

This is a confidential VA Software Systems internal communication, for the sole use of
the intended recipient. Unauthorized copying or redistribution is strictly prohibited.

SourceForge Automatic Release Packager for Ant

Introduction
 The SourceForge File Publishing Tool provides a location to release bundled software,
libraries, documentation, or other software development products. The File Publisher is organized
into packages, releases, and files. One or more file constitutes a release and zero or more
releases are bundled into packages. (Packages may be empty)
 The SourceForge File Publisher Admin page is one way to create releases. The
automatic release packager is another. The automatic release packager is an XML-RPC
procedure that encapsulates the steps required.

Ant
 The ant development tool (http://ant.apache.org) is a Java based build tool that uses XML
definition files to specify tasks involved in building a particular software package. Common tasks
include compiling source code, copying, moving and deleting files, and archiving compiled code
into libraries or archives. The Ant tool is extensible with custom tasks.

Custom Ant Task
 SourceForge provides a custom Ant task that can be used to create a new release in a
SourceForge package directly from an Ant build. In this way, a single build process can compile,
archive, package, and post a new release in SourceForge.
 The actions necessary to do this are encapsulated in the provided Java class,
SFPublishTask.class.

Preparation
 In order to use the custom Ant task, the SFPublishTask class must be available to Ant.
This is usually accomplished by putting the SFPublishTask.class file in the Java classpath, such
as $JAVA_HOME/lib.

Examples
 Once the SFPublishTask is available to Ant, the following line at the top of an Ant build
file will define the task:

 <taskdef name=”sf-publish” classname=”SFPublishTask” />

 To use the packager, simply call the custom task with the appropriate arguments:

 <sf-publish directory="release" server="sourceforge.example.com"
project="project_name" package="package_name" release="daily_04_10_2003"
 user="sf_user" password="sf_pass" maturity="Stable" />

 All arguments are required, but can appear in any order:

Argument Name Notes
directory The local directory where files to be released reside. All files in

this directory will be added to the release.
server The SourceForge server FQDN.
project The short or unix name of the target project.
package The package name where this release will be created.
release The name of this release. If this release exists, and files of the

same name exist, those files will be overwritten. If the release
exists, files with filenames that do not match existing will be
added to the release.

user Username of a SourceForge server user that has RBAC
priveleges to create releases.

This is a confidential VA Software Systems internal communication, for the sole use of
the intended recipient. Unauthorized copying or redistribution is strictly prohibited.

password The password of that user.
maturity The maturity tag for the release.

Complete Example of build.xml.

Blue Text indicates the custom task definition.
Red Text indicates a compile task.
Green Text indicates an archive task.
Orange text indicates the SourceForge automatic publish task. In this example, the product of the
archive step (example.jar) is published to the SourceForge server in a release called
“daily_04_10_2003.”

<project name="example" default="basic" basedir=".">
 <description>

 Buildfile for Example SourceForge project
 </description>

 <taskdef name="sf-publish" classname="SFPublishTask"/>

 <property name="lib" location="lib" />
 <property name="src" location="src" />
 <property name="release" location="rel" />

 <target name="init">
 <tstamp/>
 <mkdir dir="${lib}" />
 </target>

 <target name="basic" depends="init">
 <javac srcdir="${src}" destdir="${lib}" />
 </target>

 <target name="clean">
 <echo>Cleaning up build products... </echo>
 <delete dir="${lib}"/>
 </target>

 <target name="archive" depends="basic">
 <jar jarfile="${release}/example.jar" basedir="${lib}" />
 <copy src="ssns.jar"
dest="/usr/local/jboss/server/default/deploy/" />
 </target>

 <target name=”publish” depends=”archive”>
 <sf-publish directory="release" server="sourceforge.example.com"
project="project_name" package="package_name" release="daily_04_10_2003"
 user="sf_user" password="sf_pass" maturity="Stable" />
 </target>
</project>

Another example uses a separate XML properties file to store the username and
password, so that a generic build.xml project can incorporate user specific credentials for the
SourceForge software and avoids a plaintext password in a global build file. This example also
uses the Ant “BuildNumber” task to create incrementally numbered releases.

<?xml version="1.0"?>

 <project name="SF-Publish Example" default="release" basedir=".">
 <taskdef name="sf-publish" classname="SFPublishTask"/>

 <target name="release">

This is a confidential VA Software Systems internal communication, for the sole use of
the intended recipient. Unauthorized copying or redistribution is strictly prohibited.

 <buildnumber />
 <xmlproperty file="user.xml" />
 <sf-publish directory="release"

server="sourceforge.example.com" project="project-name" package="package-name"
release="build-${build.number}" user="${user.name}" password="${user.password}"
maturity="Stable" />

 </target>
</project>

The user.xml file contains:

<user>
 <name>jdoe</name>
 <password>foo</password>
</user>

