
GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp

Resource Namespace Service Specification

Status of This Memo

This memo provides information to the Grid community about file system directory services. It does
not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2004). All Rights Reserved.

Abstract

This document describes the specification of a Resource Namespace Service (RNS), which is a
WSRF compliant web service capable of providing namespace services for any entity interested in
registering an End Point Reference or URL with an easily accessible, hierarchically managed, name.
This service, previously referred to as a virtual filesystem directory service (VFDS), has been
updated to incorporate an interface design that utilizes document style messages as described in
the WSRF specification. RNS is intended to facilitate namespaces services for a wide variety of
Grid services, with an initial emphasis as one of the essential services for Grid file systems or virtual
file systems in the Grid environment. It can be employed to manage the namespace of federated
and virtualized data, services, or effectively any resource capable of being referenced in a grid/web
environment. This document proposes a set of operations and resource property definitions that
define the Resource Namespace Service.

Contents

Resource Namespace Service Specification... 1
Abstract.. 1
Introduction .. 3
Resource Namespace Services.. 3

1.1 Basic Namespace Components.. 4
1.2 WSRF Document Style Interface .. 5

1.2.1 Resource Properties Documents ... 5
1.2.2 Property Relationships... 7

1.3 Operations of the Resource Namespace Service.. 8
1.3.1 Operation Parameters ... 8
1.3.2 Namespace Operations... 9
1.3.3 Data Reference Operations ... 10

Federation of Resource Namespace Services .. 12
1.4 Service Referrals.. 12
1.5 Delegated Resolution ... 12

Considerations ... 13
Summary and Conclusion... 13
Appendix: WSDL 1.1.. 14

GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp

Author Information.. 19
Intellectual Property Statement... 19
Full Copyright Notice .. 19
References... 20

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 3

Introduction

Data in the Grid can be of any format and be stored in any type of storage system. There can be
many hundreds of petabytes of data in grids, among which a very large percentage is stored in files.
A standard mechanism to describe and organize file-based data is essential for facilitating access to
this large amount of data. The Grid File System Working Group (GFS-WG) was established in GGF
data area to standardize a mechanism to address this need by providing a Grid File System (GFS)
or virtual file system in the Grid environment.

Two major deliverables of the WG are (1) architecture of Grid File System Services and (2)
specification of namespace services. This document is intended to address (2) by proposing a set
of WSRF-compliant operations exploiting well-defined and abstract resource properties that define
the service. The Resource Namespace Service (RNS) is fully capable of providing namespace
services for any web or grid-related resource, however for the specific purpose of addressing the
deliverables for the GFS-WG this document will focus on the application of RNS providing
namespace services for Grid file systems. In this capacity, RNS will manage the namespace of
federated and virtualized data, access control mechanisms, and meta-data management [1]. It will
provide features such as (a) virtualized hierarchical namespaces for data resources (such as files,
filesystems, live data feeds, database queries, etc.), (b) the facilitation of efficient and transparent
file sharing, and (c) the ability to describe and manage file-system and application-specific metadata.

The overall architecture of the Grid File System will be specified later in GFS-WG, which provides
infrastructure of virtual file systems facilitating federation and sharing of virtualized data from file
systems in the Grid environment by using Resource Namespace Services.

Resource Namespace Services

The Resource Namespace Service, which will henceforth be referred to as RNS, enables
construction of a uniform, global, hierarchical namespace.[1] This directory service or namespace
service enables federation of essentially any web or grid resource. RNS embodies a three-tier
naming architecture, which consists of a human-readable, logical or abstract, and resource
reference names. Name-to-resource mapping in RNS features the optional arrangement of two
levels of indirection. The first level of indirection is realized by mapping human-readable names to
direct resource references. Since the address properties of the direct resource reference may be
modified without altering the RNS entries that refer to them, this simple approach offers a
convenient means of name-to-resource mapping with a single level of indirection. A second level of
indirection may be appreciated when mapping human-readable names to logical names, which in
turn map logical names to direct resource references and hence the second level of indirection.
The advantage of using a logical name is that logical names may be referenced and resolved using
RNS independent of the hierarchical namespace. This means that logical names may be used as a
globally unique logical resource identifier and be referenced directly by both the RNS namespace
as well as other services; note that mapping information and associated pointer handles for direct
resource references are not exposed by RNS and are therefore used exclusively by RNS.
Following is a diagram that illustrates the three-tier naming architecture; please note that this
diagram does not employ abstract (non-data) references, but rather is intended to illustrate the
levels of the naming architecture:

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 4

Figure 1 - Three-Tier Naming Architecture

1.1 Basic Namespace Components

RNS is comprised of two fundamental namespace components: virtual directories and junctions.
These two essential namespace components, also referred to as RNS entries, are employed to
federate existing resources and construct a uniform hierarchy. A description of each follows:

A virtual directory is an RNS entry that is represented as a non-leaf node in the hierarchical
namespace tree. When rendered by a filesystem client, a virtual directory appears as a standard
filesystem directory, however does not have any corresponding position in any physical filesystem;
hence it is virtual. A virtual directory, therefore, is purely a namespace entity that functions in much
the same way as a conventional filesystem directory by maintaining a list of subentries, which
thereby demonstrate a hierarchical relationship. There are no restrictions regarding the layout of
the namespace tree; both virtual directories and junctions can be nested within nested virtual
directories recursively.

A junction is an RNS entry that interconnects a reference to an existing resource into the global
namespace. It functions in much the same way as a traditional distributed file system mount point
with the unique property of maintaining uniform namespace representation while facilitating two
levels of indirection. Junctions are categorized into five basic types: abstract resource junctions,
data resource junctions, logical junctions, referrals, and aliases. An abstract resource junction is an
entry that maps to at least one web or grid resource by way of an WS-Addressing[3] End Point
Reference (EPR) or URL. This is a many-to-many mapping, meaning that one entry may reference
many resources and one resource may be referenced by many entries. There is no limitation as to
what may be referenced by RNS provided that a WS-Addressing compliant EPR, or an RFC 1738
compliant URL, is used to register the reference mapping. A data resource junction points to at
least one data reference, thereby maintaining a many-to-many mapping between junction and data
reference (data references are described in greater detail in the following section). A logical
junction is a junction that either contains an EPR/URL that points to a secondary service, like a

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 5

Replica Location Service (RLS), for logical-to-physical resolution given a logical name, or it contains
an internal reference to a logical data reference entry within RNS. Referrals are junctions that link
to other RNS instances, thereby facilitating such features as federation of independent domains of
control, scalability of a single domain of control, availability of redundant service instances that may
or may not be geographically distributed, etc; an example referral is illustrated in Figure 1 as
“secured”, its URL might look something like: rns://rns.secured.abc.com/. An alias entry is a
junction that references another entry within the same service instance for hard-links, and by
EPR/URL including path for soft-links/symbolic-links; the behaviour described here is comparable to
conventional Unix symbolic-links and hard-links. In all cases, junctions are capable of maintaining a
list of references (EPRs/URLs) per entry, that is a single junction my render several available EPRs,
each of which represent replicas or copies of the same data or service instance.

When dealing with data, RNS enables federation of individual files as well as filesystem trees that
are exported by a variety of storage systems. An example of a file reference is illustrated by
“job0123456789-20041120” and an example of a filesystem reference is alluded to by “cde”,
both in Figure 1.

The following sections explore the objects and interface definitions that exemplify the operations of
RNS. This material is not comprehensive, is subject to change, and does not examine the internal
procedures of the interface.

1.2 WSRF Document Style Interface

RNS employs a document style message-based service interface that implements most of the WS-
ResourceProperties[4] document types. The previous object oriented model has been subsumed
by a stateful exchange of SOAP messages. With the implementation of the WS-Resource
specification, RNS offers stateful interaction by maintaining a stateful resource referred to as a
context. To begin stateful use of RNS a client sends a message requesting to establish a new
context and proceeds to leverage the implied resource pattern[4] for maintaining a “current working
directory” marker in subsequent message exchanges. This is particularly useful when traversing
deep hierarchies since any previously rendered portion of the namespace tree will not need to be
traversed again.

In addition to implementing a stateful resource for maintaining state between client and service,
RNS implements the GetMultipleResourceProperties message exchange for all query oriented
operations and the SetMultipleResourceProperties message exchange for all change oriented
operations. Access to RNS entry metadata is therefore achieved by using a resource properties
request document that indicates which properties to retrieve. This means that only the properties
the client is interested in are retrieved. Furthermore, when submitting a change request message to
the service, only the properties specified will be SOAP encoded and sent to the service. As a
result, a greater efficiency, with respect to the sheer size of the SOAP message, may be realized.

The RNS port type (RNSPortType) extends the GetResourceProperty port type defined by WS-
ResourceProperties[3], implementing the getResourceProperty, getMultipleResourceProperties,
and setResourceProperty operations.

1.2.1 Resource Properties Documents

RNS specifies two primary resource properties documents that together exemplify the details of the
service. These resource properties documents correspond to the two foundational service objects
that construct the information presented in the namespace service, the Entry and DataReference
objects. The resource properties document design is extensible in that properties can be added

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 6

without requiring modification of the core service. This denotes that there are no defined methods
for access member data (properties), in fact the namespace objects that such methods could
operate on are not defined in the specification. We only refer to them as “objects” in a conceptual
manner, understanding that they are not classes that will be instantiated in the client runtime
environment. Just as runtime objects may contain a number of data members, RNS exports a
number of properties that are associated with each namespace entry and data reference entry from
the datastore on the server side. Therefore, performing a standard message exchange (operation)
to retrieve information about a particular namespace entry is initiated by a message request
containing a list of all of the property names (QName) who’s values are to be retrieved, and
completes by returning a SOAP message containing the values of all of the properties requested.
The returned values may contain nested value arrays and therefore are properly decoded by
traversing the entire SOAP message, which is comprise of nest-able message elements.

Following are the currently available properties for the Entry and Data Reference objects, for
Context (stateful resource), along with a list of message element names that may be used in
message exchanges:

Entry Resource Properties

QName SOAP Type
AliasCount xsd:int
ChildCount xsd:int
Description xsd:string
ModificationTime xsd:dateTime
Name xsd:string

Alias xsd:boolean
File xsd:boolean
Filesystem xsd:boolean
Hardlink xsd:boolean
Logical xsd:boolean
Referral xsd:boolean
VirtualDirectory xsd:boolean
AbstractJunction xsd:boolean

Message Elements

QName
AbstractReference
AbstractReferences
DataReference
DataReferences
AllEntryProperties
AllDataRefProperties
Entry
RNS
RNSKey

Data Reference Resource Properties
QName SOAP Type
Checksum xsd:string
ChecksumType xsd:string
Complete xsd:boolean
MutableSource xsd:boolean
ReadOnly xsd:boolean
ReplicaCopy xsd:boolean
Size xsd:long
Target xsd:string
Timestamp xsd:dateTime
Version xsd:string

Context Resource Properties

QName SOAP Type
Path xsd:string

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 7

1.2.2 Property Relationships

Since RNS is SOAP 1.1 compliant and allows for message exchanges between heterogeneous
runtime environments, it does not enforce appropriate property relationships, dependencies, or
exclusivities. The service will however enforce such relationship requirements on the server side,
but a good understanding of what correct property relationships are is helpful.

Notice that the entry resource includes a number of boolean properties. Among the boolean
properties, the VirutalDirectory property is mutually exclusive, which is to say that if it is “true” then
all of the other boolean values MUST be “false”. Combinations of “true” and “false” values are
potentially valid from the remaining properties if VirutalDirectory is “false”. An exhaustive list of will
be given in a later revision, for now just know that a valid relationship must exist between the
properties specified and their respective values.

Property relationship is not an issue for data reference resources, their boolean properties are not
mutually exclusive.

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 8

1.3 Operations of the Resource Namespace Service

RNS is composed of the following types of operations:

1) Operations for querying namespace and data reference information.
2) Operations for creating, removing, moving/renaming, and updating entries and data

references.
3) Operations for managing attributes or status of an entry or data reference.

1.3.1 Operation Parameters

Please note that in the current WSRF implementation by Globus 3.9.3, only one parameter is
permitted per operation. Before examining the purposed operations, it is necessary to review the
associated operation parameters.

1.3.1.1 QueryInput
This is a document literal service compliant object (complexType) that contains five elements:

 <xsd:complexType name="QueryInput">
 <xsd:sequence>
 <!-- Absolute or relative path, or NULL for current directory -->
 <xsd:element ref="tns:path" minOccurs="1" maxOccurs="1"/>
 <!-- Starting subentry index for list operations -->
 <xsd:element ref="tns:index" minOccurs="1" maxOccurs="1"/>
 <!-- Number of subentries to return per list operation message -->
 <xsd:element ref="tns:count" minOccurs="1" maxOccurs="1"/>
 <!-- If true, resolve all logical and data references per entry -->
 <xsd:element ref="tns:resolve" minOccurs="1" maxOccurs="1"/>
 <!-- Array of QNames used to indicate what properties to retrieve -->
 <xsd:element ref="tns:propertyTypes" minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

1.3.1.2 ChangeInput
This is a document literal service compliant object (complexType) that contains three elements:

 <xsd:complexType name="ChangeInput">
 <xsd:sequence>
 <!-- Absolute or relative path, or NULL for current directory -->
 <xsd:element ref="tns:path" minOccurs="1" maxOccurs="1"/>
 <!-- Used only move operation to indicate the new destination -->
 <xsd:element ref="tns:newPath" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 9

1.3.1.3 DataReferenceInput
This is a document literal service compliant object (complexType) that contains three elements:

 <xsd:complexType name="DataReferenceInput">
 <xsd:sequence>
 <!-- Logical or abstract name -->
 <xsd:element ref="tns:logicalName" minOccurs="1" maxOccurs="1"/>
 <!-- Direct Resource Reference name -->
 <xsd:element ref="tns:physicalName" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

1.3.2 Namespace Operations
More detailed documentation for operations will be included in future revisions of this specification.

1.3.2.1 create
Enables a client to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be created and persistently stored on the server.
This operation is primarily used for the creation of namespace entries, but may also effect the
creation of other datastore objects (like End Point Reference entries if the service implementation
utilizes a separate entry for storing EPR information).

Parameter: ChangeInput
 path: The absolute or relative path of the parent virtual directory where
 this entry should be created as a subentry.
 changeProperties: The MessageElement array.

Returns: SetMultipleResourcePropertiesResponse

1.3.2.2 delete
Enables a client to submit a request message that contains the path of the entry to delete.

Parameter: path : The absolute or relative path of the entry to be deleted.

Returns: SetMultipleResourcePropertiesResponse

1.3.2.3 list
Enables a client to submit a request message that contains an array of property names to be
retrieved for each namespace entry that is a subentry of the virtual directory entry denoted by the
path value within the input parameter.

Parameter: QueryInput
 path: The absolute or relative path of the parent virtual directory to list.
 index: The starting subentry index; allows for retrieving segments of the subentry list.
 count: Number of subentries to return per list message exchange.
 resolve: If true, resolve all logical references and data references per entry.
 propertyTypes: Array of QNames used to indicate what properties to retrieve,

Returns: GetMultipleResourcePropertiesResponse

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 10

1.3.2.4 lookup
Enables a client to submit a request message that contains an array of property names to be
retrieved for the namespace entry denoted by the path value within the input parameter.

Parameter: QueryInput
 path: The absolute or relative path of the parent virtual directory to list.
 resolve: If true, resolve all logical references and data references per entry.
 propertyTypes: Array of QNames used to indicate what properties to retrieve,

Returns: GetMultipleResourcePropertiesResponse

1.3.2.5 move
Enables a client to submit a request message that request a namespace entry be moved or
renamed.

Parameter: ChangeInput
 path: The absolute or relative path of the original entry to be moved.
 newPath: The absolute or relative path of the destination entry.

Returns: SetMultipleResourcePropertiesResponse

1.3.2.6 update
Enables a client to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be used to update an existing entry in the database.

Parameter: ChangeInput
 path: The absolute or relative path of the entry to be updated.
 changeProperties: The MessageElement array.

Returns: SetMultipleResourcePropertiesResponse

1.3.3 Data Reference Operations
More detailed documentation for operations will be included in future revisions of this specification.

1.3.3.1 createDataReference
Enables a client to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be created and persistently stored on the server.

Parameter: DataReferenceInput
 logicalName: The name of the data reference to be created; zero length if the
 data reference to be created is supposed to be a physical data
 reference.
 physicalName: The name of the data reference to be created; zero length if the
 data reference to be created is supposed to be a logical data
 reference.
 changeProperties: The MessageElement array.

Returns: SetMultipleResourcePropertiesResponse

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 11

1.3.3.2 deleteDataReference
Enables a client to submit a request message that contains the necessary name of the data
reference to delete.

Parameter: DataReferenceInput
 logicalName: The name of the data reference to be deleted; zero length if the
 data reference to be deleted is a physical data reference.
 physicalName: The name of the data reference to be deleted; zero length if the
 data reference to be deleted is a logical data reference.

Returns: SetMultipleResourcePropertiesResponse

1.3.3.3 mapLogicalDataReference
Enables a client to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be used to create/update a mapping between a
logical data reference and a physical data reference in the database.

Parameter: DataReferenceInput
 logicalName: The name of the logical data reference to be mapped.
 physicalName: The name of the physical data reference being mapped.
 changeProperties: The MessageElement array.

Returns: SetMultipleResourcePropertiesResponse

1.3.3.4 resolve
Enables a client to submit a request message that contains the logical name of a logical data
reference to be resolved.

Parameter: logicalName: The name of the logical data reference to be resolved.

Returns: GetMultipleResourcePropertiesResponse

1.3.3.5 updateDataReference
Enables a client to submit a request message that contains an array of message elements, each of
which represent a property name/value pair, to be used to update an existing data reference in the
database.

Parameter: DataReferenceInput
 logicalName: The name of the data reference to be updated; zero length if the
 data reference to be updated is a physical data reference.
 physicalName: The name of the data reference to be updated; zero length if the
 data reference to be updated is a logical data reference.
 changeProperties: The MessageElement array.

Returns: SetMultipleResourcePropertiesResponse

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 12

Federation of Resource Namespace Services

A global namespace service directly implies the employment of a multitude of namespace servers
by virtue of geographical distribution, segregated domains of ownership and control, scalability, and
redundancy/availability. A principal goal of a global namespace service is to provide a location
independent view of consistent access paths to resources. Since these access paths are
represented by hierarchal path names, symbolizing a globally unique identifier to a given resource,
it is a natural extension of the design to postulate an architecture that federates multiple namespace
servers in a hierarchical fashion. Similar to the well established DNS model, RNS servers can be
interlinked by referrals whilst providing a seamless and transparent view of the namespace. Once
several instances of the namespace service are interlinked, the most obvious challenge is related to
path name resolution when dealing with paths that cross referral boundaries. There are two
fundamental approaches to resolving path names that span multiple namespace domains or service
instances: service referrals and delegated resolution.

1.4 Service Referrals

The most straightforward and arguably the most secure and truly scalable approach to resolving
path names that span multiple domains or service instances is to place the onus of handling RNS
referrals on the RNS client. In this approach, the namespace server would simply return a RNS
referral to the RNS client when a junction to another namespace server is encountered. The client
implementing the RNS API is then responsible for continuing the task of resolving the original path
name by connecting to the namespace server indicated by the RNS referral and querying the newly
connected server for further (relative) path name resolution.

One clear advantage of this approach is the direct management of namespace service connections,
which implies authentication and authorization control per connection, rather than accessing a
referred namespace server via proxied security. Additionally, this approach promotes distributed
work load balancing; instead of requiring RNS servers to handle namespace requests for both
locally managed namespace and remotely managed namespace via proxy.

1.5 Delegated Resolution

Another possible approach to resolving path names that span multiple domains or service instances
is to empower the RNS server to delegate queries to other RNS servers for complete resolution of
any given path. Although this approach is demonstrated in DNS, it should be noted that the security
requirements are quire different. Since DNS generally operates in a public read-only manner
without authentication and authorization per DNS server, it is not too unreasonable to endorse such
an approach. RNS, however, facilitates the possibility of requiring authentication per service
instance and enforcing access control per entry. Nevertheless, an approach that allows for the
possibility of delegated resolution should be considered as at least an optional mode of operation;
incidentally DNS is capable of both approaches.

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 13

Considerations

There are several issues to consider, with respect to RNS, which have not been explored in this
document.

? Security – The topic of security as a whole is not discussed in this specification document.
Security is recognized as a substantial are of interest and will require further investigation.

? Replication of RNS databases – To enhance fault tolerance and reliability, replication of
namespace service data is indispensable. The consistency model required by RNS needs
to be investigated.

? Backup – Backup of RNS data may be required.

? Discussion of access control lists (ACLs) within RNS, their purpose, scope, representation,
and enforcement. If access permissions defined by physical filesystems are to be
represented within RNS then significant consideration must be taken with respect to
consistency problems between access permissions of a virtual file and the corresponding
file data.

? Removal or modification of a file data without notification to the file system directory
services.

? Consistency problems between file data replicas.

? Interoperability issue with NFSv4 and CIFS.

Summary and Conclusion

This document is intended to describe the specification of the Resource Namespace Service, which
will be one of the essential services for the realization of a Grid File System. It manages the
namespace of federated resources, including virtualized data from file system resources, access
control mechanisms, and meta-data management.

This document proposed a set of operations needed to be supported by RNS. Additionally, it
proposed two approaches to federation of RNS service instances for scalable, large-scale and
distributed namespace management.

Further detailed discussions regarding this specification and the potential evaluation of reference
implementations are needed. Additionally, an evaluation should be conducted that examines the
aspects of security, performance, consistency, scalability, and reliability. The evaluation needs also
to consider functionality of a client library, especially, with and without client attribute cache.

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 14

Appendix: WSDL 1.1

The following illustrates the Web Services Description Language (WSDL 1.1) for the Web service
methods described in this specification.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="RNS"
 targetNamespace="http://rns.ibm.com"
 xmlns:tns="http://rns.ibm.com"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:gtwsdl="http://www.globus.org/namespaces/2004/01/GTWSDLExtensions"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsrlw=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 xmlns:wsrp=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 xmlns:wsbf=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"
 xmlns:wsntw=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- RNS Web Service Description File -->
 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
 location="../wsrf/properties/WS-ResourceProperties.wsdl" />

 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
 location="../wsrf/lifetime/WS-ResourceLifetime.wsdl" />

 <wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
 location="../wsrf/notification/WS-BaseN.wsdl" />

 <types>
 <xsd:schema targetNamespace="http://rns.ibm.com"
 xmlns:tns="http://rns.ibm.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing"
 schemaLocation="../ws/addressing/WS-Addressing.xsd" />

 <xsd:import namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-
01.xsd"
 schemaLocation="../wsrf/properties/WS-ResourceProperties.xsd" />

 <xsd:import namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"
 schemaLocation="../wsrf/faults/WS-BaseFaults.xsd" />

 <!-- === RNS Elements Begin === -->

 <xsd:element name="openContext">

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 15

 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="openContextResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsa:EndpointReference"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="QueryInput">
 <xsd:sequence>
 <!-- Absolute or relative path, or NULL for current directory -->
 <xsd:element ref="tns:path" minOccurs="1" maxOccurs="1"/>
 <!-- Starting subentry index for list operations -->
 <xsd:element ref="tns:index" minOccurs="1" maxOccurs="1"/>
 <!-- Number of subentries to return per list operation message -->
 <xsd:element ref="tns:count" minOccurs="1" maxOccurs="1"/>
 <!-- If true, resolve all logical and data references per entry -->
 <xsd:element ref="tns:resolve" minOccurs="1" maxOccurs="1"/>
 <!-- Array of QNames used to indicate what properties to retrieve -->
 <xsd:element ref="tns:propertyTypes" minOccurs="1" maxOccurs="unbound"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ChangeInput">
 <xsd:sequence>
 <!-- Absolute or relative path, or NULL for current directory -->
 <xsd:element ref="tns:path" minOccurs="1" maxOccurs="1"/>
 <!-- Used only move operation to indicate the new destination -->
 <xsd:element ref="tns:newPath" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="DataReferenceInput">
 <xsd:sequence>
 <!-- Logical or abstract name -->
 <xsd:element ref="tns:logicalName" minOccurs="1" maxOccurs="1"/>
 <!-- Direct Resource Reference name -->
 <xsd:element ref="tns:physicalName" minOccurs="1" maxOccurs="1"/>
 <!-- WS-ResourceProperties SetResourceProperties -->
 <xsd:element name="changeProperties" ref="wsrp:SetResourceProperties"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Method Parameters and Returns -->
 <xsd:element name="logicalName" type="xsd:string"/>
 <xsd:element name="physicalName" type="xsd:string"/>
 <xsd:element name="path" type="xsd:string"/>
 <xsd:element name="newPath" type="xsd:string"/>
 <xsd:element name="index" type="xsd:int"/>
 <xsd:element name="count" type="xsd:int"/>
 <xsd:element name="resolve" type="xsd:boolean"/>
 <xsd:element name="propertyTypes" type="xsd:QName"/>

 <!-- "Context" Object for Maintaining State -->
 <xsd:element name="RNSResourceProperty">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:path" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 16

 </xsd:element>

 </xsd:schema>
 </types>

 <!-- Messages -->
 <message name="OpenContextRequest">
 <part name="OpenContextRequest" element="tns:openContext"/>
 </message>
 <message name="OpenContextResponse">
 <part name="OpenContextResponse" element="tns:openContextResponse"/>
 </message>

 <message name="ListInputMessage">
 <part name="ListInputMessage" type="tns:QueryInput"/>
 </message>

 <message name="LookupInputMessage">
 <part name="LookupInputMessage" type="tns:QueryInput"/>
 </message>

 <message name="UpdateInputMessage">
 <part name="UpdateInputMessage" type="tns:ChangeInput"/>
 </message>

 <message name="CreateInputMessage">
 <part name="CreateInputMessage" type="tns:ChangeInput"/>
 </message>

 <message name="MoveInputMessage">
 <part name="MoveInputMessage" type="tns:ChangeInput"/>
 </message>

 <message name="DeleteInputMessage">
 <part name="DeleteInputMessage" element="tns:path"/>
 </message>

 <message name="ResolveInputMessage">
 <part name="ResolveInputMessage" element="tns:logicalName"/>
 </message>

 <message name="MapDRInputMessage">
 <part name="MapDRInputMessage" type="tns:DataReferenceInput"/>
 </message>

 <message name="CreateDRInputMessage">
 <part name="CreateDRInputMessage" type="tns:DataReferenceInput"/>
 </message>

 <message name="DeleteDRInputMessage">
 <part name="DeleteDRInputMessage" type="tns:DataReferenceInput"/>
 </message>

 <message name="UpdateDRInputMessage">
 <part name="UpdateDRInputMessage" type="tns:DataReferenceInput"/>
 </message>

 <!-- === Resource Namespace Service === -->
 <portType name="RNSPortType"
 gtwsdl:extends="wsrpw:GetResourceProperty"
 gtwsdl:implements="wsntw:NotificationProducer
 wsrlw:ImmediateResourceTermination
 wsrlw:ScheduledResourceTermination"
 wsrp:ResourceProperties="tns:RNSResourceProperty">

 <!-- Operation invoked when creating the web service -->
 <operation name="openContext">

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 17

 <input message="tns:OpenContextRequest"/>
 <output message="tns:OpenContextResponse"/>
 </operation>

 <!-- WS-ResourceProperties Operations -->
 <operation name="getResourceProperty">
 <input message="wsrpw:GetResourcePropertyRequest"/>
 <output message="wsrpw:GetResourcePropertyResponse"/>
 </operation>
 <operation name="getMultipleResourceProperties">
 <input message="wsrpw:GetMultipleResourcePropertiesRequest"/>
 <output message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 </operation>
 <operation name="setResourceProperty">
 <input message="wsrpw:SetResourcePropertyRequest"/>
 <output message="wsrpw:SetResourcePropertyResponse"/>
 </operation>

 <!-- Lookup Operation -->
 <operation name="lookup">
 <input message="tns:LookupInputMessage"/>
 <output message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 </operation>

 <!-- List Operation -->
 <operation name="list">
 <input message="tns:ListInputMessage"/>
 <output message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 </operation>

 <!-- Create Operation -->
 <operation name="create">
 <input message="tns:CreateInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Delete Operation -->
 <operation name="delete">
 <input message="tns:DeleteInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Update Operation -->
 <operation name="update">
 <input message="tns:UpdateInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Move Operation -->
 <operation name="move">
 <input message="tns:MoveInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Data Reference Resolve Operation -->
 <operation name="resolve">
 <input message="tns:ResolveInputMessage"/>
 <output message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 </operation>

 <!-- Data Reference Map Operation -->
 <operation name="mapLogicalDataReference">
 <input message="tns:MapDRInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Data Reference Create Operation -->

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 18

 <operation name="createDataReference">
 <input message="tns:CreateDRInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Data Reference Delete Operation -->
 <operation name="deleteDataReference">
 <input message="tns:DeleteDRInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 <!-- Data Reference Update Operation -->
 <operation name="updateDataReference">
 <input message="tns:UpdateDRInputMessage"/>
 <output message="wsrpw:SetResourcePropertiesResponse"/>
 </operation>

 </portType>
</definitions>

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 19

Author Information

Osamu Tatebe
Grid Technology Research Center, AIST
1-1-1 Umezono, Tsukuba
Ibaraki 3058568 Japan
o.tatebe@aist.go.jp

Manuel Pereira, Leo Luan, Ted Anderson
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120, USA
mpereira@us.ibm.com
leoluan@us.ibm.com
ota@us.ibm.com

Jane Xu
IBM Systems and Technology Group
5600 Cottle Road
San Jose, CA 95193, USA
jxu@us.ibm.com

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to the GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF Document
process must be followed, or as required to translate it into languages other than English.

GWD-R November 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 20

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE."

References

[1] Leo Luan and Ted Anderson, “Grid Namespace for Files”, GGF working draft, GGF8, 2003
https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1

[2] S. Shepler, et al., “Network File System (NFS) version 4 Protocol”, RFC3530, 2003

[3] Web Services Addressing (WS-Addressing) http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810/

[4] Web Services Resource Properties (WS-ResourceProperties) Version 1.1 03/05/2003
http://www.globus.org/wsrf/specs/ws-resourceproperties.pdf

[SOAP 1.2] http://www.w3.org/TR/soap12-part1/

[State Paper] http://www-106.ibm.com/developerworks/webservices/library/ws-
resource/wsmodelingresources.pdf

