
GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doc) Editors:
Configuration Description, Deployment and Patrick Goldsack, Hewlett Packard Labs
Lifecycle Management
Language Specification
http://forge.gridforum.org/projects/cddlm-wg February 23, 2004

cddlm-wg@ggf.org

Configuration Description, Deployment,
and Lifecycle Management

SmartFrog-Based Language Specification

Revision 0.4

Status of this Memo
This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM) Language.
Distribution of this document is unlimited. This is a DRAFT document and continues to be
revised.

Abstract
Successful realization of the Grid vision of a broadly applicable and adopted framework
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Global Grid Forum (GGF), provides a definition of the CDDLM language that is based
on the SmartFrog (Smart Framework for Object Groups) and its requirements.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 2

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF website).

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 3

Table of Contents

Table of Contents... 3
List of Figures.. 4
1 Introduction... 5
2 CDDLM-WG and the Purpose of this Document ... 5
3 The CDDLM Notation .. 5

3.1 Background ... 5
4 Requirements for the language.. 6
5 Concrete Syntax .. 7

5.1 Attributes, Attribute Lists and Streams... 7
5.2 Component Descriptions... 8
5.3 Types vs. Prototypes ... 10
5.4 References... 10
5.5 Comments ... 15

6 Parameterization.. 15
7 Include Files.. 16
8 Main .. 17
9 Resolution – Semantics For The CDDLM Notation.. 18
10 Functions... 21

10.1 concat .. 21
10.2 vector... 21
10.3 append ... 22
10.4 formatString .. 22
10.5 sum.. 22
10.6 product .. 23
10.7 random .. 23
10.8 next.. 23
10.9 date.. 24
10.10 userinput.. 24

11 Schemas .. 24
12 Summary of CDDLM Language Processing .. 27
13 The CDDLM Syntax.. 27
14 The CDDLM Notation Lexical Rules ... 28
15 Security Considerations .. 30
16 Editor Information... 30
17 Contributors .. 30
18 Acknowledgements ... 30
References.. 31
A. An Example Configuration ... 32

A.1 Cross-Application Components .. 32
A.2 Custom components.. 35
A.3 Instantiation... 38

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 4

List of Figures

Figure 1. CDDLM Language Use and Relationship with other Components 6
Figure 2. Use of Inheritance in Templates.. 9
Figure 3. Scope of References .. 11

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 5

1 Introduction
Deploying a complex, distributed service presents many challenges related to service
configuration and management. These range from how to describe the precise, desired
configuration of the service, to how we automatically and repeatably deploy, manage and
then remove the service. This document addresses the description challenges, while other
challenges are addressed by the follow-up documents . Description challenges include
how to represent the full range of service and resource elements, how to support service
"templates", service composition, correctness checking, and so on. Addressing these
challenges is highly relevant to Grid computing at a number of levels, including
configuring and deploying individual Grid Services, as well as composite systems made
up of many co-operating Grid Services.

2 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services; deploy them on
the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart,
etc.). The intent of the WG is to gather researchers, developers, practitioners, and
theoreticians in the areas of services and application configuration, deployment, and
deployment life-cycle management and to explore the community need for a broader
effort in this area. The target of the CDDLM WG is to come up with the specifications
for CDDML a) language, b) component model, and c) basic services. This document
represents one of the two CDDLM language specifications. This specification is based on
the expertise with SmartFrog language developed at HP Labs. The other language will be
entirely XML based. The two language specifications will be compatible.

Both languages will be declarative, i.e. they will support attribute value pairs. They will
furthermore support inheritance, references (including lazy), parameterization, predicates
and schemas. The rest of the document describes the features supported in the SmartFrog-
based CDDLM language.

3 The CDDLM Notation
3.1 Background
The CDDLM notation has been designed to provide users of the CDDLM framework with a
simple, yet powerful, attribute description language. The reason that the notation has been
developed, rather than merely using XML, is that a number of features are required that are not
directly supported by XML, though they could be encoded, and that use of these features requires
the use of human-friendly syntax. The syntax is derived from the tried and tested first generation
SmartFrog notation [1] and it makes a few minor changes to reflect the core differences between
it and CDDLM.

There is an XML binding for the language to go along with this form of the language design,
providing support for those who prefer to use that syntax. This syntax is provided in [3].

The CDDLM component model in no way depends on the nature of this notation. Indeed there
are relatively few aspects of the notation that are specific to the CDDLM framework. Most of the
language is simply for defining collections of attributes. The framework uses these attributes to

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 6

achieve the desired configuration effect. The details of these attributes and their impact on the
framework are left to other CDDLM documents. This document concentrates only on the use of
the notation for defining attributes.

The role of the notation is summarized in the diagram below. The descriptions merely define
collections of attributes, represented as data structures after parsing, and these may be used either:

• by the CDDLM infrastructure as defining the configuration of some distributed system;
though certain well-formedness conditions apply in that specific attributes must be present

• by other programs as the configuration data that they require, though here too, well-
formedness criteria might exist - defined on a case by case basis.

CDDLM

Description

(in Notation)

Data

Structures

Run-Time

ServicesRunning

Application

Use as Data Structure

Compilation
“Type Resolution”

Deployer

Create
Application

Interpret as
Application
Description User

Classes

Figure 1. CDDLM Language Use and Relationship with other Components

4 Requirements for the language
A language designed to support the use of a framework such as CDDLM has a number of
core requirements:

1. The language is primarily designed to define configuration data for use by the
framework services, defining the configuration of the resources and software
components that define the Grid service to be deployed.

2. The language will be used for such a wide variety of services and resources, and
of such complexity, that a language must be both readable and support a number
of abstraction mechanisms such as inheritance and parameterization.

3. The language must support the notion of templating, the ability to provide
patterns of configuration that may be specialized at time of use.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 7

4. The language must support a way of checking the use of templates to ensure that
they are being applied in an appropriate way.

5. The language must support the notion that data is available at different phases of a
service deployment – for example some data is available at time of template
definition or use, other data is only available at run-time. An example of the
former may be data regarding the performance of web servers required for a
service whilst an example of the latter may be the specific type of the nodes on
which the servers are to run, and hence the precise number of servers required to
meet the required performance.

5 Concrete Syntax
5.1 Attributes, Attribute Lists and Streams
A CDDLM description consists of an ordered collection of attributes. The attributes are ordered
because several of the operations in the CDDLM framework require an order, for example the
order in which the configuration should be instantiated.

Each attribute has a name and a value, this value being either a basic value (integer, string, etc),
or an ordered collection of attributes known as a component description. This recursion provides
a tree of attributes, the leaves of which are the basic values. A value may also be provided by
reference to another attribute. This is described by the following BNF, where Stream indicates the
entry point to a CDDLM language parser.

Stream ::= AttributeList

AttributeList ::= AttributeListElement*

AttributeListElement ::= Attribute | #include string
(1)

Attribute ::= Name Value
(2)

Name ::= BaseReference | --
(3)

Value ::= ; | Basic ; | ComponentDescription | [LAZY] BaseReference ;
(4)

Basic ::= Number | String | Boolean | Vector

Vector ::= [] | [Basic (, Basic)*]

From this, it is clear that the input to the parser is a collection of attributes, each named and
having an optional value (2). If the value is not present, (the first alternative in (4)) the value is
defined to be the string containing the name of the attribute. Thus, the following two attribute
definitions are equivalent.

foo;

foo "foo";

The reason for providing this feature is to enable the use of attributes where the presence of the
attribute is what is important, not its value.

The syntax for a name will be covered later, but for now it can be considered to be either a simple
sequence of letters and digits, starting with a letter, or the double-hyphen "--" (3). The double
hyphen is for use at times when the attribute name is not important (a new unique name is
generated and used). This is particularly useful with the function syntax described in Section 10.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 8

Include files (1) are covered in more detail in section 7, but in general they consist of parseable
CDDLM text which are parsed as attribute lists and unpacked into place within the container
attribute list.

The syntax for the basic values is best given by example.
Integer: 345

Long: 65325L

Float: 34.76

Double: 1534.456D

String: "this is a string"

Multi-line String: ## This is a string

 Over many lines #

Boolean: true

Vector: [3.67, [34, 53, 1], ["string", 34], []]

Binary Data: @base64data@

Consequently, an example of a piece of CDDLM text is as follows
portNum 4074;

hostname "ahost.cddlm.org";

isHighPriority false;

validUsers ["fred", "harry", "mike"];

data @234s4Txx@

defining four attributes with the appropriate values.

5.2 Component Descriptions
Attributes may have values that are collections of other attributes, known as component
descriptions. They obtain their name from the fact that they may be interpreted by the framework
as the description of a component, though they may equally be used to describe structured data.

A component description consists of two parts, a reference to another component description to
act as a source of attributes, and a collection of attributes that are then added to, or override, the
attributes of the referenced collection. The syntax is:

ComponentDescription ::= extends BaseComponent

BaseComponent ::= [Reference | NULL] (; | { AttributeList })

Both the reference and the attribute list are effectively optional. If neither is present, the resultant
attribute list is defined to be empty. The syntax is most easily explained through an example:

SFService extends { // an implicit extension of NULL

 portNum 4047;

 hostname "ahost.Cddlm.org";

 administrators ["patrick"];

}

UseableService extends SFService { //an extension of the previous component

 portNum 4048; // override the definition of portNum

 users ["fred", "harry"]; // add a new attribute

}

The text consists of two attributes, both of which have values that are collections of attributes.
The second of these, UseableService, is defined as an extension of the first, SFService, with two
attributes added to or overwriting those inherited. The text is semantically identical to the
following:

SFService extends {

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 9

 portNum 4047;

 hostname "ahost.Cddlm.org";

 administrators ["patrick"];

}

UseableService extends {

 portNum 4048;

 hostname "ahost.Cddlm.org";

 administrators ["patrick"];

 users ["fred", "harry"];

}

Note that the attributes in a component description are ordered and that when an attribute is
overwritten it maintains its position, but when it is a new attribute it is added to the end. The
process of expansion of the inheritance in this way is known as Type Resolution and is explained
further below.

Note also that the parsed stream is considered to be in an implicit, anonymous (i.e. not named in
an outer component description), component description known as ROOT.

portNum 4047;
hostname “pgoldsac.hpl.hp.com”;
admininstrators [“patrick”];

portNum 4048;
users [“fred”, “harry”];

Implicit Root Component Descriptoon

SFService

UseableServce

extends

NULL

extends

Implicit Root Component Description

UseableServce

extends

portNum 4048;
hostname “pgoldsac.hpl.hp.com”;
admininstrators [“patrick”];
users [“fred”, “harry”];

portNum 4047;
hostname “pgoldsac.hpl.hp.com”;
admininstrators [“patrick”];

SFService

extends

NULL

NULL

original semantic equivalent

Figure 2. Use of Inheritance in Templates

The example is also shown in the diagram. It clearly shows that there are two kinds of
relationship between component descriptions. One is the containment relationship, where a
component description contains an attribute that is itself a component description. The second is
the inheritance or extension relationship. This second class of relationship is one that can be
transformed, by type resolution, to an equivalent one containing no extension (also indicated by
the NULL extension).

Whilst the extension relationship is merely a convenient way of defining attributes, the
containment hierarchy is a more fundamental construct. It should be noticed that that containment
hierarchy effectively provides a naming scheme by which attributes may be referenced. In this it
is similar to other such named hierarchies, such as directory hierarchies common in files systems.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 10

5.3 Types vs. Prototypes
CDDLM does not define types for attributes and components. Rather it defines the notion of a
prototype. Each attribute whose value is a component description may be considered as a
prototype for another: it may be taken and modified as appropriate to provide the value for the
new attribute. The mechanism for this is the extends construct.

Any attribute whose value is a component description may be, at a later juncture, selected and
modified to provide a new component description to be bound to a name. This new attribute may
be further modified by subsequent attributes. In this way, it is possible to provide partial
definitions, with default values for attributes, to be completed or specialized when used. This
provides a simple template mechanism for components.

Consequently, there are no separate spaces of types and instances; every component is logically
an instance, but may also be a prototype for another. However, it is clear that in providing
descriptions, some components will be defined with the intention that they be used as prototypes
for other components, whilst others will be defined without that expectation. Whilst this may
appear strange in the first instance, it turns out to be one of the main strengths of the CDDLM
notation.

5.4 References
References may occur in three places in the syntax: as the name of an attribute – known as a
placement, as a reference to the extended component (the prototype) of a component description,
and as an attribute value referring to another attribute whose value is to be copied – known as a
link.

The primary purpose of a reference is to indicate a path through the containment hierarchy
defined by the components. In this, it is similar to the notion of path common in file systems in
operating systems such as Linux. A path defines a traversal of the directory hierarchy, a structure
similar to the component hierarchy.

The syntax for references is as follows:
BaseReference ::= ReferencePart (: ReferencePart)*

ReferencePart ::= ROOT | PARENT | WORD | ATTRIB WORD | THIS

Thus, a reference is a colon-separated list of parts each of which indicates a step in the path
through the containment tree. Examples of references are:

PARENT:PARENT:foo:bar

ATTRIB a:b

ROOT

The general rule for the interpretation of a reference is that the reference is evaluated in a context
(a component description somewhere in the description containment tree), and that each step
moves the context to a possibly different component for the remainder of the reference to be
evaluated. This is equivalent to path evaluation in a Linux file system, the path is evaluated in a
current directory, and each part of the path moves the context to another directory.

The semantics of each of the reference parts is as follows: starting at component in which the
reference is defined…

• PARENT - move context to the parent (container) component if it exists, fail otherwise (c.f.
Linux “..”)

• WORD - look for the attribute named “word” in the current context, fail otherwise

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 11

• ATTRIB WORD - look for the attribute named “word” in the current context or anywhere in
the containment hierarchy (the closest is chosen), move to the context defined by this
attribute, fail if no attribute is found in the containment hierarchy

• ROOT - switch context to the outer-most component (normally the implicit root component -
c.f. Linux “/ “)

• THIS – the current context (c.f. Linux “.”)

Some examples of references (in this case link references) are as follows:

main extends {
foo extends {

jan 1;
feb 2;
mar 3;

}
bar extends {

a 42;
b “a string”;
c [1, 2, 3];

}
baz extends {

ref1 ROOT:sfConfig:bar:b;
ref2 ATTRIB foo:jan;
ref3 ref2;

}
}

main extends {
foo extends {

jan 1;
feb 2;
mar 3;

}
bar extends {

a 42;
b “a string”;
c [1, 2, 3];

}
baz extends {

ref1 “a string”;
ref2 1;
ref3 1;

}
}

Figure 3. Scope of References

The arrows in the left-hand text show the path followed as the references are resolved to obtain
the referenced attribute values, noting that the resolution of ref3 will follow the resolution of ref2.
The contexts traversed as the resolutions progress are shown boxed and the right-hand text shows
the result of resolving the three links.

The above rules determine the general interpretation of references. However, each of the syntactic
contexts has its own slight semantic variation; these variations appear in the detailed definition of
the semantics for references.

5.4.1 Reference Elimination – Resolution
The key to the semantics of the CDDLM notation is the process by which references are
eliminated. This is necessary for each of the three syntactic locations where references may occur
– prototype references, placement references and link references. The process by which
references are eliminated is known as reference resolution. However, each type of reference has a
different notion of resolution and so each has a specific resolution action – known respectively as
type resolution, placement resolution and link resolution. This last name is historically also
known as deployment resolution; this old name appears in parts of the API and is kept for

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 12

backward compatibility. The resolution steps are described in more detail in the next few sub-
sections, and then revisited as a whole to examine their interaction with each other.

5.4.2 Prototype References
References to prototypes, as defined in the following syntactic context,

Component ::= extends [LAZY] BaseComponent

BaseComponent ::= [Reference] (; | { AttributeList })

are resolved as described above except in one respect: if the reference to the prototype consists of
a single WORD part, it is interpreted as ATTRIB WORD.

Thus, the following are equivalent
Foo extends Bar { …}

Foo extends ATTRIB Bar {…}

This is to provide a greater degree of convenience when referring to a prototype as these are most
often defined in the outermost implicit root context, and frequently defined in an included file.
Using this re-interpretation using ATTRIB, rather than adding an implicit ROOT reference part to
the front, ensures that global definitions of prototypes at the top level may be locally overridden if
required.

The following example demonstrates most of the situations:
Foo extends { a 1; }

Bar extends {

 foo extends Foo;

}

Baz extends {

 Foo extends {

 b 2;

 }

 foo1 extends Foo; // recall - this is equivalent to ATTRIB Foo

 foo2 extends ROOT:Foo;

 foo3 extends PARENT:Foo;

 foo4 extends PARENT:PARENT:Foo;

}

After type resolution, which includes the merging and overwrite of attributes as described in
section 5.2, the example is equivalent to:

Foo extends { a 1; }

Bar extends {

 foo extends { a 1; } // ATTRIB Foo finds the outermost

}

Baz extends {

 Foo extends { b 2; }

 foo1 extends { b 2; } // ATTRIB Foo finds the closest enclosing

 foo2 extends { a 1; } // ROOT:Foo finds the one in the root

 foo3 extends { b 2; } // PARENT:Foo finds that in the parent

 foo4 extends { a 1; } // PARENT:PARENT:Foo finds that in the
root (in this case)

}

5.4.3 Placement References
An attribute’s name may be a reference, as described in the syntactic clauses

Attribute ::= Name Value

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 13

Name ::= BaseReference

This is not completely accurate, as the syntax in fact limits references to being a reference
containing WORDS, the other reference parts are considered erroneous.

The resolution of the reference is again largely as described above, with the following
modification.

The last reference part of the reference must be a WORD and is treated differently. This word
part is not strictly part of the reference, but is used to identify the name of an attribute that is to be
created (as opposed to referenced) in the context of the prefix part of the name reference. Thus in
the attribute definition

foo:baz:bar 42;

the foo:baz is a reference to a location, bar is the name of the attribute to be created in that
context.

In most cases, the name consists only of that final WORD leaving the prefix reference empty,
indicating the current context. Thus, the attribute is defined in that current context. Where a non-
empty reference prefixes the final word, the reference is used to determine the appropriate context
and the attribute with the given name is placed into that context.

Consider the example
Service extends {

 portNum 4089;

}

Service:portNum 4074;

Service:hostname "ahost.cddlm.org";

The prefix reference Service: is de-referenced to indicate the Service attribute. The two prefixed
attributes are therefore placed within that reference context, overriding or placed at the end of the
context as appropriate. Thus, the example is roughly equivalent to the following (there are some
differences in their behaviour as prototypes):

Service extends {

 portNum 4074;

 hostname "ahost.cddlm.org";

}

The act of placing the attributes into a location is known as placement resolution, and it occurs
simultaneously with the removal of the reference-prefixed attribute from its defining context.

Placement of attributes can lead to a great deal of confusion if not used properly. It reacts in
interesting ways with type resolution; this interaction is explained in the section on resolution.

5.4.4 Link And LAZY Link References
Frequently, attributes need to take on the same values as other attributes. This can be for many
reasons:

• to avoid repetition of values at many points in a description making it easier to maintain that
description

• to hide the structure of the description to a program; explained further in section Error!
Reference source not found..

• to provide a means of simple parameterization; explained further in the section 6.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 14

This association between the value of one attribute and that of another is defined by providing a
reference in the place of a value of the attribute. This reference is resolved relative to the context
at the point of definition.

Consider the following example, in which a server and a client both need to know the TCP/IP
port on which the server will listen.

System extends {

 server extends {

 portNum 4089;

 }

 client extends {

 portNum ATTRIB server:portNum;

 }

}

The system contains a server and a client. The server and client both have an attribute portNum,
with that of the client being defined as a link to that of the server.

There is a resolution step, known as link resolution (and occasionally deployment resolution),
which replaces references by the values that they reference. During the resolution phase, chains of
links are resolved appropriately.

In the above example, the definition of System is equivalent to the following:
System extends {

 server extends {

 portNum 4089;

 }

 client extends {

 portNum 4089;

 }

}

Consequently, both the server and client share the same value and maintenance is eased in that
should the port number need be changed, this need happen in only one place in the description.

It is frequently the case that the link itself is required as a value; i.e. the link should not be
resolved to the value that it might refer to within the description. This reference may then be used
within a CDDLM application after deployment, for resolution at run-time rather than at the time
of parsing the description.

In order to provide a reference value, rather than have it resolved to the value of another attribute
during link resolution, the keyword LAZY may be prefixed to the link to indicate that the link
resolution should not resolve the link. An example of this is:

System extends {

 server extends {

 foo 42;

 }

 client extends {

 myServer LAZY ATTRIB server;

 }

}

In this case, the client’s attribute myServer is a reference to the server, not a copy of the server
component. As is, resolution will have no effect, as the link will be left to be the attribute value. If
the keyword LAZY had not been present, the following would have been the result of resolution:

System extends {

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 15

 server extends {

 foo 42;

 }

 client extends {

 myServer extends {

 foo 42;

 }

 }

}

The word LAZY is an indication that it will be resolved at run-time – so far as the notation is
concerned, this means that the link is the value.

5.5 Comments
The CDDLM notation follows most modern languages in providing both end-of-line comments
and multi-line bounded comments. The syntax for these is identical to that of Java, namely

// this is a comment to the end of the line

/* this is a comment which is terminated

 by */

6 Parameterization
When extending a prototype, it is normal to override the values of certain attributes to customize
the prototype to its actual use. The simplest way is to extend with the replacement attribute –
however this only works for a top-level attribute. Modification of attributes deep in the structure
requires the placement of the overriding attribute into the correct context, as in the example:

Service extends {

 hostname "localhost";

 portNum 4567;

}

ServicePair extends {

 service1 extends Service ;

 service2 extends Service ;

}

main extends ServicePair { // user needs to know structure of ServicePair

 service1:hostname "riker.cddlm.org";

 service2:hostname "ackbar.cddlm.org";

}

This works adequately, but it has the disadvantage that the use of the ServicePair prototype
requires knowledge of its structure, though it does have the advantage that any attribute in the
structure may be changed if necessary. However, under normal circumstances, there are attributes
whose values are expected to change, and others that are not. Under these circumstances, it
would be good if the description could be parameterized on these attributes. However, the normal
form of parameterization as provided in programming language functions is not a good fit to the
CDDLM notation semantics – so the language provides a way of finding a way of hiding the
structure of a description and making it easier to override “deep” attributes.

This technique, more of a pattern for the use of links, is shown in the following example:
Service extends {

 hostname "localhost"; // default value

 portNum 4567;

}

ServicePair extends {

 s1Host "localhost"; // provide default value

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 16

 s2Host "localhost";

 service1 extends Service { hostname ATTRIB s1host; } // lift attribute

 service2 extends Service { hostname ATTRIB s2host; } // ditto

}

main extends ServicePair { // user needn’t know structure of ServicePair

 s1host "riker.cddlm.org";

 s2host "ackbar.cddlm.org";

}

It is clear that the use of ServicePair requires only the extension with top-level attributes to set
the attributes deeply defined in the Service prototype. This pattern, of the use of links lifting an
attribute value to one provided in the outermost context, is called the parameterization pattern and
is very frequently used.

Note that if a default value for a lifted attribute is not given within the description (in this case
ServicePair provides defaults for both the lifted attributes s1Host and s2Host), a deploy
resolution error will occur if the parameter is not provided at time of use, since the value to
resolve the link will not be found.

7 Include Files
A stream of text may reference include files at certain points in that text. Unlike a C include file,
though, the include file is not merely textually embedded into the original stream. Rather the
include file is itself parsed (and must be syntactically correct) as a stream in its own right. Every
stream must parse as a collection of attribute definitions, and this is equally true of the include
files.

Include files may only be used within attribute lists (i.e. at the top level or within a component
definition). The collection of attributes from the include file are simply added to the attribute list
being parsed in the container stream.

Consider the following example:

• file foo.cddlm contains:

foo extends {

 a 42;

}

• the primary stream is:

#include "foo.cddlm"

system extends {

 myFoo extends foo;

 #include "foo.cddlm"

}

After the parsing is complete (but before type resolution), the following is obtained:
foo extends {

 a 42;

}

main extends {

 myFoo extends foo;

 foo extends {

 a 42;

 }

}

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 17

It should be noted that because includes may occur within other component descriptions, this may
be used as a naming mechanism to prevent clashes of attribute name within multiple include files.
Consider

• file foo1.cddlm contains

foo extends { a 42; }

• file foo2.cddlm contains

foo extends { b 42; }

• the primary stream contains

foo1 extends { #include "foo1.cddlm" }

foo2 extends { #include "foo2.cddlm" }

main extends {

 bar extends ATTRIB foo1:foo;

 baz extends ATTRIB foo2:foo;

}

If the includes had not been buried within separately named components, but both had been
included into the top level, only the second of the two mentioned foo attributes would have been
available for extension. The second would have overridden the first.

8 Main
A stream contains a whole collection of attributes at the top level. Most are merely there to act as
building blocks – prototypes for building others. Typically, there is only a single attribute that is
the essence of the description – that which describes the desired configuration and is not merely a
building block on the way. By convention in CDDLM, the reserved attribute name main defines
this special attribute and all the tools provided respect this convention.

Thus, when a stream is parsed to an attribute set, the top-level attribute main defines the system;
the rest are ignored, apart from providing definitions for extensions and other resolutions. This is
equivalent to the Java language use of the “special” method main(…) to indicate the entry point to
a program. The entry point to a configuration description is main.

Thus in the following example, the attributes def1, def2 and def3 are only present for the purposes
of defining main, and it is only this last attribute that represents the actual configuration
description.

def1 extends {…}

def2 extends {

 foo extends {…}

 bar extends {…}

}

def3 extends {…}

main extends {

 d1 extends def1;

 d2 extends def2;

 d3 extends def3;

}

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 18

9 Resolution – Semantics For The CDDLM Notation
Resolution is the process by which the raw CDDLM definitions, with their extensions,
placements and links, are turned into the set of attributes that they semantically represent.

There are two ways of representing the semantics, both roughly equivalent.

1. By defining how the value of an attribute identified by a reference is obtained from a
description; defining the semantics by providing a function from reference to value for all
possible references.This would be the ideal way of defining the semantics, however for
pragmatic reasons the semantics are less “pure” than may be desired and it is hard to define
the semantics in this way. Two aspects that are particularly hard to define in this style are the
order of type resolution and the placement of attributes.

2. By defining a set of transformation rules that eliminate the complexity of the typing (by
expansion), placement (by relocation) and linking (by value copy), resulting in a normalized
form of a description containing merely a hierarchical set of attribute lists.

Either of these two forms of semantic definition would do, however the definition of the
semantics through transformation has a distinct advantage: these transformations are required in
practice and hence are implemented within the CDDLM system. Thus, an understanding of these
transformations is essential to the use of CDDLM.

The three transformation steps are known in CDDLM as resolution steps. These are respectively
type resolution, placement resolution and link resolution. They are carried out in that order: first
the types are expanded, then attributes placed into the correct context from the context in which
they were defined, and finally links are resolved.

It should be noted that the entire description is type and place resolved, but only the top-level
main attribute is normally link resolved. In general if the other top-level attributes are link
resolved, errors will occur; they are only present to be available as prototypes. Further,
unnecessary work will have been done.

The algorithms defined here for the transformations are the result of much empirical
experimentation – other transformation algorithms produce more regular semantics, others are
more efficient. However, those presented here are a balance between performance and semantic
simplicity. They provide a great deal of control over the semantics of the resolution process.

9.1.1 Type Resolution
Type resolution is the expansion of the prototype reference optionally provided in the extends part
of a component description. The syntactic form for a component description is roughly

name extends Reference { AttributeList }

The reference refers to a prototype that is to be extended by the attributes in the provided attribute
list. This process of type resolution is a depth-first pass over the root component description, in
the order of definition of the attributes.

• Copying the prototype indicated by the reference, creating a new component description

• Replacing the attribute values of the new component description also mentioned in the
attribute list (i.e. the value, but not the order, changes)

• Adding the remaining attributes at the end of the new prototype

• Type-resolving each of the component description’s attributes if they are component
descriptions

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 19

If the prototype reference indicates a component description that is not yet resolved, it resolves it
first before copying: i.e. each type resolution is carried out with respect to the location where the
prototype is defined. The other point to note is that if the reference is only a word, it is interpreted
as ATTRIB word for the purposes of locating the prototype for the component description.

If, at the end of the process, one or more component descriptions have failed to resolve, in that
their prototypes cannot be found, the whole resolution process ceases and an exception is thrown
indicating the missing prototypes and the locations at which they are referenced.

Note that any references that may be copied as part of the extension process are not modified.
Hence, copied placements are now relative to the new location and copied links similarly.
Prototype references are never copied since a prototype is always resolved before copy.

9.1.2 Placement Resolution
Placement resolution is the process by which the attributes are placed into the correct location.
Attributes are named, and this name may contain a reference to a component description as well
as the name by which it is to be known in that component description. If the reference is not
present, the attribute is assumed to be in the correct component description as defined.

Thus in the example attribute declaration:
foo:bar:baz 42;

The foo:bar: defines the target component description, and baz defines the name for the attribute
in that component description.

Placement resolution is the transformation process that results in the attribute definitions being
removed from their point of definition and placed in the target component descriptions. The
process is a multi-pass process, for each pass:

• traverse the component description hierarchy

o depth first

o visiting the attributes in the order of definition (as determined by type resolution)

• each attribute visited is examined, if it should be placed elsewhere – try to do so, if it fails –
leave as is.

The pass is repeated until one of the following occurs:

• there are no placements left to transform

• no placements have been successfully carried out, and at least one placement has failed

In the first instance, the placement resolution has successfully completed, the second it has not
and an error is generated.

To see why multiple passes are necessary, consider the following:
foo extends {

 a 21;

}

foo:bar:a 42;

foo:bar extends { b 34; }

In the first pass, the attribute foo:bar:a is first to be placed, but it fails since foo does not yet
contain foo:bar as a component description. Also in the first pass, but later since it is defined
later, foo:bar is placed, giving

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 20

foo extends {

 a 21;

 bar extends { b 34; }

}

foo:bar:a 42;

This leaves a placement incomplete so a second pass is required. This time it succeeds, resulting
in

foo extends {

 a 21;

 bar extends {

 b 34;

 a 42;

 }

}

This order dependency does not have much of an effect, except for when two identically named
attributes are placed into the same component description. At this point understanding the order
of resolution becomes important.

Since placement resolution is carried out after type resolution, the following consequences should
be noted:

• As type resolution is carried out before placement, attributes placed into a prototype will not
be inherited by those extending the prototype.

• Again, as type resolution is carried out before placement, do not place an attribute that is to
be used as a super-type; it will not be found.

• Wherever possible, placement should be restricted to referencing downwards into a structure
from the point of attribute definition. Descriptions can be very hard to understand if
PARENT, ROOT or ATTRIB are used in a placement reference; this particularly so within a
component description to be used as a type. As a consequence, this release of CDDLM does
not permit these reference parts to be used in a placement.

The reason why type resolution is done before placement resolution is that the normal use for
placement is to “fill-in” empty “attribute slots” in a prototype. As each instance of the prototype
will in general need differently filled slots, placement must be done after the type has been
resolved for each instance.

Note that placement of attributes whose values are links do not modify the links to correct for the
new location. Thus, links are resolved with respect to where they are placed, not where they are
defined.

9.1.3 Link Resolution
Link resolution is the most straightforward of the three forms of resolution; all links are resolved
in their location after type and place resolution, and the referenced values copied, replacing the
link as the value of the attribute. There are a number of minor points to note:

• Only links that are not LAZY are resolved; those that are LAZY are left unresolved with the
link itself being the value.

• In resolving a link, the value of the attribute referenced is copied. If the value of the attribute
is a link, this is first resolved and the result copied.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 21

• Links are always resolved in the contexts in which they are located after the type and
placement resolution phases are over, not necessarily those in which they were defined.

• Links referring to an attribute whose value is a LAZY link will copy the LAZY link
unchanged, this being the attribute’s value.

10 Functions
CDDLM provides users with a small number of predefined functions to improve the
expressiveness of the descriptions.

Functions appear, to the language, as predefined component descriptions that may be extended;
the parameters are given as named attributes within the body of that description. For example, a
use of the string concatenate function is

#include "/org/cddlm/functions.cddlm" // the standard functions

val 42;

myString extends concat {

 -- "the meaning of life is ";

 -- ATTRIB val

}

that results in the value of the myString attribute being "the meaning of life is 42". The names of
the attributes have no effect in this case, the strings being concatenated in the order of definition,
but may be important for some other functions.

Functions are evaluated inner-first, providing for the nesting of function application, and are
evaluated after all the other resolutions steps have be completed. The definitions are themselves
affected by these resolutions. Thus, a function may be extended with the resultant extension also
be a function.

The pre-defined function templates are defined available by including the functions.sf file as
follows:

#include "org/cddlm/functions.sf"

This file defines the list of functions that are described below.

10.1 concat
The concatenate function takes each of its attribute parameters and concatenates them in the order
of definition. These attributes are converted to strings using the toString() Java method. An
example of the use of the concatentate function is:

myString extends concat {

 a "the meaning of life is ";

 b 42;

 c extends concat {

 a " by ";

 b "Douglas Adams";

 }

}

which results in the string "the meaning of life is 42 by Douglas Adams".

10.2 vector
The vector function takes each of its attribute parameters and puts them together into a vector. An
example is

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 22

myString extends vector {

 -- "the meaning of life is ";

 -- 42;

 -- extends vector {

 -- " by ";

 -- "Douglas Adams";

 }

}

which results in the vector
["the meaning of life is", 42, ["by", "Douglas Adams"]]

10.3 append
The append function is similar to the vector function, except that all parameters must be vectors
and these are expanded in-line. The difference can be seen by considering the same example

myString extends vector {

 -- ["the meaning of life is "];

 -- [42];

 -- extends vector {

 -- " by ";

 -- "Douglas Adams";

 }

}

which results in the vector
["the meaning of life is", 42, "by", "Douglas Adams"]

10.4 formatString
FormatString is a function that takes a format string and a set of parameters and creates a
resultant string which has the values of the parameters embedded. The format string attribute
itself should be named format and the various paramter strings should be named sx where x is a
single digit. The format string should identify the places where the various parameter strings
should be embedded using the characters “$x” for a single digit x. An example is

myString extends formatString {

 format "the meaning of $2 is $1";

 s1 42;

 s2 "life";

}

The attributes may of course be links to other values, but not LAZY links as these are not
resolved in time for the function phase.

10.5 sum
The sum function sums each of its attributes type-caste to integers, failure will result in an
exception. The order, of course, is irrelevant. An example of the use of the sum function is:

val1 34;

val2 45;

num extends sum {

 a ATTRIB val1;

 b 345;

 c ATTRIB val2;

}

This will result in num being set to 424.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 23

10.6 product
The product function multiplies each of its attributes type-caste to integers, failure will result in
an exception. The order is irrelevant. An example of the use of the product function is:

times10 extends product {

ten 10;

}

myNum extends times10 {

 val 34;

}

This will result in myNum being set to 340.

10.7 random
The random function, which in truth is not really a function since it returns a different value for
each invocation, returns a random number as follows:

• if the attribute integer is set to true, an integer between
attributes min and max is returned, otherwise a floating point
value between 0 and 1. The default values for min and max are
0 and 10 respectively.

• if the attribute seed is provided, and the random number
generator has not yet been initialized, that seed is used.

Examples of the use of the random are:
dice extends random {

 integer true;

 min 1;

 max 6;

}

myConfig extends … {

 throw1 extends dice;

 throw2 extends dice;

}

Each of throw1 and throw2 will be some random integer between 1 and 6. Note that each
invocation in myConfig is independent. Each JVM contains a single random number generator for
use during function resolution.

10.8 next
The next function is one that returns a monotonically increasing value, guaranteed never to return
the same number twice within a single description. Again, it is not strictly a function since it
never returns the same value for the same parameters. The only parameter attribute is the base
attribute, setting a minimum value for the values. If the base is below the next value, it is ignored.
If it is above, the next value will be the base. The default base is 0.

An example of the use of next is
unique extends concat {

 prefix "xxxyyyqqq";

 postfix extends next;

}

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 24

myConfig extends … {

 name extends unique;

 otterAttr 42;

}

10.9 date
The date function returns a string representation of the current date. There are no formatting
parameters. Again, this is not strictly a function.

10.10 userinput
The userinput function asks the user for input. It returns the value entered. The prompting
message may be specified in the ‘prompt’ attribute.

anything extends userinput {

 prompt "Enter any value";

}

This will result in anything being set to whatever the user enters. A default value may also be set
using the attribute “default".

11 Schemas
It is frequently useful to be able to define a set of well-formedness conditions on the use of a
template in order to guarantee that its use is correct. However, this should be done in a way in
which all the benefits of template extension are not lost. To this end, an additional phase, similar
to that defined for functions, is included which will check schemas defined and attached to a
template.

The predefined predicate supplied by the CDDLM framework is the schema, a description that
describes the set of attributes a template should contain.

Schemas are best described through the use of an example, in this case of a template for a web
server component. The example defines a schema for a web server template, and defines the
template linked to the schema.

#include "/org/cddlm/predicates.cddlm" // the definition of schemas

WebServerSchema extends Schema {

 port extends Integer;

 directory extends OptionalString;

}

WebServerTemplate extends {

 schema extends WebServerSchema;

 port 80; // default value

}

Note that the name for the attribute linking the template to its schema need not be, as in this case,
schema. Indeed, a template may have more than one schema attached as attributes, in which case
the uses of the templates are checked against all schemas attached. Schemas must extend the base
schema template Schema.

Schemas may be extended in the same way as other templates, and their uses may easily be
extended through placement as illustrated in the following examples.

#include "/org/cddlm/predicates.cddlm" // the definition of schemas

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 25

ThreadedWebServerSchema extends WebServerSchema {

 minimumThreads extends Integer;

}

ThreadedWebServerTemplate extends WebServerTemplate {

 //overwrite with extended schema

 Schema extends ThreadedWebServerSchema;

 minimumThreads 7;

}

AlternativeThreadedWebServerTemplate extends WebServerTemplate {

 // add to existing schema

 schema:minimumThreads extends Integer;

 minimumThreads 7;

}

Note that schemas are entirely optional and need be used only if required.

Schemas are descriptions that may be attached to other descriptions and cause them to be checked
against the schema description.

Schemas are defined by extending the predefined template Schema, defined in the file
/org/cddlm/predicates.sf:

mySchema extends Schema {

 // schema entries

}

Each of the schema entries are attributes whose names are to be found in the template to be
validated. Each of these entries must extend a description that defines certain properties about the
attribute. The properties are

• optional: a Boolean that states whether the attribute is optional or compulsory

• binding: a string which defines whether the attribute must be lazy ("lazy"), must be eager
("eager"), or may be either ("anyBinding") – this controls whether a link may exist instead of
a value of the correct class

• class: a string which defines the name of the class which should be found as the value of the
attribute (e.g. "Integer"), or any class ("anyClass"). The interpretation of the string depends
on the processing environment.

Thus entries in a schema for a web server component may be
WebServerSchema extends Schema {

 port extends {

 optional false;

 binding "anyBinding";

 class "Integer";

 }

 directory extends {

 optional true;

 binding "anyBinding";

 class "java.lang.String";

 }

}

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 26

However this is rather cumbersome, so some helper templates are defined in the include file.
These are defined as follows, with the obvious meanings.

Compulsory extends {

 optional false;

 binding "anyBinding";

 class "anyClass";

}

Optional extends {

 optional true;

 binding "anyBinding";

 class "anyClass";

}

OptionalBoolean extends Optional {

 class "Boolean";

}

Boolean extends Compulsory {

 class "Boolean";

}

OptionalInteger extends Optional {

 class "Integer";

}

Integer extends Compulsory {

 class "Integer";

}

OptionalDouble extends Optional {

 class "Double";

}

Double extends Compulsory {

 class "Double";

}

OptionalLong extends Optional {

 class "Long";

}

Long extends Compulsory {

 class "Long";

}

OptionalFloat extends Optional {

 class "Float";

}

Float extends Compulsory {

 class "Float";

}

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 27

OptionalString extends Optional {

 class "String";

}

String extends Compulsory {

 class "String";

}

OptionalVector extends Optional {

 class "Vector";

}

Vector extends Compulsory {

 class "Vector";

}

OptionalReference extends Optional {

 class "Reference";

}

Reference extends Compulsory {

 class "Reference";

}

OptionalCD extends Optional {

 class "ComponentDescription";

}

CD extends Compulsory {

 class "ComponentDescription";

}

12 Summary of CDDLM Language Processing
All of the tools provided with the CDDLM system handle a CDDLM text in an identical way to
produce a fully resolved deployable description. The process is basically:

• parse the text stream to produce hierarchical data structures

• type resolve the root

• place resolve the root

• extract attribute “main” from the root

• link resolve “main”

• evaluate any functions in “main”

• check schemas in “main”

13 The CDDLM Syntax
The complete CDDLM language syntax is presented here in its entirety.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 28

Stream ::= AttributeList

AttributeList ::= AttributeListElement*

AttributeListElement ::= Attribute | #include STRING

Attribute ::= Name Value

Name ::= BaseReference // limited to WORD parts only

Value ::= ; | Basic ; | Component | [LAZY] BaseReference ;

Basic ::= NUMBER | STRING | MULTILINESTRING | Vector | BINARY

Vector ::= [] | [Basic (, Basic)*]

Component ::= extends [LAZY] BaseComponent

BaseComponent ::= [Reference | NULL] (; | { AttributeList })

BaseReference ::= ReferencePart (: ReferencePart)*

ReferencePart ::= ROOT | PARENT | WORD | THIS | ATTRIB WORD

14 The CDDLM Notation Lexical Rules
In addition to the syntax, we need the rules for the language tokens.

/* White Space */

SKIP : " "| "\t"| "\n"| "\r"| "\f"

/* Comments */

SINGLELINECOMMENT: "//"~["\n"]"\n"

FORMALCOMMENT: "/**" ~["*/"]"*/ "

/* Reserved Tokens */

RESERVED: ";" | "," | "{" | "}" | "[" | "]" | ":" | true | false |

 "NULL" | "extends" | "LAZY" | "ROOT" | "ATTRIB" |

 "PROPERTY" | "IPROPERTY" | "PARENT" | "HOST" | "PROCESS" |

 "THIS" | "#include"

/* Tokens – using Unicode */

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 29

WORD: LETTER (LETTER|DIGIT|SPECIAL)*

SPECIAL: [".", "_", "-"]

LETTER:

 [

 "\u0024",

 "\u0041"-"\u005a",

 "\u005f",

 "\u0061"-"\u007a",

 "\u00c0"-"\u00d6",

 "\u00d8"-"\u00f6",

 "\u00f8"-"\u00ff",

 "\u0100"-"\u1fff",

 "\u3040"-"\u318f",

 "\u3300"-"\u337f",

 "\u3400"-"\u3d2d",

 "\u4e00"-"\u9fff",

 "\uf900"-"\ufaff"

]

DIGIT:

 [

 "\u0030"-"\u0039",

 "\u0660"-"\u0669",

 "\u06f0"-"\u06f9",

 "\u0966"-"\u096f",

 "\u09e6"-"\u09ef",

 "\u0a66"-"\u0a6f",

 "\u0ae6"-"\u0aef",

 "\u0b66"-"\u0b6f",

 "\u0be7"-"\u0bef",

 "\u0c66"-"\u0c6f",

 "\u0ce6"-"\u0cef",

 "\u0d66"-"\u0d6f",

 "\u0e50"-"\u0e59",

 "\u0ed0"-"\u0ed9",

 "\u1040"-"\u1049"

]

/* Literals */

STRING: ("\"" (

 (~["\"","\\","\n","\r"])

 | ("\\"

 (["n","t","b","r","f","\\","'","\""]

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

)* "\"")

MULTILINESTRING: ("##" (

 (~["#","\\"])

 | ("\\"

 (["n","t","b","r","f","\\","'","#"]

 | ["0"-"3"] ["0"-"7"] ["0"-"7"]

)

)

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 30

)* "#")

NUMBER: <INTEGER> | <FLOAT> | <LONG> | <DOUBLE> | <BINARY>

INTEGER: (("-")? ["1"-"9"] (["0"-"9"])*) | "0"

FLOAT_BASE: ("-")?

 (

 (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?

 | "." (["0"-"9"])+ (<EXPONENT>)?

 | (["0"-"9"])+ <EXPONENT>

 | (["0"-"9"])+ (<EXPONENT>)?

)

EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >

DOUBLE: <FLOAT_BASE> (["d", "D"])?

LONG: <INTEGER> (["l", "L"])?

FLOAT: <FLOAT_BASE> ["f", "F"]

BIANRY: "@" ["a"-"z","A"-"Z","0"-"9","+","/"]* "@"

 // note whitespace allowed and ignored

15 Security Considerations
There are few security issues in the design of the language apart from the need to have a
canonical representation of the text for signing. This canonical form is generated by the
resolution processes.

16 Editor Information
Patrick Goldsack
Internet Systems and Storage Laboratory
Hewlett-Packard Laboratories
MailStop HPLB
Filton Rd.
Stoke Gifford
Bristol BS34 8QZ
United Kingdom
Phone: +44 117 312 8176
Email: patrick.goldsack@hp.com

17 Contributors
We gratefully acknowledge the contributions made to this specification by Marc Nijdam.

18 Acknowledgements
This work was supported in part by Hewlett Packard Labs.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 31

References
[1] SmartFrog reference manual

http://www.hpl.hp.com/research/smartfrog/papers/sfReference.pdf

[2] Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Foundation, http://forge.gridforum.org/projects/cddlm-
wg/document/CDDLM_Foundation_Document/en/1

[3] Configuration Description, Deployment, and Lifecycle Management (CDDLM)
XML-Based Language, Document in preparation

[4] Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Basic Services, Document in Preparation.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 32

A. An Example Configuration

This is an example of a configuration of a Web Service providing image rendering. It is
implemented as system consisting of a front end and a number of back end servers; each back end
is implemented as an Apache Tomcat Web Server hosting the rendering web application. The
front end is a web server that redirects requests matching predefined patterns to one of a set of
back end servers.

The configuration file describes the components used to implement the front and back end
servers, and makes selective use of the schema notation to place restrictions on what constitutes a
valid configuration. This permits some configuration errors to be detected, diagnosed and
corrected far in advance of actual deployment.

A.1 Cross-Application Components
First come some components that are specific to the technologies being used, but not to the
application themselves. One would expect these to be predefined and includable into a system
using the #include mechanism.

A.1.1 Web Applications
In Java terms, a Web application, a "webapp" is a Zip file with the extension .WAR and a web
application descriptor stored in the file WEB-INF/web.xml. This SmartFrog component lets one
name the file of the application, and the path that it should be deployed under on the web server.
A liveness page lets applications implement a web page whose successful retrieval (HTTP
response 200 on a GET request) indicates the system application it is healthy.

The warfile and path attributes are declared in the schema as being required [lines 10 -11], so
any configuration using the WebApp component must provide values for these attributes. One
cannot deploy a web application without knowing the name of the file to deploy, or its mapping
within the server.

1 /*
2 * A webapp requires the warfile and the path to be defined.
3 * the web.xml is autoextracted from the warfile unless you choose
4 * to override it with a custom one.
5 * The liveness page, if defined, is a path relative name of a page
6 * that something can use to probe for system happiness.
7 */
8
9 WebAppSchema extends Schema {
10 warfile extends String;
11 path extends String;
12 webinf extends OptionalString;
13 livenessPage extends OptionalString;
14 }
15
16 WebApp extends {
17 schema extends WebAppSchema;
18 }

The component permits configurations to provide an alternate web.xml descriptor. This is
because a common pattern (arguably anti-pattern) of webapp configuration is to store

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 33

configuration data in the web.xml file; many third party components retrieve some elements of
their configuration from this file. While this provides a single configuration point for an
application, it does prevent the application to be reconfigured without rebuilding it, and mandates
a different WAR archive for each deployment target. Allowing configuration components to
name a new web.xml file is a basic mechanism for enabling deployment-time customisation of
the webapp's configuration. Of course, a more complete and powerful complete mechanism
would be to describe the web application entirely in SmartFrog components, autogenerating the
web.xml file at deployment time.

A.1.2 Web Server
A Web server has a public hostname (that may not be the same as that determined by local API
calls such as getlocalhost()), and a port to which it listens.

19 /**
20 * a generic web server
21 */
22 WebServer extends {
23 hostname "";
24 port 80;
25 }

A.1.3 Tomcat Web Server
The Apache Tomcat Web server is a web server that listens on port 8080 by default. The options
list is a set of parameters to provide to the JVM that runs the application; these can set system
properties or control the runtime itself.

26 /**
27 * tomcat is a web server
28 */
29 Tomcat extends WebServer {
30 port 8080;
31
32 tomcatOpts [];
33 }

A.1.4 SOAP
The configuration contains the model that a SOAP endpoint has a name and a namespace. The
name is combined with the path of any hosting web server/web application to create the full URL
to the endpoint. This implementation uses the simpler model of one URL=one endpoint, rather
than a single URL supporting multiple endpoints, using an internal WS-Addressing address to
determine the ultimate destination. It is therefore "pre-WSRF", but a legitimate Web Service in
the eyes of the W3C SOAP working group.

34 /**
35 * a soap endpoint has a namespace, maybe other things like
36 * a rpc/enc versus doc/lit type, WSDL URL.
37 * If the declaration was to be used to configure the SOAP runtime
38 * then these and more would be needed.

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 34

39 */
40
41 SoapEndpointSchema extends Schema {
42 name extends String;
43 namespace extends String;
44 }
45
46 SoapEndpoint extends {
47 schema extends SoapEndpointSchema;
48 }
49

A.1.5 Apache Axis
Apache Axis (http://ws.apache.org/axis) is a SOAP server implemented as a Java Web
Application. Its configuration models this by having the Axis component extend the WebApp
component [line 62]. As well as inheriting the attributes of the WebApp component, we wish to
inherit the schema. This happens automatically. We also want to add a new schema, one that
contains the extra requirements of Axis –an optional hostname and port, and a mandatory WSDD
deployment descriptor. This can be done in two ways.

Firstly, the new schema could be defined as an extension of the existing schema, here:
ApacheAxisSchema extends WebAppSchema { … }
The ApacheAxis component would use that schema and all restrictions would be validated:
schema extends ApacheAxisSchema;
The alternate strategy is to declare a separate schema, and assign it as an attribute with a different
name than that used in the parent class. This will tell the parser to use both schemas when
validating the types of the component. This is what this example does on line 63 .

50 ApacheAxisSchema extends Schema {
51 //if the hostname is not empty, then it overrides the locally
52 //determined hostname in Axis
53 hostname extends OptionalString;
54 //same for port. Axis normally determines its state
55 //from incoming requests, but multi-tier systems force overrides
56 port extends OptionalInteger;
57
58 //this is the axis configuration file for a service
59 wsddDescriptor extends String;
60 }
61
62 ApacheAxis extends WebApp {
63 Schema2 extends ApacheAxisSchema;
64
65 path "/axis";
66
67 //sets error code 500 if anything appears wrong
68 livenessPage "happyaxis.jsp";
69
70 // standard admin page
71 AxisAdmin extends SoapEndpoint {
72 name "admin";
73 namespace "http://ws.apache.org/axis/admin";

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 35

74 }
75 }
76

The Axis Web Application provides a status page, happyaxis.jsp that examines the classpath for
required libraries and returns a 5XX series error if something important is missing. This is used
for the liveness page of the WebApp component. Axis also provides an administration SOAP
service by default. Other SOAP services will be published if the WSDD descriptor requests it.
This complex and underdocumented XML file could again be replaced by SmartFrog
components. This example does not do so not only in the interests of saving space, but because
the GT3 toolkit adds its own data to the WSDD file; any component design would need to take
this need into account.

A.2 Custom components
A.2.1 Renderer Service
The hypothetical imaging renderings service is implemented as a WebApplication that extends
Apache Axis; it is defined as an extension of the ApacheAxis component. It provides a URL to
the WAR file containing the application, so unlike the ApacheAxis component, this templact can
be used in a system configuration without the schema restrictions raising an error.

77 /**
78 * a renderer build on apache Axis, adding two new endpoints and a
79 WSDD descriptor
80 */
81 Renderer extends ApacheAxis {
82 warfile "http://filestore/files/renderer.war";
83 path "/renderer";
84
85 //new liveness page
86 livenessPage "happyrenderer.jsp";
87
88 //deployment descriptor
89 wsddDescriptor="WEB-INF/renderer.wsdd";
90
91 rendererService extends SoapEndpoint {
92 name "render";
93 namespace "http://example.org/render/r1.xsd";
94 }
95 monitor extends SoapEndpoint {
96 name "monitor";
97 namespace "http://example.org/render/monitor.xsd";
98 }
99 }

This Web Service declares its deployment descriptor, and identifies the two endpoints that
implemented; one for rendering and one for support. It also provides a new liveness page that
contains renderer-specific health checks.

A.2.2 Back end server
The Renderer Web Service is now defined sufficiently to be deployed onto a web server, so it is
time to declare the back end web server. This server is to be an instance of Apache Tomcat,

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 36

deployed in a named host and running on port 80. The default port of the Web Server is therefore
returned to that port number [line 101]. The Java Virtual Machine of the application is tuned to
have more memory, better garbage collection and less caching of both valid and invalid
hostnames. [lines 110 -112].
100 BackEnd extends Tomcat {

101 port 80;

102 hostname;

103

104 renderer extends Renderer {

105 hostname PARENT:hostname;

106 port PARENT:port;

107 }

108

109 //tune the JVM

110 tomcatOpts ["-Xmx256m","-Xincgc",

111 "-Dnetwork.address.cache.ttl=60",

112 "-Dnetwork.address.cache.negative.ttl=0"];

113

114 livenessPage renderer:livenessPage;

115 }

It does need be told the port and hostname to support, which is done by filling in values from the
parent component, the BackEnd component. This is done by assigning them using a relative
reference, such as PARENT:hostname, which declares that the hostname should be set to whatever
value the hostname attribute of the parent component is set to.

A.2.3 Load Balancing Front End
The back end server is matched by a front end that needs to redirect sections of the site to the
renderer.

First, the concept of redirection needs to be described, here by providing a pattern for matching
and rewriting the paths of requests received by a server, the RedirectPattern, and by providing
the component of a redirection target.
116 RedirectPattern extends {

117 pattern;

118 redirectPattern;

119 }

120

121 RedirectTargetSchema extends Schema {

122 hostname extends Vector;

123 port extends Vector;

124 livenessPage extends String;

125 }

126

127 RedirectTarget extends {

128 schema extends RedirectTargetSchema;

129 port 80;

130 }

The destination of a redirect is described by a vector of hostnames and matching vector of ports.

The redirection pattern is used by the front end server, which is extends a web server with a
vector of backend hosts (and ports), and a liveness page and timeout. The server will use liveness

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 37

pages and timeouts to manage queues of requests to each back end server, and direct incoming
requests to whichever functional server it chooses.

131 FrontEndSchema extends Schema {

132 timeout extends Integer;

133 backEndHost extends Vector;

134 backEndPort extends Vector;

135 backEndLivenessPage extends String;

136 }

137

138 FrontEnd extends WebServer {

139 schema2 extends FrontEndSchema;

140 timeout 60;

141

142 loadBalance extends {

143 pattern extends RedirectPattern {

144 pattern "/svg/*";

145 redirectPattern "/renderer/*";

146 }

147 dest extends RedirectTarget {

148 hostname ATTRIB backEndHost;

149 port ATTRIB backEndPort;

150 livenessPage LAZY backEndLivenessPage;

151 }

152 }

153 }

There is some complexity here in binding the liveness pages together. At this point in the model
of the system, the actual application that runs in the back end is undefined –this component is still
highly reusable. Yet the load balancer still needs the liveness page. The schema declares that such
a liveness page will be defined [line 135], we just need to tell the load balancer component to
use that definition when it becomes available. The LAZY option on the attribute delays the
evaluation to deployment time, which is exactly what we need.

A.2.4 System integration
All the components have been defined in an abstract way; we just need to glue the renderers to
the front end.

This is done with a component that declares a base installation with one front end and one
back end and binds them together using deployment time evaluation of the attributes (the
LAZY reference), of the System component.

It also declares that the backEndLivenessPage attribute of the component is extracted
from that of the back end server [line 172] and that the liveness page used by the load-
balancing front end is bound to that same value [line 164]. The combined effect is to tell
the load balancer which page the back end offers as a liveness cue, without any need to
duplicate the declaration of that page's path.

154 System extends {

155 frontEndHost;

156 frontEndPort 80;

GWD-R (draft-ggf-cddlm-language-smartfrog-r04.doca) February 23, 2004

cddlm-wg@ggf.org 38

157 backEndHost;

158 backEndPort 80;

159

160 frontEnd extends FrontEnd {

161 //explicitly ask for parent attributes

162 backEndHost LAZY PARENT:ATTRIB backEndHost;

163 backEndPort LAZY PARENT:ATTRIB backEndPort;

164 backEndLivenessPage LAZY PARENT:ATTRIB backEndLivenessPage;

165 }

166

167 backEnd extends BackEnd {

168 hostname LAZY ATTRIB frontEndHost;

169 port LAZY ATTRIB frontEndPort;

170 }

171

172 backEndLivenessPage backEnd:livenessPage;

173 }

A.3 Instantiation
Finally, the servers are instantiated by naming the hosts, and, presumably, deploying the system.
174 two_servers extends System {

175 frontEndHost "front.example.org";

176 backEndHost "back.example.org";

177 }

178

179 main extends two_servers;

