

Grid High-Performance Networking Research Group

Optical Network Infrastructure for Grid

Dimitra Simeonidou (ed.), Reza Nejabati (ed.), Bill St. Arnaud, Micah Beck, Peter Clark, Doan B. Hoang, David Hutchison, Gigi Karmous-Edwards, Tal Lavian, Jason Leigh, Joe Mambretti, Volker Sander, John Strand, Franco Travostino

Optical Network Draft

 Optical network draft focuses on deployment of phonic network infrastructure for Grid applications

Motivation:

- Predictions for deployment of data-intensive Grid applications that will require transfers of Terabytes or even Petabytes of data
- These applications will require a high bandwidth network environment where bandwidth will be allocated on demand or by user/application driven scheduled reservation

This draft aims:

- To suggest solutions towards an efficient and intelligent network infrastructure for Grid taking advantage of recent developments in optical technologies
- A solution to support high-demand application with potential to support all types of Grid application

Progress in Optical Network Draft Since GGF9...

- New section on
 - Quality Of Service for Grid optical transport
- Further contributions on :
 - Grid applications and their requirements for high-speed, high-bandwidth infrastructures
 - Optical switching technology and transport format
 - Optical network control and signalling
 - Grid user network interface
 - Optical networks as a Grid service environment
 - Security considerations

Efforts to establish this document as reference....

- We have tried to provide wider exposure of this work outside of GGF in order to establish this document as reference for future work in the field:
 - IEEE Globecom 2004 Workshop on "Optical Networking for Grid Applications"
 - ECOC 2004 Workshop on "Optical Networking for Grid Services"

Topics for Further Consideration: *Grid applications*

Current situation in the draft:

- Mainly for data-intensive and/or long-lived applications
- No widespread applications requiring lambda or optical Grids???
- Today's applications with large BW requirements (i.e. high energy physic centres, radiotelescopes) belong to well defined communities of users and destinations with typically long lived persistent relationships
- Application scenarios such as high bandwidth interactive applications, data visualisation applications, application that require bandwidth to reduce latency have been mentioned

New issues for further considerations:

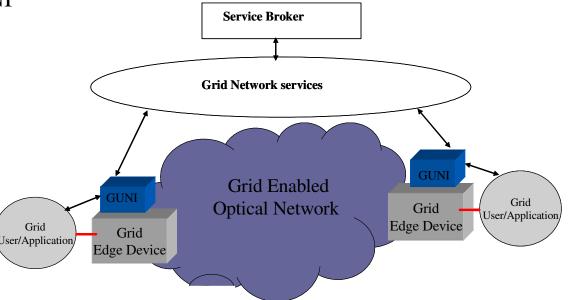
- Further work is needed in order to dimension Grid applications in terms of their near and longer term BW demand, users characteristics, volume and behaviour
 - SAN growth & evolution in SAN network architecture
 - What will be the demand for "anonymous" large file transfers?
- What will be the role for optical network in future Grid applications (i.e. short-lived applications, large number of anonymous and relatively small users)?

Topics for Further Consideration: Photonic Network Topology

- Current situation in the draft:
 - Users/applications will be offered control and management of the network resources
 - Limited contribution
 - Network topology will be based OVPN
 - Dedicated optical connection between well known VOs
 - OVPN in conjunction with user controlled optical network
 - Contribution??
- New issues for further considerations :
 - Don't forget that Grid services provide a technology and a strategy for telecom service providers to create a service oriented infrastructure
 - Network topology must support
 - Users can autonomously and independently create end-to-end connections across multiple domains
 - User can be empowered to cross connect and add-drop these connection independently
 - Need for network scalability
 - Will optical Grids only serve well defined specialised communities or will be wider deployed to serve a growing number of "anonymous" users?
 - What will be the growth pattern of such networks?

Topics for Further Consideration: Transport Format and Switching Technology

- Current situation in the draft:
 - Wavelength switching
 - Hybrid IP router/wavelength switching
 - Optical burst switching
- New issues for further considerations:
 - Further and more specific definition of the OBS scenario:
 - How the OBS technology, protocols and architecture can provide solutions for Grid environments
 - Evaluate resource reservation, scheduling and release OBS variants suitable for Grid applications (i.e. tell and wait & just enough time)
 - Provide examples of switch architectures optimised for OBS
 - Comparison of different transport formats & switching technologies
 - Discuss the relevant merits of wavelength and optical burst switching for Grid network deployment
 - Transport format & switching technology for optical GRID considerations:
 - Support data intensive and long-lived services requirements
 - Flexibility to accommodate and support future GRID services (short-lived & low bandwidth services)
 - Discuss whether in future OBS can support all of the Grid network requirements or a hybrid solution (i.e. WS and OBS) will be solution
 - Need for a switching technology schema


Topics for Further Consideration: Control Plane and Signalling

- Current situation in the draft:
 - OBGP in conjunction with the existing GMPLS standards
 - A shared optical "cloud" with rapid switching of lambdas between users
 - A fixed optical point to point (partial) mesh between users with slow "automatic fiber patch panel" switching (OBGP)New issues for further considerations
 - Control plane and signalling consider mainly (circuit) switching paradigm
- New issues for further considerations:
 - Policy related issues when OBGP is used to establish connection across multiple domains
 - local configuration of policy, Information hiding and choice of path
 - Control plane and signalling for application that they use dark fibre for connectivity
 - Control plane and signalling to support OBS

Topics for Further Consideration: Grid User Network Interface (GUNI)

- Current situation in the draft:
 - GUNI mainly a complimentary to OIF UNI
 - Indirect service invocation scenario
 - Overlay model control plane
- New issues for further considerations:
 - What will be the GUNI role and functionality In case of
 - Direct service invocation scenario
 - Peer model for control plane
 - The GUNI with the above complementary can be well fitted under control plane and signalling section
 - The GUNI define signalling mechanism and its requirement between Grid user and network
 - There are direct relations between GUNI and control plane architecture

Topics for Further Consideration: Optical Network as Grid Service

- Current situation in the draft:
 - GRAM for optical resource management
 - GARA for advance optical resource reservation
 - WS-agreement for optical resource scheduling
- New issues for further considerations:
 - Application-driven definition of optical service abstractions
 - Useful collections which match application paradigms and needs
 - How abstraction for encapsulating optical network resources can accommodate AAA and related policy issues across multiple domains
 - Optical bandwidth and optical NEs can be considered as two different types of services
 - Optical bandwidth can be managed by bandwidth on demand server based on the AAA,GARA and WS-agreement
 - Optical NEs (switches, ports) can be intelligent and considered as other Grid resources
- QoS for the Grid optical network can be well merged with the Grid network services

Next Step:

Grid Resource-Network Interface (GRNI)

- GRNI performs interoperable procedures between local Grid resource managers and optical network
- GRNI functionalities :
 - ■Support for existing agreements
 - Job submission
 - Advance reservation
 - Propagation state of the local resources (available storage/ processing resources)
 - Propagation of service related events
 - Flexible bandwidth allocation
 - Sending back results to source or multiple alternative destinations
- New section in the draft: Grid Resource-Network Interface
 - GRNI functionalities (signalling and transport)
 - Relation with GUNI (if a generic model can be used for both of them)
 - Relation with control and signalling plane

Next Step:

All Photonic Grid Networking Scenario 1

- Grid networking scenario based on wavelength switching
 - Wavelength paths between well known VOs/users
 - To support large jobs / long lived, data-intensive applications
 - Small number of jobs are in this category
 - The scenario is not efficient for medium/small sized jobs
 - Centralised control, management and job scheduling
- Grid networking scenario based on optical burst switching in wavelength routed optical network
 - Wavelength paths between well known VOs/users
 - To support large or medium size, long-lived or short-lived jobs
 - Better network resource utilization
 - Centralised control, management and job scheduling
- Self-organised Grid networking scenario based on optical burst switching
 - The infrastructure will be aim to support large jobs, consisting of a (possibly large) number of (loosely) coupled medium size jobs as well as medium sized jobs
 - The solution will also support large jobs, which can not be parallelized into smaller jobs (mainly short lived) and serve traditional well defined communities of users of Grid resources
 - Dedicated optical Grid Infrastructure: the "grid cloud" interconnecting large number of users and traditional Grid resources
 - Distributed control, management and job scheduling

Next Step:

All Photonic Grid Networking Scenario II

- New section in the draft: Photonic Grid Networking Service schemas:
 - Grid networking scenario based on wavelength switching (OWS)
 - Grid networking scenario based on optical burst switching (OBS)
 - Grid networking scenario based on hybrid OBS/OWS
 - Self-organised Grid networking scenario based on OBS
- Networking scenarios must be differentiated in the draft for each category based on the :
 - Job submission phase
 - Resource request and allocation phase
 - Return process/path for sending back results

Further Suggestions?

e-mail: ghpn-wg@gridforum.org

