref="tns:paraneterList" mnCccurs="1" maxCccurs="1"/>
<I'-- W5- ResourceProperties SetResourceProperties -->

<xsd: el ement nane="changeProperties" ref="wsrp: Set ResourceProperties"
m nCccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

The changeProperties message allows the processing of a single request message to make
multiple changes to the target resource properties document. There are three types of changes:

0 Insert: wherein a new property element is inserted into the resource properties document
o Update: wherein existing property element(s) are modified
o Delete: wherein an existing property element(s) are removed

Therefore, property values MUST be sent using the appropriate change type for the request. In
other words, if the caller desires to add a new property value to a given resource they must set the
value in the Insert element.

The format of this request message MUST be:
<wsr p: Set Resour ceProperti es>

{

<wsrp:lnsert >
{any}*
</wsrp:lnsert>
<wsr p: Update >
{any}*
</ wsr p: Updat e>
<wsr p: Del et e Resour ceProperty="Q\ane” />
1+

</ wsr p: Set Resour ceProperti es>

1.3.1.3 QueryResponse

This is a document literal service compliant message (complexType) that contains three
components: BaseDirectory, EndOfList, and an array of unrestrained message elements. The
following is the WSDL representation of the QueryResponse:

<xsd: conpl exType name="QueryResponse" >
<xsd: sequence>
<xsd: el enent ref="tns:baseD rectory” m nCccurs="1" maxCccurs="1"/>
<xsd: el ement ref="tns:endXList" m nCccurs="1" maxCccurs="1"/>
<xsd:any m nQccurs="0" naxCccur s="unbound"/>
</ xsd: sequence>
</ xsd: conpl exType>

1.3.1.4 ChangeResponse
This is a document literal service compliant message (complexType) that is a void message:

<xsd: conpl exType nanme="ChangeResponse" />

mpereira@us.ibm.com o.tatebe@aist.go.jp
12

GWD-R March 2005

1.3.2 Namespace Operations
The following is a comprehensive list of operations defined in the RNS namespace port type
(RNSPortType) specification.

1.3.2.1 Ccreate

Enables an application to submit a request message that contains an array of message elements,
each of which represent a property name/value pair, to be created and persistently stored by the
service host. This operation is primarily used for the creation of namespace entries, but may also
effect the creation of other datastore objects (like Endpoint Reference entries if the service
implementation utilizes a separate entry for storing EPR information).

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

There are no changeProperties used in this operation.

Path MUST be specified in the parameterList of Changelnput.
(for values see 1.2.2.3):

QName Description
Path The absolute path of the entry to be created.
Name String representation of the human interface name of Entry. Optional

MAY be used as an appendix to the value of Path.

Exactly one type (LogicalReference, EPR, Alias, Referral, or VirtualDirectory) MUST be specified.

The following entry properties MAY be specified in the parameterList of Changelnput
(for values see 1.2.2.2.1):

QName Description

Description String: Optional description

ModificationTime DateTime (xsd: dat eTi ne) representation of the last modified
timestamp

Type String: Value denoting a type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

EPR Value of a single Endpoint Reference to be associated with Entry

LogicalReference Value of a single Logical Reference to be associated with Entry

TargetPath The absolute path of the target entry. Set only if Entry is an Alias.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

Note that more than one EPR and LogicalReference elements MAY be included in a single
message exchange, effectively representing a list of values.

mpereira@us.ibm.com o.tatebe@aist.go.jp
13

GWD-R March 2005

1.3.2.2 delete

Enables an application to submit a request message that contains the path of the entry to delete.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following parameter MUST be specified in the parameterList of Changelnput.
(for values see 1.2.2.3).

QName Description
Path The absolute path of Entry to be deleted.

There are no changeProperties used in this operation.

mpereira@us.ibm.com o.tatebe@aist.go.jp
14

GWD-R March 2005

1.3.2.3 list

Enables an application to submit a request message that contains an array of property names
whose values are to be retrieved for each namespace entry that is a subentry of the virtual directory
entry denoted by the path value within the input parameter. Since directories may contain a very
large number of subentries, this operation enables the caller to specify the maximum number of
subentries allowable per message exchange (IteratorMaxAtOnce). If this parameter property is
specified as a non-zero value, then an IteratorContext will automatically be constructed and
returned to the caller using standard WSRF mechanisms for stateful resource interaction.

Parameter: Querylnput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of Querylnput. Path value
MUST be specified.
(for values see 1.2.2.1 & 1.2.2.3):

QName Description
Path The absolute path of the virtual directory to list. Required.
AutoChangeDir Boolean value that if “true” will cause the current working directory or

BaseDirectory to change to the directory being listed.
[default value is “true”]

AutoResolve Boolean value that if “true” will cause this operation to attempt to
resolve any virtualized resources (one level) by their logical name using
the companion RNS Resolver Service.

[default value is “false”]

IteratorMaxAtOnce Integer indicating the maximum number of entries allowed in a single
message; used in iterative list operations. A value of zero “0” indicates
no maximum limit.

[default value is “07]

(continued on next page)

mpereira@us.ibm.com o.tatebe@aist.go.jp
15

GWD-R March 2005

(continued from previous page — list operation)
At least one entry property type MUST be specified for this operation (see below).

The following entry properties MAY be specified in the propertyTypes of Querylnput
(for values see 1.2.2.2.1):

QName Description

All Used in place of enumerating all of the available properties (signified by
QNames); indicates ALL properties should be returned.

AliasCount Number of known aliases of Entry

ChildCount Number of subentries corresponding to Entry, if and only if Entry is a
Virtual Directory; zero or NULL otherwise.

Description Optional description of Entry

ModificationTime

DateTime (xsd: dat eTi ne) representation of the last modified
timestamp of Entry

Name String representation of the human interface name of Entry

Type String value denoting the type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

EPR Used to set or add a single Endpoint Reference

EPRs Used to retrieve all Endpoint References associated with Entry

LogicalReference
LogicalReferences
TargetPath

Used to set or add a single Logical Reference
Used to retrieve all Logical References associated with Entry

The absolute path of the target entry; if and only if Entry is an Alias;
empty or NULL otherwise.

Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

mpereira@us.ibm.com

o.tatebe@aist.go.jp
16

GWD-R March 2005

1.3.2.4 lookup

Enables an application to submit a request message that contains an array of property names to be
retrieved for the namespace entry denoted by the path value within the input parameter.

Parameter: Querylnput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of Querylnput. Path value
MUST be specified.
(for values see 1.2.2.1 & 1.2.2.3).

QName Description
Path The absolute path of the entry to lookup. Required.
AutoResolve Boolean value that if “true” will cause this operation to attempt to

resolve any virtualized resources by their logical name using the
companion RNS Resolver Service.

At least one entry property type MUST be specified for this operation (see below).
The following entry properties MAY be specified in the propertyTypes of Querylnput
(for values see 1.2.2.2.1).

QName Description

All Used in place of enumerating all of the available properties (signified by
QNames); indicates ALL properties should be returned.

AliasCount Number of known aliases of Entry

ChildCount Number of subentries corresponding to Entry, if and only if Entry is a
Virtual Directory; zero or NULL otherwise.

Description Optional description of Entry

ModificationTime DateTime (xsd: dat eTi ne) representation of the last modified
timestamp of Entry

Name String representation of the human interface name of Entry

Type String value denoting the type of entry; valid values are:
LogicalReference, EPR, Alias, Referral, and VirtualDirectory

EPR Used to set or add a single Endpoint Reference

EPRs Used to retrieve all Endpoint References associated with Entry

LogicalReference Used to set or add a single Logical Reference

LogicalReferences Used to retrieve all Logical References associated with Entry

TargetPath The absolute path of the target entry; if and only if Entry is an Alias;

empty or NULL otherwise.
Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

mpereira@us.ibm.com o.tatebe@aist.go.jp
17

GWD-R March 2005

1.3.2.5 update

Enables an application to submit a request message that contains an array of message elements,
each of which represent a property name/value pair, to be used to update an existing entry in the
database.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following parameter MUST be specified in the parameterList of Changelnput.
(for values see 1.2.2.3).

QName Description
Path The absolute path of the entry to update. Required.

The following entry properties MAY be specified in the changeProperties of Changelnput
(for values see 1.2.2.2.1):

QName Description

Description Optional description

ModificationTime DateTime (xsd: dat eTi ne) representation of the last modified
timestamp

Name String representation of the human interface name of Entry

Path The absolute path the entry should be changed to. Used in “move”
operations

EPR Add a single Endpoint Reference to be associated with Entry

LogicalReference Add a single Logical Reference to be associated with Entry

TargetPath Set the absolute path of the target entry. Set only if Entry is an Alias.

Type String: Value denoting a type of entry; valid values are:

LogicalReference, EPR, Alias, Referral, and VirtualDirectory
Any adjunct resource property QNames and respective values set at runtime. See 1.3.4

Note that more than one EPR and LogicalReference elements MAY be included in a single
message exchange, effectively representing a list of values.

The Changelnput parameter is fully capable of inserting, updating, and deleting properties in a
single message exchange via the changeProperties component. Values MUST be represented by
the appropriate change type: Insert, Update, or Delete. (see section 1.3.1.2)

mpereira@us.ibm.com o.tatebe@aist.go.jp
18

GWD-R March 2005

1.3.3 Implicit Operations

This specification attempts to maximize the flexible capabilities of document style messaging while
maintaining a simple, clearly defined API. Unlike traditional RPC based approaches, RNS utilizes a
minimal set of operations used for exchanging messages that are potentially capable of performing
multiple tasks in a single exchange. Rather than defining a separate operation for each task, this
specification describes a number of implicit operations, which are essentially descriptions of how to
perform conventional directory service tasks using the well defined service operations.

1.3.3.1 move

Move a hamespace entry from one location in the hierarchical namespace tree to another.
Operation: update (see 1.3.2.5)

The following parameter MUST be specified in the parameterList of Changelnput.
(for values see 1.2.2.3).

QName Description
Path The absolute path of the entry to update. Required.

The following properties MUST be specified in the changeProperties of Changelnput
(for values see 1.2.2.2.1):

QName Description

Path The absolute path the entry should be changed to. Used in “move”
operations. Value MUST be expressed in the Update element of

changeProperties.

mpereira@us.ibm.com o.tatebe@aist.go.jp
19

GWD-R March 2005

1.3.3.2 rename

Rename a nhamespace entry.
Operation: update (see 1.3.2.5)

The following parameter(s) MAY be specified in the parameterList of Changelnput. Path MUST
be specified.
(for values see 1.2.2.3).

QName Description

Path The absolute path of the entry to update OR the BaseDirectory if Name
is specified. Required.

Name String representation of the human interface name of Entry. Optional:
MAY be used to denote the subentry relative to the value of Path.

At least one of the following properties MUST be specified in the changeProperties of
Changelnput

(for values see 1.2.2.2.1):
QName Description

Name String representation of the human interface name of Entry. Used only
if a BaseDirectory is specified and the value of the Name input
parameter is non-NULL.

Path The absolute path denoting the new path/name of the entry.

1.3.3.3 mkdir

Make a directory entry in the namespace; a virtual directory.
Operation: create (see 1.3.2.1)

The following parameters MUST be specified in the parameterList of Changelnput.
(for values see 1.2.2.3 and 1.2.2.2.1).

QName Description
Path The absolute or relative path of the virtual directory to create.
Type Set with a value of VirtualDirectory.
mpereira@us.ibm.com o.tatebe@aist.go.jp

20

GWD-R March 2005

1.3.4 Profile Extension Operations

RNS features an extensible design allowing normative profile specifications, such as OGSA Basic
Profiles [5], to define a standard set of resource properties for specific instantiations of the
namespace service. This feature facilitates extensibility without requiring modification to the RNS
specification or implementation, eliminates the necessity to draft a design specification, and
eliminates the necessity to develop any implementation code that “extends” or “subclasses” any
RNS component. Traditional software engineering practices generally extend a service class or
component by subclassing it and adding specific functionality tailored for a particular purpose. This
approach usually requires that each time a new function is added, software development and
deployment is necessary.

In an effort to leverage the flexibility and abstractness of document style Web services, RNS
proposes a mechanism that facilitates dynamic runtime extensibility with the use of adjunct resource
properties. These adjunct resource properties may be defined by a Basic Profile [5]. An adjunct
resource property may be added to the effectual resource properties document of the RNS entry
properties document. This means that an administrator of the RNS service may define resource
properties that will be used in addition to the required entry properties [Required Entry Properties
1.2.2.2.1], thereby effectively augmenting the representation of the RNS Entry resource and
extending the resource properties associated with it to include the newly added adjunct resource
properties.

The RNS service MUST be able to support use of any dynamically added adjunct resource property,
by properly allowing the use of message elements identified by QNames that represent the adjunct
resource property. Values MUST be expressible in XML compatible data types [6].

1.3.4.1 Profile Extension Operation Parameters

The following table defines the properties used as parameters in the RNS profile extension
operations.

QName Description

DataType WSDL compatible representation of the XML data type. Possible
values are: string, boolean, base64Binary, hexBinary, float, decimal,
double, anyURI, QName, duration, dateTime, time, and date.
Example: “string” See [6].

Description String description of the adjunct resource property

Name Name of the adjunct resource property, serving as the QName (local
part) used to represent the property in general operations.

Profile Optional string value denoting the Profile this adjunct resource property
is associated with.

mpereira@us.ibm.com o.tatebe@aist.go.jp
21

GWD-R March 2005

Following are the operations that enable management of adjunct resource properties defined in the
RNS port type (RNSPortType) specification:

1.3.4.2 deleteProperty

Delete an existing adjunct resource property from the registry. This operation will delete ALL
instances of the property even if more than one entry has stored values corresponding to the

property.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of Changelnput is not used in this operation.

The following properties MUST be specified in the parameterList of Changelnput
(for values see 1.3.4.1)..

QName Description
Name Name of the adjunct resource property to be deleted. (QName)
1.3.4.3 insertProperty

Store a new adjunct resource property to the registry. An exception is thrown if the adjunct
resource property specified already exists in the service’s persistent database.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of Changelnput is not used in this operation.

The following properties MUST be specified in the parameterList of Changelnput
(for values see 1.3.4.1).

QName Description
Name Name of the adjunct resource property to be inserted. (QName)

The following properties MAY be specified in the parameterList of Changelnput
(for values see 1.3.4.1):

QName Description

DataType WSDL compatible representation of the XML data type.

Description Description of the adjunct resource property

Profile Optional string value denoting the Profile this adjunct resource property

is associated with.

mpereira@us.ibm.com o.tatebe@aist.go.jp
22

GWD-R March 2005

1.3.4.4 listProperties

Lists all currently registered adjunct resource properties.
Parameter: Querylnput (see 1.3.1.1)

Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MAY be specified in the parameterList of Querylnput serving as query
filters.
(for values see 1.3.4.1).

QName Description

DataType Use as a list filter. Only adjunct resource properties that match the
value of this parameter will be returned.

Name Use to identify a specific adjunct resource property to list. Only the
property that matches the value of this parameter will be returned.

Profile Use as a list filter. Only adjunct resource properties that match the
value of this parameter will be returned.

At least one property type MUST be specified for this operation (see below).

The following properties MAY be specified in the propertyTypes of Querylnput to specify what
properties of the returning adjunct resource properties should be listed.

(for values see 1.3.4.1):

QName Description

DataType WSDL compatible representation of the XML data type.
Description Description of the adjunct resource property

Name Name of the adjunct resource property. (QName)

Profile String value denoting the Profile this adjunct resource property is

associated with.

mpereira@us.ibm.com o.tatebe@aist.go.jp
23

GWD-R March 2005

1.3.4.5 updateProperty

Updates an existing adjunct resource property.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of Changelnput.
(for values see 1.3.4.1).

QName Description
Name Name of the adjunct resource property to be updated. (QName)

The following properties MUST be specified in the changeProperties of Changelnput
(for values see 1.3.4.1).

QName Description

DataType WSDL compatible representation of the XML data type.
Description Description of the adjunct resource property

Name Name of the adjunct resource property. (QName)

Profile String value denoting the Profile this adjunct resource property is

associated with.

The Changelnput parameter is fully capable of inserting, updating, and deleting properties in a
single message exchange via the changeProperties component. Values MUST be represented by
the appropriate change type: Insert, Update, or Delete. (see section 1.3.1.2)

mpereira@us.ibm.com o.tatebe@aist.go.jp
24

GWD-R March 2005

Federation of Resource Namespace Services

A global namespace service directly implies the employment of a multitude of namespace servers
by virtue of geographical distribution, segregated domains of ownership and control, scalability, and
redundancy/availability. A principal goal of a global namespace service is to provide a location
independent view of consistent access paths to resources. Since these access paths are
represented by hierarchal path names, symbolizing a globally unique identifier to a given resource,
it is a natural extension of the design to consider an architecture that federates multiple namespace
servers in a hierarchical fashion. Similar to the well established DNS model, RNS service providers
can be interlinked by referrals whilst providing a seamless and transparent view of the namespace.
Once several instances of the namespace service are interlinked, the most obvious challenge is
related to path name resolution when dealing with paths that cross referral boundaries. There are
two fundamental approaches to resolving path names that span multiple namespace domains or
service instances: service referrals and delegated resolution.

1.4 Service Referrals

The most straightforward and arguably the most secure and truly scalable approach to resolving
path names that span multiple domains or service instances is to place the onus of handling RNS
referrals on the RNS client. In this approach, the namespace server would simply return a RNS
referral to the RNS client when a junction to another namespace server is encountered. The client
implementing the RNS API is then responsible for continuing the task of resolving the original path
name by connecting to the namespace server indicated by the RNS referral and querying the newly
connected server for further (relative) path name resolution.

One clear advantage of this approach is the direct management of namespace service connections,
which implies authentication and authorization control per connection, rather than accessing a
referred namespace server via proxied security. Additionally, this approach promotes distributed
work load balancing; instead of requiring RNS servers to handle namespace requests for both
locally managed namespace and remotely managed namespace via proxy.

1.5 Delegated Resolution

Another possible approach to resolving path names that span multiple domains or service instances
is to empower the RNS server to delegate queries to other RNS servers for complete resolution of
any given path. Although this approach is demonstrated in DNS, it should be noted that the security
requirements are quire different. Since DNS generally operates in a public read-only manner
without authentication and authorization per DNS server, it is not too unreasonable to endorse such
an approach. RNS, however, facilitates the possibility of requiring authentication per service
instance and enforcing access control per entry. Nevertheless, an approach that allows for the
possibility of delegated resolution should be considered as at least an optional mode of operation;
incidentally DNS is capable of both approaches.

mpereira@us.ibm.com o.tatebe@aist.go.jp
25

GWD-R March 2005

Considerations

There are several issues to consider, with respect to RNS, which have not been explored in this
document.

e Security — The topic of security as a whole is not discussed in this specification document.
Security is recognized as a substantial are of interest and will require further investigation.

« Replication of RNS databases — To enhance fault tolerance and reliability, replication of
namespace service data is indispensable. The consistency model required by RNS needs
to be investigated.

« Backup — Backup of RNS data may be required.

« Discussion of access control lists (ACLs) within RNS, their purpose, scope, representation,
and enforcement. If access permissions defined by physical filesystems are to be
represented within RNS then significant consideration must be taken with respect to
consistency problems between access permissions of a virtual file and the corresponding
file data.

* Removal or modification of a file data without notification to the file system directory
services.

« Consistency problems between file data replicas.

e Interoperability issue with NFSv4 and CIFS.

Summary and Conclusion

This document is intended to describe the specification of the Resource Namespace Service, a
fundamental namespace service that is capable of addressing a wide variety of namespace related
needs from virtualized services and artifacts to federated global data.

This document proposed a set of operations needed to be supported by RNS. Additionally, it
proposed two approaches to federation of RNS service instances for scalable, large-scale and
distributed namespace management.

Further detailed discussions regarding this specification and the potential evaluation of reference
implementations are needed. Additionally, an evaluation should be conducted that examines the
aspects of security, performance, consistency, scalability, and reliability. The evaluation needs also
to consider functionality of a client library, especially, with and without client attribute cache.

mpereira@us.ibm.com o.tatebe@aist.go.jp
26

GWD-R March 2005

Appendix: Grid File System Profile

Data in the Grid can be of any format and be stored in any type of storage system. There can be
many hundreds of petabytes of data in grids, among which a very large percentage is stored in files.
A standard mechanism to describe and organize file-based data is essential for facilitating access to
this large amount of data. The Grid File System Working Group (GFS-WG) was established in GGF
data area to standardize a mechanism to address this need by providing a Grid File System (GFS)
or virtual file system in the Grid environment.

Two major deliverables of the WG are (1) architecture of Grid File System Services and (2)
specification of a file system namespace service. File system directory services will manage the
namespace of federated and virtualized data from file system resources [1]. It will provide features
such as (a) virtualized hierarchical namespaces for files or potentially other types of data (such as
live data feeds), (b) efficient and transparent file sharing, and (c) ability to describe and manage file-
system and application-specific metadata.

This document appendix intends to present a standard profile, for use with RNS, that describes a
Virtual Filesystem Directory Service (VFDS) specification. It proposes a list of resource properties
needed to be supported by file system directory services.

The following table presents a set of resource properties that MUST be supported for file system
directory service applications.

QName Description

Checksum String representation of the actual checksum corresponding to the physical file or
fileset symbolized by this data resource junction.

ChecksumType String representation of the checksum type or algorithm used to produce the
checksum.

Complete Identifies whether or not the file or filesystem source targeted by this VFDS entry is

complete. In the case of files, a value of true connotes all of the file content is
embodied in the file; for filesets (filesystem subtrees) this identifies whether or not
the fileset is complete in terms of number of files participating and the coherency of

these files.
MutableSource Identifies whether or not the file or filesystem source targeted by this VFDS entry
can change.
ReadOnly Identifies whether or not a local copy of the data should be locally read-only.
ReplicaCopy Identifies whether or not the file or filesystem source targeted by this VFDS entry is

a replica copy.

Size The physical size of the targeted data source. If the target data is in the form of a
file (implying a PFN) then this value discloses the size of the file in bytes. If the
target data is in the form of a fileset (implying a PFSN) then this value discloses
the summation size of all the contained files.

Timestamp The replica or fileset’s point-in-time timestamp corresponding to the time at which
the source snapshot was made.
Version The version number of the targeted data if available.
mpereira@us.ibm.com o.tatebe@aist.go.jp

27

GWD-R March 2005

2 Appendix: Resource Resolution Service

The Resource Resolution Service, which will henceforth be referred to as RNS Resolver, is a
companion service to RNS providing operations that enable management and resolution of
virtualized references. The RNS Resolver service is independent of RNS, and RNS is independent
of it. RNS Resolver MAY be used by RNS and other services and applications, at the same service
URL as the RNS namespace service, using a different port type (RNSResolverPortType).

As described in the RNS specification for namespace services, RNS Resolver only addresses the
second and third tiers of the overall naming scheme—that is the level of strictly mapping logical
names to endpoint references.

2.1 RNS Resolver Basic Components

RNS Resolver is comprised of two fundamental service components: logical names and endpoint
references or addresses. These two basic components, also referred to as virtualized references,
are used to serve a name-to-address resolution service, capable of a many-to-many mapping
between names and addresses. This service does not maintain any complex relationships between
components, but rather an intuitive mapping of logical names to endpoint references. One logical
name maps to at least one endpoint reference, but is unbound regarding the number of targets
allowable. It is also possible that a given endpoint reference is referenced by more than one logical
name. A description of each follows:

2.1.1 Logical Reference

A Logical Reference is characterized by its logical name, which is a logically unique—potentially
globally unique—identifier of some resource. A logical name does not have any intrinsic value nor
is it meaningful outside of the context for which it is intended—it is simply a unique name that is
used to identify a resource or set of resources that have been logically virtualized. Logical names
may be used in registries other than RNS Resolver and can potentially be interoperable amongst
different resolution services.

2.1.2 Endpoint Reference

An Endpoint Reference in the context of Web services is fundamentally a formatted reference
string, usually represented in XML, that targets a referenceable entity, processor, or resource where
Web service messages can be exchanged. Endpoint References convey the information needed to
identify/reference a Web service endpoint.[3]

2.2 Document Style Messaging

RNS Resolver exploits a document style message exchange approach to services.
(Please refer to section 1.2)

2.3 Operations of RNS Resolver
RNS Resolver is composed of the following operations:

1) An operation for resolving logical names to endpoint references.
2) Operations for creating, removing, and updating virtualized references.

To retrieve information about a particular virtualized reference, a standard message exchange
(operation) is initiated by a message request containing a list of all of the property names (QNames)
whose values are to be retrieved. The operation completes by returning a SOAP message

mpereira@us.ibm.com o.tatebe@aist.go.jp
28

GWD-R March 2005

containing the values of all of the properties requested. The returned values may contain nested
value arrays and therefore are properly decoded by traversing the entire SOAP message, which is
comprised of nest-able message elements.

2.3.1 Operation Parameters

Please refer to section 1.3.1 for additional property definitions.

QName Description

Description String description of either a logical name or endpoint reference

EPR Used to set or add a single Endpoint Reference value

EPRs Used to retrieve an inclusive list of Endpoint References mapped by a
given logical name

LogicalReference Used to set or add a single Logical Reference value according to its
logical name

LogicalReferences Used to retrieve an inclusive list of Logical References mapped by a

given logical name

2.3.2 RNS Resolver Operations

The following is a comprehensive list of operations defined in the RNS Resolver port type
(RNSResolverPortType) specification.

2.3.2.1 deleteEndpointReference

Delete an existing endpoint reference from all mappings, unless it represents the only endpoint
reference mapped by a given logical name in which case an exception is thrown.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of Changelnput is not used in this operation.

The following properties MUST be specified in the parameterList of Changelnput
(for values see 2.3.1).

QName Description
EPR The Endpoint Reference to be deleted
2.3.2.2 deletelLogicalReference

Delete an existing logical name to endpoint reference mapping.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of Changelnput is not used in this operation.

The following properties MUST be specified in the parameterList of Changelnput
(for values see 2.3.1).

QName Description
LogicalReference The logical name of the Logical Reference to delete
mpereira@us.ibm.com o.tatebe@aist.go.jp

29

GWD-R March 2005

2.3.2.3 insertLogicalReference

Store a new logical name to endpoint reference mapping. An exception is thrown if the logical
name used already exists in the service’s persistent database.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The changeProperties of Changelnput is not used in this operation.

The following properties MUST be specified in the parameterList of Changelnput
(for values see 2.3.1):

QName Description
LogicalReference The logical name of this Logical Reference
EPR The single Endpoint Reference to be mapped

The following properties MAY be specified in the parameterList of Changelnput
(for values see 2.3.1).

QName Description
Description Description of the Logical Reference

Note that a message MAY contain multiple EPR elements, which effectively represents a list.

2.3.2.4 resolve

Takes a logical name and returns all related endpoint references. Basic operation that resolves a
unigque logical name to the corresponding address(es). One logical name maps to at least one
endpoint reference, but is unbound regarding the number of targets allowable. It is also possible
that a given endpoint reference is referenced by more than one logical name.

Parameter: Querylnput (see 1.3.1.1)
Returns: QueryResponse (see 1.3.1.3)

The following parameter(s) MUST be specified in the parameterList of Querylnput
(for values see 2.3.1):

QName Description
LogicalReference The logical name of the Logical Reference to resolve

The following properties MAY be specified in the propertyTypes of Querylnput
(for values see 2.3.1).

QName Description
EPR (returned by default, no need to specify in the propertyTypes list)
Description Description of the Logical Reference

mpereira@us.ibm.com o.tatebe@aist.go.jp

30

GWD-R March 2005

2.3.2.5 updateEndpointReference

Updates all existing instances of the specified endpoint reference, affecting all Logical References
referring to this endpoint reference.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of Changelnput.
(for values see 2.3.1).

QName Description
EPR The value representing the Endpoint Reference to update

The following properties MUST be specified in the changeProperties of Changelnput
(for values see 2.3.1):

QName Description

EPR The new Endpoint Reference value to be stored. This property value
MUST be embedded in the Update change type element. (see section
1.3.1.2)

2.3.2.6 updatelLogicalReference

Updates an existing logical name to endpoint reference mapping, enabling the caller to update the
description of the Logical Reference and add and/or remove associated EPRs.

Parameter: Changelnput (see 1.3.1.2)
Returns: ChangeResponse (see 1.3.1.4)

The following properties MUST be specified in the parameterList of Changelnput
(for values see 2.3.1).

QName Description
LogicalReference The logical name of this Logical Reference

At least one property MUST be specified in the changeProperties of Changelnput.
The following properties MAY be specified in the changeProperties of Changelnput
(for values see 2.3.1):

QName Description

Description Description of the Logical Reference. This property value MUST be
embedded in the Update change type element. (see section 1.3.1.2)

EPR A single Endpoint Reference to be mapped or added to the mapping.
This property value MUST be embedded in the Update change type
element. (see section 1.3.1.2)

Note that more than one EPR element MAY be included in a single message exchange, effectively
representing a list of values.

The Changelnput parameter is fully capable of inserting, updating, and deleting properties in a
single message exchange via the changeProperties component. This means that an EPR value
may be used for adding a new EPR while another EPR value is sent identifying an existing endpoint
reference that should be de-referenced. Values MUST be represented by the appropriate change
type: Insert, Update, or Delete. (see section 1.3.1.2)

mpereira@us.ibm.com o.tatebe@aist.go.jp
31

GWD-R March 2005

Appendix: RNS WSDL 1.1

The following illustrates the Web Services Description Language (WSDL 1.1) for the Web service
methods described in this specification.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions nane="RNS"
target Namespace="http://rns.ws.ibm cont
xm ns:tns="http://rns.ws.ibm cont
xm ns: wsa="http://schemas. xm soap. or g/ ws/ 2004/ 03/ addr essi ng"
xm ns="http://schemas. xm soap. org/ wsdl / "
xm ns: gt wsdl ="http://ww. gl obus. or g/ nanmespaces/ 2004/ 01/ GTWSDLExt ensi ons"
xm ns: wsdl =" http://schemas. xn soap. or g/ wsdl /"
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: wsrl w=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- Resour ceLi fetime-1.2-draft-01. wsdl"
xm ns: wsr p=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- Resour ceProperties-1.2-draft-01. xsd"
xm ns: wsr pw=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- Resour ceProperties-1.2-draft-01. wsdl"
xm ns: wsbf =
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- BaseFaul t s- 1. 2-draft-01. xsd"
xm ns: wsnt w=
"http://docs. oasi s-open. or g/ wsn/ 2004/ 06/ wsn- W&- BaseNot i fi cation-1.2-draft-01. wsdl "
xm ns: xsd="http://wwmv. w3. or g/ 2001/ XM_Schema" >

<I-- RNS Wb Service Description File -->
<wsdl : i nport
namespace=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- Resour ceProperties-1.2-draft-
01. wsdl "
location="../wsrf/properties/ W ResourceProperties.wsdl" />

<wsdl : i nport
namespace=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- Resour ceLi fetine-1.2-draft-
01. wsdl "
location="../wsrf/lifetime/ W5 ResourcelLifetime. wsdl" />

<wsdl : i mport
nanespace=
"http://docs. oasi s-open. or g/ wsn/ 2004/ 06/ wsn- W5- BaseNot i fi cati on-1.2-draft-

01. wsdl "
location="../wsrf/notification/ W5 BaseN. wsdl " />
<!-- Value Types -->
<types>

<xsd: schena target Namespace="http://rns.ws.i bm conf
xm ns:tns="http://rns.ws.ibm cont
xm ns: xsd="http://wwmv. w3. or g/ 2001/ XM_Schema" >

<xsd:inmport nanmespace=
"http://schemas. xn soap. or g/ ws/ 2004/ 03/ addr essi ng"
schemaLocati on="../ws/ addr essi ng/ Ws- Addr essi ng. xsd" />

<xsd:inmport nanmespace=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- Resour ceProperties-1. 2-
draft-01. xsd"
schemaLocation="../wsrf/properties/ W5 Resour ceProperties.xsd" />

<xsd:inmport nanmespace=
"http://docs. oasi s-open. or g/ wsrf/ 2004/ 06/ wsr f - W5- BaseFaul ts- 1. 2-draft-

01. xsd"
schemaLocation="../wsrf/faul ts/ Ws- BaseFaul ts. xsd" />
<l-- === RNS El enents Begin === -->
<xsd: el ement nane="penCont ext ">
mpereira@us.ibm.com o.tatebe@aist.go.jp

32

GWD-R

March 2005

<xsd: conpl exType/ >
</ xsd: el ement >

<xsd: el enent nane="(penCont ext Response" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="wsa: Endpoi nt Ref erence"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType name="ParaneterList">
<xsd: sequence>
<xsd: any processContents="lax" m nCccurs="1" maxQccurs="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="Queryl nput">
<xsd: sequence>

<I-- Dynamic list of paranmeters -->
<xsd: el ement ref="tns:paraneterList” mnCccurs="1" maxCccurs="1"/>
<l-- Array of Names used to indicate what properties to retrieve -->

<xsd: el enent ref="tns:propertyTypes" m nCccurs="1"

maxQccur s="unbound"/ >

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nane="Changel nput ">
<xsd: sequence>

<!-- Dynamc |list of paraneters -->
<xsd: el ement ref="tns:paraneterList” mnCccurs="1" maxCccurs="1"/>
<I'-- W5- ResourceProperties SetResourceProperties -->

<xsd: el ement nane="changeProperties" ref="wsrp: Set ResourceProperties"”
m nCccurs="1" maxQccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="QueryResponse">
<xsd: sequence>
<xsd: el ement ref="tns:baseD rectory” m nCccurs="1"

maxQccurs="1"/>

<xsd: el enent ref="tns:endO List" m nCccurs="1"

maxQccurs="1"/>

<xsd:any m nCccurs="0" maxCccurs="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conmpl exType nane="ChangeResponse" [>
<I-- Paraneter element declarations -->

<xsd: el ement nane="propertyTypes" type="xsd: QNane"/>
<xsd: el ement nane="paraneterlList" type="tns:ParaneterList"/>

<I-- Resource property el ement declarations -->

<xsd: el ement nane="aut oChangeDi r" type="xsd: bool ean"/ >
<xsd: el ement nane="aut oResol ve" type="xsd: bool ean"/ >
<xsd: el ement nane="baseDi rectory" type="xsd:string"/>
<xsd: el ement nane="chi | dCount " type="xsd:int"/>
<xsd: el enent nane="di rect or yPat h" type="xsd:string"/>
<xsd: el ement name="endO Li st" type="xsd: bool ean"/ >
<xsd: el ement nane="iterator Cont ext| D" type="xsd:string"/>
<xsd: el ement nanme="iteratorl| ndex" type="xsd:int"/>
<xsd: el enent nane="iterat or MaxAt Once" type="xsd:int"/>

<I-- "Context" Resource for Maintaining State -->

<xsd: el ement nanme="Iterat or Cont ext">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="tns:chil dCount" m nCccurs="1" maxCccurs="1"/>
<xsd: el enent ref="tns:directoryPath" m nCccurs="1" maxCccurs="1"/>
<xsd: el ement ref="tns:iteratorContext! D' m nQccurs="1" maxCccurs="1"/>

mpereira@us.ibm.com o.tatebe@aist.go.jp

33

GWD-R March 2005

<xsd: el ement ref="tns:iteratorlndex" m nCccurs="0" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: schema>
</types>

<I-- RNS Messages -->
<message name="CpenCont ext Request ">
<part nanme="(penCont ext Request" el enent ="t ns: OQpenCont ext "/ >
</ nessage>
<message name="CpenCont ext Response”>
<part nanme="(penCont ext Response" el ement ="t ns: OpenCont ext Response"/ >
</ nessage>
<message name="Li st nput Message" >
<part name="Li st nput Message" type="tns: Querylnput"/>
</ message>
<message name="Li st ResponseMessage" >
<part nanme="Li st ResponseMessage" type="tns: QueryResponse"/>
</ message>
<message nane="Lookupl nput Message" >
<part nanme="Lookupl nput Message" type="tns: Queryl nput"/>
</ nessage>
<message name="LookupResponseMessage" >
<part nanme="LookupResponseMessage" type="tns: QueryResponse"/>
</ message>
<message name="Updat el nput Message" >
<part nanme="Updat el nput Message" type="tns: Changel nput"/>
</ message>
<message nane="Updat eResponseMessage" >
<part nanme="Updat eResponseMessage" type="tns: ChangeResponse"/>
</ nessage>
<message name="Creat el nput Message" >
<part nane="Creat el nput Message" type="tns: Changel nput"/>
</ nessage>
<nmessage nane="Creat eResponseMessage" >
<part nane="Creat eResponseMessage" type="tns: ChangeResponse"/>
</ message>
<message name="Del et el nput Message" >
<part nanme="Del et el nput Message" type="tns: Changel nput"/>
</ message>
<message nane="Del et eResponseMessage" >
<part nanme="Del et eResponseMessage" type="tns: ChangeResponse"/>
</ nessage>

<!'-- Adjunct Resource Properties Messages -->
<message name="Del et ePropertyl nput Message" >

<part nanme="Del et ePropertyl nput Message" type="tns: Changel nput"/>
</ nessage>
<nmessage nane="|nsertPropertyl nput Message">

<part nanme="|nsertPropertyl nput Message" type="tns: Changel nput"/>
</ nessage>
<message name="Li st Propertieslnput Message">

<part nanme="Li stPropertieslnput Message" type="tns: Querylnput"/>
</ message>
<message name="Updat ePropertyl nput Message" >

<part nanme="Updat ePropertyl nput Message" type="tns: Changel nput"/>
</ message>

<!-- RRS Messages -->
<message name="Resol vel nput Message" >

<part nanme="Resol vel nput Message" type="tns: Queryl nput"/>
</ message>
<message name="Resol veResponseMessage" >
<part name="Resol veResponseMessage" type="tns: Quer yResponse"/>
</ message>
<message nane="MapLogi cal | nput Message" >
<part name="MapLogi cal | nput Message" type="tns: Changel nput "/ >

</ nessage>
<message nane="MapLogi cal ResponseMessage" >

mpereira@us.ibm.com o.tatebe@aist.go.jp
34

GWD-R
<part nane="MaplLogi cal ResponseMessage" type=
</ message>
<message name="Creat elogi cal | nput Message" >
<part nane="CreateLogi cal | nput Message" type=
</ message>

<message nane="Creat elLogi cal ResponseMessage" >

<part nanme="Creat eLogi cal ResponseMessage" type=
</ nessage>
<message nane="Del et eLogi cal | nput Message" >

<part nane="Del et eLogi cal | nput Message" type=
</ nessage>
<message name="Del et eLogi cal ResponseMessage" >

<part nane="Del et eLogi cal ResponseMessage" type=

</ message>
<message name="Updat eLogi cal | nput Message" >

<part nane="Updat eLogi cal | nput Message" type=
</ message>

<message nane="Updat eLogi cal ResponseMessage" >

<part nanme="Updat eLogi cal ResponseMessage" type=
</ nessage>
<message nane="Del et eEPRI nput Message" >

<part nane="Del et eEPRI nput Message" type="tns
</ nessage>
<message name="Del et eEPRResponseMessage"” >

<part nane="Del et eEPRResponseMessage" type="tns

</ message>
<message nane="Updat eEPRI nput Message" >
<part nane="Updat eEPRI nput Message" type="tns

</ nessage>
<message nane="Updat eEPRResponseMessage" >

<part nanme="Updat eEPRResponseMessage" type="tns
</ nessage>

<!-- === Resource Nanmespace Service === -->
<port Type name="RNSPort Type"
gt wsdl : ext ends="wsr pw. Get Resour ceProperty"
gt wsdl : i npl ement s="wsntw: Noti ficati onProducer

March 2005

"t ns: ChangeResponse"/ >

"t ns: Changel nput"/>

"t ns: ChangeResponse"/ >

"t ns: Changel nput "/ >

"t ns: ChangeResponse"/ >

"t ns: Changel nput"/>

"t ns: ChangeResponse"/ >

: Changel nput "/ >

: ChangeResponse"/ >

: Changel nput "/ >

: ChangeResponse"/ >

wsr | w. | nmredi at eResour ceTer i nati on
wsr | w. Schedul edResour ceTer ni nati on"

wsr p: Resour ceProperties="tns:|teratorContext">

<l-- Operation invoked when creating the web se
<operati on name="openCont ext">

rvice -->

<i nput nessage="tns: OpenCont ext Request "/ >
<out put nmessage="t ns: OpenCont ext Response"/ >

</ operati on>

<I-- W5 ResourceProperties Operations -->
<oper ati on name="get Resour ceProperty">

<i nput nessage="wsr pw. Get Resour cePropertyRequest"/>
<out put nessage="wsr pw. Get Resour cePr opertyResponse"/ >

</ operati on>

<operation name="get Mul ti pl eResourceProperties">
<i nput nessage="wsrpw Get Mul ti pl eResour cePropertiesRequest"/>
<out put nessage="wsr pw. Get Mul ti pl eResour ceProperti esResponse"/>

</ operati on>

<I-- Lookup Operation -->
<operation name="| ookup">

<input nmessage="tns: Lookupl nput Message"/ >
<out put nmessage="tns: LookupResponseMessage"/ >

</ operati on>

<l-- List Operation -->
<operation name="|ist">

<i nput nessage="tns: Listlnput Message"/ >
<out put message="tns: Li st ResponseMessage"/ >

</ operati on>
<I-- Create Qperation -->

<operation name="create">

mpereira@us.ibm.com
35

o.tatebe@aist.go.jp

GWD-R

mpereira@us.ibm.com

<input nmessage="tns: Createl nput Message"/ >
<out put message="tns: Creat eResponseMessage"/ >
</ operati on>

<!-- Delete Qperation -->
<operation nanme="del ete">
<i nput nessage="tns: Del et el nput Message"/ >
<out put nmessage="t ns: Del et eResponseMessage"/ >
</ operati on>

<I-- Update Operation -->
<operati on name="update">
<input nmessage="tns: Updatel nput Message"/ >
<out put message="tns: Updat eResponseMessage"/ >
</ operati on>

<!-- Delete Adjunct Property Operation -->

<operation nanme="del et eProperty">
<i nput nessage="tns: Del et ePropertyl nput Message"/ >
<out put nmessage="t ns: Del et eResponseMessage"/ >

</ operati on>

<I-- Insert Adjunct Property Operation -->

<operation name="insertProperty">
<i nput nessage="tns:|nsertPropertyl nput Message"/>
<out put message="tns: Creat eResponseMessage"/ >

</ operati on>

<I-- List Adjunct Property Operation -->

<operation name="|istProperties">
<input nmessage="tns:ListPropertieslnputMessage"/>
<out put nmessage="tns: Li st ResponseMessage"/ >

</ operati on>

<!-- Update Adjunct Property Operation -->

<operati on name="updat eProperty">
<i nput nessage="tns: Updat ePropertyl nput Message"/ >
<out put message="tns: Updat eResponseMessage"/ >

</ operati on>

</ port Type>

=== Resource Resolution Service === -->
<port Type name="RNSResol ver Port Type" >

<!-- Logical Reference Resolve Operation -->
<operati on name="resol ve">
<i nput nessage="tns: Resol vel nput Message"/ >
<out put nessage="t ns: Resol veResponseMessage"/ >
</ operati on>

<!-- Logical Reference Create (peration -->
<operation name="insertLogi cal Ref erence">
<i nput nessage="tns: CreatelLogi cal | nput Message"/ >
<out put message="tns: Creat eLogi cal ResponseMessage"/ >
</ operati on>

<I-- Logical Reference Delete Operation -->
<operation nanme="del et eLogi cal Ref erence">
<input nmessage="tns: Del etelLogi cal | nput Message"/ >
<out put nessage="tns: Del et eLogi cal ResponseMessage"/ >
</ operati on>

<!-- Logical Reference Update QOperation -->
<oper ati on name="updat eLogi cal Ref erence">
<i nput nessage="tns: Updat eLogi cal | nput Message"/ >
<out put nessage="tns: Updat eLogi cal ResponseMessage"/ >
</ operati on>

<l-- Endpoint Reference Delete Operation -->
<operati on nanme="del et eEndpoi nt Ref er ence" >

36

March 2005

o.tatebe@aist.go.jp

GWD-R

<input nmessage="tns: Del et eEPRI nput Message"/ >
<out put nessage="tns: Del et eEPRResponseMessage"/ >
</ operati on>

<!-- Endpoi nt Reference Update Operation -->
<operati on nanme="updat eEndpoi nt Ref er ence" >
<i nput nessage="t ns: Updat eEPRI nput Message"/ >
<out put nessage="t ns: Updat eEPRResponseMessage"/ >
</ operati on>

</ port Type>

</definitions>

mpereira@us.ibm.com
37

March 2005

o.tatebe@aist.go.jp

GWD-R March 2005

Author Information

Osamu Tatebe

Grid Technology Research Center, AIST
1-1-1 Umezono, Tsukuba

Ibaraki 3058568 Japan
o.tatebe@aist.go.jp

Manuel Pereira, Leo Luan, Ted Anderson
IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120, USA
mpereira@us.ibm.com
leoluan@us.ibm.com

ota@us.ibm.com

Jane Xu

IBM Systems and Technology Group
5600 Cottle Road

San Jose, CA 95193, USA
ixu@us.ibm.com

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to the GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF Document
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its

SUCCeSsOrs or assigns.

mpereira@us.ibm.com o.tatebe@aist.go.jp
38

GWD-R March 2005

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE."

References

[1] Leo Luan and Ted Anderson, “Grid Namespace for Files”, GGF working draft, GGF8, 2003
https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1

[2] S. Shepler, et al., “Network File System (NFS) version 4 Protocol”, RFC3530, 2003

[3] Web Services Addressing (W S-Addressing) http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810/

[4] Web Services Resource Properties (WS-ResourceProperties) Version 1.1 03/05/2003
http://www.globus.org/wsrf/specs/ws-resourceproperties.pdf

[SOAP 1.2] http://www.w3.0org/TR/soapl2-partl/

[State Paper] http://www-106.ibm.com/developerworks/webservices/library/ws-
resource/wsmodelingresources.pdf

[5] OGSA Basic Profile 1.0
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-basic-profile/en/

[6] XML Schema Part 2: Datatypes Second Edition
http://www.w3.0rg/TR/xmlschema-2/

mpereira@us.ibm.com o.tatebe@aist.go.jp
39

