
 1

Storage Element Model for SRM 2.2 and GLUE
schema description

Flavia Donno(1),Paolo Badino(1), Jean-Philippe Baud(1),
Stephen Burke(2), Ezio Corso(4), Shaun De Witt(2),

Patrick Fuhrmann(3), Maarten Litmaath(1), Riccardo Zappi(5)

(1) CERN, European Organization for Nuclear Research, Switzerland

(2) CCLRC, Rutherford Appleton Laboratory, UK
(3) DESY, Deutches Elektron-Synchroton, Germany

(4) ICTP, The Abdus Salam, international Centre for Theoretical Physics, Italy
(5) CNAF, Istituto Nazionale di Fisica Nucleare, Italy

27 October 2006

v3.5

1. Introduction
In this document we describe the model for a Grid Storage Element to
clarify the behavior of SRM v2.2 interface implementations and to allow for
a better understanding and justification of the proposed GLUE schema
description for a Storage Element.

This document is based on the discussions that took place during the pre-
GDB workshop on Storage Classes at CERN held on the 3rd October 2006, the
e-mail exchanges on the srm-devel mailing list, the document on the
proposed Storage Element GLUE schema v0.5 as a contribution to GLUE v1.3
and the WLCG SRM v2.2 MoU
(https://srm.fnal.gov/twiki/bin/view/WorkshopsAndConferences/GridStora
geInterfacesWSAgenda).

The GLUE schema description that follows is not WLCG specific. However,
the use-cases provided apply mostly to LHC experiments.

2. The Storage Classes
In WLCG the Storage Class Working Group has been established to
understand the requirements of the LHC experiments in terms of storage
and the implementations of such requirements for the various storage
solutions available.

A Storage Class determines the properties that a storage system needs to
provide in order to store data.

The LHC experiments have asked for the availability of combinations of the
following storage devices: Tapes (or reliable storage system always referred
to as tape in what follows) and Disks. If a file resides on Tape then we say
that the file is in Storage Class Tape1. If a file resides on an experiment-

 2

managed disk, we say that the file is in Storage Class Disk1. Tape0 means
that the file does not have a copy stored on a reliable storage system. Disk0
means that the disk where the copy of the file resides is managed by the
system: if such a copy is not pinned or it is not being used, the system can
delete it.

Following what as been decided in various WLCG Storage Class Working
Group meetings and discussions only the following combinations (or Storage
Classes) are supported for the next implementations of SRM v2.2:

 Custodial-Nearline: this is the so-called Tape1Disk0 class.
 Custodial-Online: this is the so-called Tape1Disk1 class
 Replica-Online: this is the so-called Tape0Disk1 class

 Tape0Disk0 is not implemented. It is pure scratch space that could be

emulated using one of the available classes and removing the data
explicitly once done. However, it could be handy for LHC VOs to have
such a type of space actually implemented.

In the Custodial-Nearline storage class data is stored on some reliable
secondary storage system (such as a robotic tape or dvd library). Access to
data may imply certain latency. In WLCG this means that a copy of the file
is on tape (Tape1). When a user accesses a file, the file is recalled in a
cache that is managed by the system (Disk0). The file can be “pinned” for
the time the application needs the file. However, the treatment of a pinned
file on a system-managed disk is implementation dependent, some
implementations choosing to honor pins and preventing additional requests,
others removing unused on-line copies of files to make space for new
requests.

In the Custodial-Online storage class data is always available on disk. A copy
of the data resides permanently on tape, dvd or on a high-quality RAID
system as well. The space owner (the virtual organization) manages the
space available on disk. If no space is available in the disk area for a new
file, the file creation operation fails.
This storage class guarantees that a file is never removed by the system.

The Replica-Online storage class is implemented through the use of disk-
based solutions not necessarily of high quality. The data resides on disk
space managed by the virtual organization.

3. Storage Class Transitions
Through the SRM call ChangeSpaceForFiles it is possible to schedule Storage
Class Transitions for a list of files.
Only the following transitions are allowed in WLCG:

 3

 Tape1Disk1 -> Tape1Disk0. On some systems this can be implemented
as a metadata operation only, while other systems may require more
operations to guarantee such a transition.

 Tape1Disk0 -> Tape1Disk1. During the Storage Class pre-GDB of
October 3rd, 2006 it was decided that this transition would be
implemented with some restrictions: the srmChangeSpaceForFiles call
will complete successfully but the files will remain on tape. The files
will be actually recalled from tape to disk only after a BringOnline
operation is executed. This is done in order to avoid that a big set of
files is unnecessarily scheduled for staging and therefore to smoothen
operations in particular for those Mass Storage Systems that do not
have a scheduler (namely TSM).

 Tape0<->Tape1 transitions are not supported at the start of LHC (if
ever). For physics validation operations, since the amount of data to
transfer to tape after the validation is not big (only 1-2% of total
data) a change class operation from Tape0Disk1 to Tape1DiskN can be
approximated by copying the files to another part of the name space,
specifying Tape1DiskN as the new storage class, and then removing
the original entries.

4. The Storage Element
A Storage Element is a Grid service that allows Grid users to store and
manage files together with the space assigned to them.

Examples of a storage element are:

 The CASTOR system at CERN with its SRM interface, the physical storage
backend being the set of robotic tape libraries and the pool of disk
servers in front of them offering online/cache storage;

 The DPM system with its SRM interface and its set of disk servers, each of
them managing given filesystems;

 The dCache system with its SRM interface able to manage disk space and
to interface to tape systems such as TSM, HPSS, Enstore and OSM;

 The StoRM system, offering an SRM interface to parallel filesystems such
as GPFS.

A Storage Element has properties such as:

 A Globally Unique Identifier that univocally identifies the SE.
 The Implementation, the software system used to manage the

storage devices and servers. Examples of this can be: CASTOR,
dCache, DPM, StoRM, etc.

 The ImplementationVersion. Through the version, specific features of
the SE can be exposed.

 The OnlineSizeTotal and the NearlineSizeTotal. This is the sum up of
the Total Size of Online and Nearline nominal space. For instance,
the NearlineSizeTotal reports the total nominal space on tape not
considering compression. These sizes are reported in GB (109bytes).

 4

Figure 1 shows the Glue proposed schema for GLUE v1.3 for a Storage
Element. The classes shown are existent. The (blue) boxes highlight the
attributes that we propose to deprecate in GLUE v1.3, the (red) italic
attributes are already deprecated in GLUE v1.2. The bold (green) attributes
are the ones we propose to introduce, while the (green) bold underlined are
the ones that are deprecated in GLUE v1.2 and we propose to keep in GLUE
v1.3. In the appendix we give use-cases that express the need for the
proposed changes.

Note:

1. It was felt that a GlueSE should not publish a size since it is not easy
to come up with a meaningful and coherent definition of a size in
case of very complex systems such as those managing robotic and
online devices. It is better to move the size property to lower level
descriptions of the storage systems as detailed later in this
document. However, it seems feasible to expose Online and Nearline
Total Sizes that can be used when making reports and obtained with
simple queries that do not require looping through the GLUE schema.

2. The Storage Element Control protocol is described in the GlueService
class (as defined by the GLUE schema v1.2) that defines the service.
For instance, the SRM is one control protocol for the Storage
Element. Storage Elements proprietary or internal protocols can also

Figure 1: Storage Element description in SE GLUE
Schema v1.3

 5

be exposed to the information system. In this case a GlueService will
describe the service associated to them.
However, we do not propose to deprecate the GLUE 1.2 Control
Protocol class for the moment, since we need it for backward
compatibility.

3. The Service Access Control Rule needs to be kept in order to describe
which VOs have access to the Storage Element service. This attribute
was deprecated in GLUE v1.2.

Access Protocol
The Access Protocol describes how files can be accessed on this Storage
Element.
An Access Protocol is identified by a Type and a Version (gsiftp 1, gsiftp 2,
dcap 1.7.6, etc.)
The list of Access Protocol Types is defined already in GLUE schema v1.2.
Please check:
http://glueschema.forge.cnaf.infn.it/V12/SEAccessProtocolType.

The Capability entry is used to define further Access protocol properties for
which there is no explicit entry in the GLUE schema.

The NetworkAccess attribute in the Access Protocol can be used to specify if
the protocol is valid for a LAN or a WAN

(For a more detailed explanation please refer to the document “Proposal for
GLUE v1.3 for Storage” by Jens Jensen et al..)

Figure 1 shows the proposed description for the GlueSEAccessProtocol as we
would like to see it in GLUE v1.3. This Class has links to the GlueSE class as
well as the GlueStorageArea class introduced later.

Note:

4. The protocol “file” does not appear in the list of
SEAccessProtocolType. We feel that this protocol should be added
in order to avoid describing all those proprietary protocols that
allow for native POSIX I/O.

5. The protocol “xrot” is also missing in the list of
SEAccessProtocolType.

6. Should the protocols appearing in SEAccessProtocolType be
approved by IANA? This would allow for the standardization of
names used.

7. A list of access protocols should appear as well in the CESEBind
GLUE class in order to specify which SE protocols can be used from
the particular CE bound to that SE and which properties they
expose.

8. CESEBind might describe CE and SE that are not in the same
domain. An example of this is the NIKHEF/SARA connection.

 6

9. We assume that WNs are always in the same domain as a CE and
that the CE describes also the characteristics of WNs in its own
domain (there are no examples to the contrary).

10. Nothing can be said for protocols not explicitly mentioned in a CE-
SE binding.

11. The Capability field can be used to specify other restrictions such
as WAN read-only/LAN read-write.

12. If an SE can be accessed directly using one of the supported access
protocols, then the SE should be described as a GLUE service using
that access protocol as control protocol.

Use Case: A possible use case is a user who wants to find all CEs that can
access the input data available on an SE and/or can write output data on an
SE that supports the same protocols that the application uses (this is a
typical scenario for a user using JDL requirements with the gLite WMS or the
LCG Resource Broker).

Use Case: It should be possible to distinguish between protocols that are
allowed for read-only operations on WAN like for dcap in certain cases, or
protocols that can only be used by a subset of the supported VOs. This can
be expressed through the Capability attribute in the GlueSEAccessProtocol
object.

Use Case: The gsiftp protocol used by a Classic SE should be considered a
control protocol as well. Therefore there is a GLUE service associated to
Classic SE reporting the gsiftp as control protocol. Operations such as mkdir,
rmdir are normally done by the control protocol. On the Classic SE such
operations are performed through gsiftp. Therefore this protocol should be
published as both control and access protocol for a Classic SE.

5. The Storage Component
A Storage Component identifies a specific storage with certain properties.
They are the following:

1. Retention Policies: CUSTODIAL or REPLICA or OUTPUT
2. Access Latency: NEARLINE or ONLINE (or OFFLINE)
3. Access Protocols (examples: rfio, dcap, file, etc.)

The concept of a Storage Component was introduced to describe the type of
storage that is used to offer a certain quality of storage. For instance a
Storage Component is a tape set or a pool of filesystems.

 7

Figure 2: The Storage Component in the GLUE schema

The Storage Component implements a multivalued Retention Policy (the
ones supported) and an Access Latency. The Storage Component publishes
Total, Reserved and Used Size. They are defined as follows:

Total Size: is the total space size that this Storage Component can provide
expressed in Gigabytes. It is the nominal capacity of the Storage Component
subsystem (tape, dvd, disk, etc.)

Reserved Size: is the size of space reserved but not yet used, expressed in
Gigabytes.

Used Size: is the size occupied by files that are not candidates for garbage
collection.

For a discussion on storage sizes, please refer to the paragraph “Free and
available space” in this document.
A Storage Component can be optionally identified by a Name. This can refer
for instance to the name of the DPM pool of filesystems composing the
Storage Component.

Note:

13. The WLCG MoU for the implementation of SRM v2.2 states that the
only retention policies supported in SRM v2.2 are CUSTODIAL and
REPLICA.

14. Two Storage Components cannot overlap in order not to double
count space.

 8

15. In case of tapes the Total Size reports the nominal capacity of the
tape (i.e. without considering the nominal compression factor).
LHC experiments data are normally compressed and the
compression algorithm used by most tape drives does not provide
any benefit. Normally LHC experiments compress and uncompress
data on the fly. Other VOs might take advantage of the
compression algorithm used by tape drives. It is up to them to take
this factor into account when counting up the space published by
Storage Components.

16. A tape-only storage component might still have some disks in front
for performance reasons. Such disks should be totally hidden and
not published in the information system.

17. We felt that quotas should be specified at the level of a Storage
Component. However, at this time we would like to defer the
matter of thinking through how to express and/or implement
quotas in the GLUE schema, as a tentative exploration showed that
there are non-trivial issues to be dealt with.

Use Case: The Storage Component represents the storage space the LHC
experiments are willing to pay for. Any extra storage needed for optimizing
system performance (for instance a specialized cache space layer between a
tape system and an online disk system) should be hidden and not exposed
via the information system.

Use Case: The Storage Component allows for a description of each single
component type in a Storage Element. Therefore, it is possible to find out
the total amount of space on tape and/or disk summing up the published
total size for all Storage Components part of a Storage Element.

6. The Storage Area
A Storage Element can have multiple Storage Areas.

A Storage Area defines a portion of the total available space that can span
different kinds of storage devices within a Storage Element and in case of
WLCG it implements a Storage Class instance.

In principle any combination of Storage Components in a Storage Area is
possible. For instance, a Storage Area can include a certain set of tapes and
the space served by several disk servers. However, two Storage Areas can
share the same Storage Components, but implement different policies.

Several Virtual Organizations can share the same Storage Area and can
reserve space in it.
This is for instance the case for the default Storage Area in WLCG.

For WLCG only the space in a Storage Area reserved by Virtual Organization
Managers and identified per VO by a User Space Token Description is
optionally published in the Information System.

 9

In the same SE, there could be many Storage Areas that implement the
same Storage Class characteristics.

A VO might have multiple Storage Areas reserved to it. Through the
ReserveSpace SRM call, an application passes the User Space Token
Description and gets back a Space Token. For put operations, the
middleware (GFAL, lcg-utils, FTS, etc.) takes the token description as input,
converts it to a space token, which is passed to the underlying SRM method.
A User Space Token Description might have multiple Space Tokens
associated to it in a single SRM. In fact, the same User Space Token
Description can be used in separate requests to reserve space (statically and
dynamically). The SRM has a call (srmGetSpaceTokens) that lists all the
space tokens associated with a particular Token Description. The client can
loop over them and pick a token that has the desired properties, e.g. the
space associated is not marked as full by a metadata query result.

Figure 3 represents a Storage Element, a Storage Area shared among a few
Virtual Organizations, and User Space Token Descriptions for space reserved
by those Virtual Organizations.

Figure 3: Storage Element, Storage Area shared among ATLAS,LHCb and

CMS, and User Space Token Descriptions for ATLAS RAW, LHCb ESD,
ATLAS ESD and CMS TAG. The Storage Area is shared by three VOs.

It has to be noted that in WLCG, dynamic user space reservation is optional.
Furthermore, at least initially clients should not use dynamic space
reservation. Therefore, for shared Storage Areas it is impossible to
guarantee a given amount of space to a VO. The situation is depicted in
Figure 4. Therefore, in WLCG Storage Areas are normally dedicated to a
single VO.

 10

Figure 4: Storage Area shared between VOs in a system with no dynamic
space reservation functionalities. The space for LHCb data gets smaller

because of the space occupied by ATLAS and CMS data.

Figure 5 represents a Storage Area allocated to one VO only, its Storage
Components, the User Space Token Description and the Space Token
returned by a dynamic SRM Reserve Space operation (possibly generally
available with SRM v2.3).

Figure 5: Storage Components and Space Tokens

 11

In case a Space Token is not specified for an SRM Put operation, the system
will use the default Storage Area that is generally shared between multiple
VOs.

In the Glue Schema, a Name optionally identifies the Storage Area. This can
be an internal identifier the site administrator uses to refer to that Storage
Area. The Name can be published in the Information System.

Beside its name, a Storage Area has associated multivalued Capability that
can vary from implementation to implementation.

Retention Policy and Access Latency are also properties of a Storage Area
and contribute to define the Storage Class associated to this Storage Area.
The SRM v2.2 specification defines the possible values for Retention Policy
and Access Latency. The SRM v2.2 WLCG MoU specifies the possible values
for WLCG (the ones that define the Storage Classes specified in the first
chapter of this document).

Figure 6 describes the GlueStorageArea and GlueVoStorageAreaAssociation
classes. These classes do not exist in GLUE v1.2.

For statically allocated space and for space reserved by administrators, the
VO User Space Token Description is published in the Information System as

Figure 6: The Storage Area in the GLUE schema

 12

part of the VoStorageAreaAssociation GLUE class, in order to allow a VO to
find out per SE the space and the space characteristics reserved to that VO.

The VoStorageAreaAssociation GLUE class allows for the association
between User Space Token Description and a Storage Areas. The VO Name
describes which VO has access to this Storage Area. A VOMS FQAN can be
published as well to describe which users (with specific privileges) within
the VO actually have access to that Storage Area.

Optionally, VO specific Storage Area associated multivalued VOPath can be
published. The paths can be used to build VO SURLs for files, and we assume
that they are protocol independent. VOPath is mandatory when referring to
classic Storage Elements to find out VO specific gsiftp directories on the
server. For Classic Storage Elements, the VORoot subdirectory published for
the “file” protocol per VO, indicates the VO specific path that needs to be
appended to the CEAccessPoint published in the CESEBind class to have the
full VO Path for direct file access on the WN.

Note:

18. Another alternative to arrange for the “file” protocol case is
indeed to continue using the current GlueSA class (this could be a
motivation to reuse and redefine the GlueSA class instead of
creating the new GlueStorageArea class) where both a Root and a
Path are published. We leave it up to the Glue Working Group to
decide what the best way to proceed is.

19. The VOName attribute in GlueVoStorageAreaAssociation cannot be
avoided since we cannot assume that the VO name can be derived
from the FQAN.

Storage Areas might have zero or more VoStorageAreaAssociation objects
linked to them. This is to accommodate the need to publish available
storage not yet assigned.

Note:

20. The WLCG Memorandum of Understanding for SRM 2.2 states that
dynamic space reservation is only optionally supported. Therefore
space in a Storage Area can be allocated statically and can be
reserved to one specific VO. Furthermore clients shall not use
dynamic space reservation initially.

21. ReserveSpace SRM calls also return a request token that can be
used in subsequent calls to check on the status of the request, or
to abort it. It is not to be confused with the space token.

22. Several Space Tokens can refer to a given Storage Area at a given
time. In case multiple VOs can reserve space in the same storage
element, the Space Token Description does not need to be unique
between VOs. It is up to the specific Storage Service
implementation to identify all User Space Token Descriptions a VO
FQAN can access.

23. In WLCG a VO manager can explicitly control which User Space
Token Descriptions are published, to make them publicly available.

 13

The tool to do that could be similar to the one that VO managers
now use to publish experiment specific software tags. This gives
the ability to VO managers to hide Storage Areas from public use, if
necessary.

24. The GlueStorageArea class is new and not a redefinition of GlueSA.
Infact, GlueSA stands for Glue Storage spAce. It is up to the Glue
Working Group to recommend a redefinition of the Glue v1.2 class
instead.

25. If a VO would like to count up all the space allocated to it, it can
sum up the space of the storage components uniquely belonging to
Storage Areas allocated to that VO. The same cannot be done for
Storage Areas or Components shared among VOs, unless some kind
of quota system is imposed and published.

Use Case: Storage Areas can be used to match all storage services that
can provide a given class of Storage to a VO FQAN. In this case, the User
Space Token Description does not need to be known or published. This
could be the case for non LHC VOs.

7. The Storage Paths
Note:

26. It has been decided that for WLCG a file is always permanent. This
means that the file remains in the system namespace unless it is
explicitly removed by an SRM remove operation. Copies of the files
on Disk0 can be removed by the system, if needed. Users can
migrate copies of the files to/from Disk1 via an SRM
ChangeSpaceForFiles operation. The file has therefore only the
SURL that does not change when the file is migrated from tape to
disk. The TURL of the file may change per request. TURLs have a
lifetime. When the lifetime expires the system can remove the file
copy pointed to by the TURL (the next time it could be served by
another disk or another machine).

In SRM v2.2 the name space is orthogonal to the Storage Class, which can be
derived from the Space Token supplied when the file is stored. In practice,
however, there may be reasons to couple the name space with certain
aspects of the quality of storage. dCache and CASTOR allow users to specify
in which tape set a file should reside. dCache implements such a feature
through the so-called Storage Groups. Storage Groups are associated to
directory paths. Therefore in dCache a path may not only identify a Storage
Class but also many other properties such as the tape set the file should
reside on.
StoRM as well implements Storage Classes through paths: at the moment a
Space Token is not enough to describe the Storage Class.

Open question: Can the experiments structure the directory namespace to
map it appropriately to Storage Classes, tape sets etc.? In this case, all sites

 14

would have to agree to do the same mappings. The user space token
description needs to be passed anyway as input to the SRM Put/Copy calls.
Can the path also determine the tape set associated to the files?

Note:

27. The name space structure ought not to be necessary, as dCache
can infer the Storage Group from the space token as well in the
near future, and also the StoRM developers are trying to implement
a characterization of the space to be used via the space token
only. However, just to be on the safe side, we would advise the
VOs to apply a structure nonetheless.

8. Free and available space
It has been discussed if space is an attribute that needs to be published in
the GLUE schema in other storage related classes beside the Storage
Component. It was felt that only at the Storage Component level one could
differentiate among the different kinds of storage available and avoid
double counting of storage capacity assigned.

As far as the used space, it has been noted that such information might be
inaccurate and not useful.

In WLCG tape space is considered to be infinite. As far as disk cache space,
Used space can be of three types:

1. Space used by files
2. Space allocated by space reservation methods. Part of this space is

potentially available to put files.
3. Space which is currently used by files being migrated to tape but will

be available as soon as the migration is over.

We felt that it was better to define used space as the size occupied by valid
files (not candidates for garbage collection) and to differentiate between
used size and reserved size, as the space reserved but not yet used.
The free space can be inferred from the two values published, but in
general it cannot be taken as available to store more files (there can be
ACLs, quotas, … that could make such attempts fail).
As a further consideration we have to notice that the Information System
can only give a snapshot of the Grid status at a given time. Therefore it
could well be that a request for space reservation might fail even if the
information system shows space available at a given time.

During the “WLCG Data Management Coordination Group” phone conference
on October 20th, 2006 the WLCG experiments have shown no interest in
having these numbers published, especially if there is no agreement on the
definition. They prefer to query directly through the SRM the specific SE
service. Furthermore, also DPM, d-Cache and CASTOR developers were quite
reluctant in publishing such information. It was therefore decided that

 15

“free”,“available”,”used” and “reserved” spaces should not be published.
The publication of the entire “Storage Component” object is optional.

9. The Storage Component GLUE Class
Storage Components describe low-level details of the storage devices part of
a Storage Area. In principle, the storage unit exposed to applications is the
Storage Area. Therefore the entire Storage Component class is optional and
can remain unpublished for very complex systems. Also, it is not clear what
the use-cases are that justify the need to expose the Storage Components in
the information system. Figure 7 represents this situation.

Figure 7: The Storage Component Class is optional

 16

APPENDIX

Here we show the complete UML diagram that defines the Storage Element
Service in GLUE v1.3 (cf. Figure 8). We also list all known use-cases and
provide the queries that need to be performed with the new proposed
schema. We show that the proposed schema can accommodate old Storage
Services as well, such as the Classic SE.

Figure 8: Storage Service Description in proposed GLUE v1.3

GFAL Queries:
a) Find the SE type of host.

This query is used to find out if the SE is classic or is SRM.
The query performed:
ldapsearch -x -h prod-bdii:2170 -b "o=grid"
‘(GlueSEUniqueID=lxb2003.cern.ch)’ GlueSEName
[…]
lxb2003.cern.ch, CERN-PROD, grid
dn: GlueSEUniqueID=lxb2003.cern.ch,mds-vo-name=CERN-
PROD,o=grid
GlueSEName: CERN-PROD-LHCB:disk
[…]

 17

Now the GlueService object publishes the SE Type. The new query
is therefore:
Ldapsearch –x –h prod-bdii:2170 –b “o=grid”
‘(&(GlueServiceName=StorageElement)(GlueChunkKey=GlueSEUniq
ueID=lxb2003.cern.ch))’ GlueServiceType

b) Discover version and endpoint for SE Service Type srm for given
host. Discover also the VO FQAN that has access to the service.
This is a call that GFAL needs to make in case of SRM v2.2:
‘(&(GlueServiceName=StorageElement)(GlueChunkKey=GlueSEUniq
ueID=lxb2003.cern.ch)(GlueServiceType=srm))’ GlueServiceVersion
GlueServiceEndpoint GlueServiceAccessControlRule
Among the list of services returned by the query GFAL can choose
and can even decide to use SRM v1 or SRM v2.
Through the AccessControlRule it is possible to discover which VO
FQAN has access to the service.

c) Find the SE endpoint for host
 The current query:

‘(&(GlueServiceURI=*castorgridsc.cern.ch*)(GlueServiceType=srm_
v1))’ GlueServiceURI
[…]
httpg://castorgridsc.cern.ch:8443/srm/managerv1, CERN-PROD,
grid
dn:
GlueServiceURI=httpg://castorgridsc.cern.ch:8443/srm/managerv
1,mds-vo-name
 =CERN-PROD,o=grid
GlueServiceURI:
httpg://castorgridsc.cern.ch:8443/srm/managerv1
[…]

Now the GlueService object publishes the SE Endpoint. The new
query is therefore:
‘(&(GlueServiceName=StorageElement)(GlueChunkKey=GlueSEUniq
ueID=castorgridsc.cern.ch)(GlueServiceType=srm)(GlueServiceVers
ion=1))’ GlueServiceEndpoint

d) Find SE port for host (for classic SEs)

‘(GlueSEUniqueID=lxb2003.cern.ch)’ GlueSEPort
[…]
lxb2003.cern.ch, CERN-PROD, grid
dn: GlueSEUniqueID=lxb2003.cern.ch,mds-vo-name=CERN-
PROD,o=grid
GlueSEPort: 8443
[…]
This query does not change in GLUE v1.3

 18

e) Find SA Root for VO on host
The old query is:
‘(&(GlueSARoot=LHCB:*)(GlueChunkKey=GlueSEUniqueID=lxb2003.
cern.ch))’ GlueSARoot
[…]
lhcb:lhcb, lxb2003.cern.ch, CERN-PROD, grid
dn:
GlueSALocalID=lhcb:lhcb,GlueSEUniqueID=lxb2003.cern.ch,mds-
vo-name=CERN-PR
 OD,o=grid
GlueSARoot: lhcb:lhcb
 […]

This call was needed for classic SEs to find out the path for direct
file access on a WN for a specific VO. The path following the
<VO>: tag was appended to the mount point published in
CESEBindCEAccessPoint in order to obtain the full directory path
to access files for that VO on a WN.
The VORoot is now published in the VoStorageAreaAssociation
object.
The query in this case is the following:

‘(&(GlueVoStorageAreaAssociationVOname=ATLAS)(GlueChunkKey
=GlueSEUniqueID=castorgridsc.cern.ch))’
GlueVoStorageAreaAssociationVORoot

Alternatively, the Root “absolute” path can still be published in
the old GlueSA object as done up to now.

f) Find SA Path for VO on host
The old query is:
‘(&(GlueSALocalID=ATLAS)(GlueChunkKey=GlueSEUniqueID=lxn118
3.cern.ch))’ GlueSARoot GlueSAPath
[…]
atlas, lxn1183.cern.ch, CERN-PROD, grid
dn: GlueSALocalID=atlas,GlueSEUniqueID=lxn1183.cern.ch,mds-vo-
name=CERN-PROD,o
 =grid
GlueSARoot: atlas:atlas
GlueSAPath: /storage/atlas
[…]

The GlueSAPath was used to find out the GridFTP Path in case of a
classic SE. Now such path is published per VO in the
GlueVoStorageAreaAssociation object. Here are examples of the
new queries:

‘(&(GlueVoStorageAreaAssociationVOname=ATLAS)(GlueChunkKey
=GlueSEUniqueID=castorgridsc.cern.ch))’
GlueVoStorageAreaAssociationVoPaths

 19

or
‘(&(GlueVoStorageAreaAssociationVOname=ATLAS)(GlueChunkKey
=GlueSEUniqueID=castorgridsc.cern.ch)(GlueVoStorageAreaAssocia
tionStorageSpaceDescriptionToken=ATLAS_RAW))’
GlueVoStorageAreaAssociationVoPaths
or
‘(&(GlueStorageAreaRetentionPolicy=custodial)(GlueChunkKey=Gl
ueSEUniqueID=castorgridsc.cern.ch)(GlueChunkKey=GlueVoStorage
AssociationVoName=ATLAS))’ GlueSAUniqueID
and
‘(GlueChunkKey=GlueStorageAreaUniqueID=<from previous call>)’
GlueVoStorageAreaAssociationVoPaths

Please, note that in one of the examples above we assume that
the GlueVoStorageAssocuationVoName can be used as a ChunkKey.

g) Find SE access protocol for host
‘(&(ObjectClass=GlueSEAccessProtocol)(GlueChunkKey=GlueSEUni
queID=srm.cern.ch))’ GlueSEAccessProtocolPort,
GlueSEAccessProtocolType
[…]
rfio, srm.cern.ch, CERN-PROD, grid
dn:
GlueSEAccessProtocolLocalID=rfio,GlueSEUniqueID=srm.cern.ch,m
ds-vo-name=CE
 RN-PROD,o=grid
GlueSEAccessProtocolType: rfio
GlueSEAccessProtocolPort: 5001

root, srm.cern.ch, CERN-PROD, grid
dn:
GlueSEAccessProtocolLocalID=root,GlueSEUniqueID=srm.cern.ch,m
ds-vo-name=CE
 RN-PROD,o=grid
GlueSEAccessProtocolType: root
GlueSEAccessProtocolPort: 1094

gsiftp, srm.cern.ch, CERN-PROD, grid
dn:
GlueSEAccessProtocolLocalID=gsiftp,GlueSEUniqueID=srm.cern.ch,
mds-vo-name=
 CERN-PROD,o=grid
GlueSEAccessProtocolType: gsiftp
GlueSEAccessProtocolPort: 2811
 […]
The query is the same also with the proposed v1.3 GLUE schema
for the SE.

h) Find CE access point for host (for “file” protocol or for Classic SE)
‘(GlueCESEBindSEUniqueID=srm.cern.ch)’
GlueCESEBindCEAccessPoint

 20

[…]
castorgridsc.cern.ch, ce107.cern.ch:2119/jobmanager-lcglsf-
grid_2nh_dteam,
 CERN-PROD, grid
dn:
GlueCESEBindSEUniqueID=castorgridsc.cern.ch,GlueCESEBindGrou
pCEUniqueID=ce
 107.cern.ch:2119/jobmanager-lcglsf-grid_2nh_dteam,mds-vo-
name=CERN-PROD,o=gri
 d
GlueCESEBindCEAccesspoint: /castor/cern.ch/grid/

castorgridsc.cern.ch, ce107.cern.ch:2119/jobmanager-lcglsf-
grid_dteam, CERN
 -PROD, grid
dn:
GlueCESEBindSEUniqueID=castorgridsc.cern.ch,GlueCESEBindGrou
pCEUniqueID=ce
 107.cern.ch:2119/jobmanager-lcglsf-grid_dteam,mds-vo-
name=CERN-PROD,o=grid
GlueCESEBindCEAccesspoint: /castor/cern.ch/grid/
[…]
The query is the same also with the proposed v1.3 GLUE schema
for the SE.

FTS Queries:
The FTS executes the same queries as in GFAL. In particular, the Service
Type (if SRM or gridftp) and its endpoint are discovered. FTS also queries for
the name of the site where the service is running and the hostname. Some
VO catalog FTS plugins need to discover the VOPaths.

RB Possible Queries:
i) Find a CE that has a close SE that supports ATLAS_RAW

‘(GlueVoStorageAreaAssociationStorageSpaceTokenDescription=AT
LAS_RAW)’ GlueVoStorageAreaAssociationVoName

‘(&(ObjectClass=GlueSE)(GlueChunkKey=GlueVoStorageAreaAssoci
ationVoName=<GlueVoStorageAreaAssociationVoName>))’
GlueSEUniqueID
<SEUniqueID(i)>
foreach i ; do
‘(GlueCESEBindSEUniqueID=<SEUniqueID(i)>)’
GlueCESEBindCEName
done

 21

The query could be simplified if in the
GlueVoStorageAreaAssociation the GlueSEUniqueID is stored (as a
chunkkey?).

j) Find a CE that has a close SE with an SA accessible by a given VO
FQAN that supports “replica” as a retention policy
‘(&(GlueStorageAreaRetentionPolicy=replica)(GlueChunkKey=Glue
VoStorageAssociationVoName=<VO>))’ GlueStorageAreaUniqueID
GlueChunkKey

 SAUniqueIDs(i), SEUNiqueIDs(i)

‘(GlueVoStorageAreaAssociationFQAN=<FQAN>)’ GlueChunkKey
SAUniqueIDs(j)

foreach j; do
foreach i; do
 if SAUniqueIDs(i) = SAUniqueIDs(j); then

 CE(n)=‘(GlueCESEBindSEUniqueID=SEUniqueIDs(i))’
GlueCESEBindCEName

 fi
done
done

k) Find an SE close to a specific CE which supports ATLAS_ESD and

the protocol gsidcap on WAN

‘(&(ObjectClass=GlueSEAccessProtocol)(GlueSEAccessProtocolNetw
orkAccess=WAN)(GlueSEAccessProtocolType=gsidcap))’
GlueChunkKey

 SEUniqueIDs(i)

‘(GlueVoStorageAreaAssociationSpaceTokenDescription=ATLAS_ESD
) GlueChunkKey
SEUniqueIDs(j)

 foreach j; do
 foreach i; do
 if SEUniqueIDs(i) = SEUniqueIDs(j); then
 CE(n)=‘(GlueCESEBindSEUniqueID=SEUniqueIDs(i)’
 GlueCESEBindCEName
 fi
 done
 done

“Others” Queries:

The SFT system publishes the SE implementation and its version. This is
useful in order to find out if sites have performed an upgrade, for instance.

 22

Ldapsearch –x –h prod-bdii:2170 –b “o=grid” ‘(GlueSEImplementation=DPM)’
GlueSEImplementationVersion

The SAM system stores internally the Total Size of an SE, which is now
directly published in the GlueSE class as the sum of OnlineSizeTotal and
NearlineSizeTotal.

l) Find the TotalSize of all StorageAreas with token description
ATLAS_RAW

‘(GlueVoStorageAreaAssociationSpaceTokenDescription=ATLAS_RA
W) GlueChunkKey
SAUniqueIDs(i)

foreach i; do
TotalComponentSize(j)=‘(GlueObject=GlueStorageComponent)(Glu
eChunkKey=SAUniqueIDs(i) GlueStorageComponentTotalSize

 foreach k; do
 ATLAS_RAWTotalSize=ATLAS_RAWTotalSize+
 TotalComponentSize(j)
 done
 done
 echo ATLAS_RAWTotalSize

