
Release Preparation
Phase Deliverables
Release Preparation
Phase Deliverables
Release Preparation
Phase Deliverables

Sustaining Engineering
Phase Deliverables

Sustaining Engineering
Phase Deliverables

Sustaining Engineering
Phase Deliverables

Product Definition
Phase Deliverables
Product Definition
Phase Deliverables
Product Definition
Phase Deliverables

Design
Phase Deliverables

Design
Phase Deliverables

Design
Phase Deliverables

Development
Phase Deliverables

Development
Phase Deliverables

Development
Phase Deliverables

Release
Phase Deliverables

Release
Phase Deliverables

Release
Phase Deliverables

SOFTWARE
ENGINEERING

SOFTWARE
ENGINEERING

SOFTWARE
ENGINEERING

SOFTWARE
QUALITY

ASSURANCE

SOFTWARE
QUALITY

ASSURANCE

SOFTWARE
QUALITY

ASSURANCE

SOFTWARE
PRODUCT

MANAGEMENT

SOFTWARE
PRODUCT

MANAGEMENT

SOFTWARE
PRODUCT

MANAGEMENT

OTHEROTHEROTHER

Software Engineering Institute (SEI)
Capability Maturity Model (CMM)

SW-CMM Level 3 KPA
Organization Process Focus

SW-CMM Level 3 KPA
Organization Process Definition

SW-CMM Level 3 KPA
Training Program

SW-CMM Level 3 KPA
Integrated Software Management

SW-CMM Level 3 KPA
Software Product Engineering

SW-CMM Level 3 KPA
Intergroup Coordination

SW-CMM Level 3 KPA
Peer Reviews

SW-CMM Level 2 KPA
Requirements Management

SW-CMM Level 2 KPA
Software Project Planning

SW-CMM Level 2 KPA
Software Project

Tracking & Oversight

SW-CMM Level 2 KPA
Software Subcontract

Management

SW-CMM Level 2 KPA
Software Configuration

Management
SW-CMM Level 2 KPA

Software Quality Assurance

PHASE 2:
Design

PHASE 2:
Design

PHASE 2:
Design

PHASE 3:
Development

PHASE 3:
Development

PHASE 3:
Development

PHASE 4:
Release preparation

PHASE 4:
Release preparation

PHASE 4:
Release preparation

PHASE 6:
Sustaining Engineering

PHASE 6:
Sustaining Engineering

PHASE 6:
Sustaining Engineering

PHASE 5:
Release

PHASE 5:
Release

PHASE 5:
Release

PHASE 1:
Product Definition

PHASE 1:
Product Definition

PHASE 1:
Product Definition

= Iterative Document Review and Approval process

Exit to
Release Prep

Phase

Yes

Yes
Yes

No

PassYes

No

Yes

Yes

Refine Scripts

Update

New Project End of Life

No

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

No

No

Yes Yes

No

Revise

No

No

Terminate No

 Proceed
with

 Project?
Revise or

Terminate?

Terminate
Project

Terminate
Project

1.3.
Statement of

Work

1.4. Product
Plan

 Proceed
with

 Project?

1.2.
Technical

Constraints
Document

Input:
Business

Case

1.1. Business
Requirements

Document

Exit to
Design Phase

Requirements
Gathering
Process

All
Documents
Approved?

Prototype
validated?

1.7.
Prototype

1.5. Product
Requirements

Documents

1.6.
Preliminary
Project Plan

Both
Documents
Approved?

2.2. Technical
Design

Documents

2.3. User
Interaction

Specification

2.8.
Establish
Launch
Team

2.4. SQA
Test Plan

2.1.
Architecture
Specification

2.5. Field
Test Plan

All
Documents
Approved?

2.7. Final
Project Plan

2.6.
Documentation

Plan

Exit to
Development

Phase

High
Priority
Bugs?

3.6.
Engineering
System Test

3.7.
Frozen
User

Interface

3.8.
Frozen

Code Base

3.9.
Migration

Scripts

Fix Bugs

All Items
Complete?

3.13.
Launch
Strategy

3.1.
Develop

Code

3.2.
Technical
Unit Test

All
Modules

Pass?

3.3.
Test

Cases

3.4.
Test

Scripts

3.5.
Functional
Unit Test

3.12.
Training

Plan

3.11.
Draft User

Documentation

Exit to
Release
Phase

Fix BugsFix Bugs

4.1.
Beta

Testing

4.2. Release
Demonstration

Version

4.5.
Product
Training

4.10.
Release

Readiness
Check

High
Priority
Bugs?

4.7.
Final

Code Freeze

4.6. Final
System
Testing

High
Priority
Bugs?

4.8.
Final User

Documentation

4.4.
Service

and Support
Plan

4.3.
Marketing

and Channel
Plan

4.9.
Product

Packaging Release
Accepted?

5.1.
Release
Notes

5.3.
Release

Announcement
Address
Issues

5.2.
Quality

Statement

5.5. Release
Acceptance

Activities

5.4.
Product
Release

Exit to
Sustaining

Engineering

Exit to
Product

Definition
Exit

Product
End-of-Life?

6.6.
Quantify
Release
Results

6.3.
Review

Customer
Issues

6.4. Review
Feature

Requests

6.7.
Modify CDP
Processes

6.2.
Monitor

Customer
Adoption

6.5.
Product
Updates

Begin
New

Project?

6.1.
Internal

Post-Release
Analysis

Input:
Project
Goals

3.10.
Alpha

System Test

Introduction

The Software Engineering Institute (SEI) Capability
Maturity Model for Software (SW-CMM) is a framework
that describes the key elements of an effective software
process. A key premise is that process maturity equates
to the improved ability of an organization to meet cost,
schedule, functionality, and product quality goals. The
SW-CMM defines five process maturity levels from 1-5.
Each is comprised of Key Process Areas (KPAs) defining a
series of activities that, when performed consistently and
effectively, help organizations meet established goals for
process capability.

Using the SourceForge Collaborative Development
Process (CDP)

The CDP provides a methodology that, when combined
with the use of SourceForge, fully supports all of the goals
associated with achieving SW-CMM Levels 2 and 3.

The following sections provide a summary of the goals
associated with each KPA and the ways SourceForge and
the CDP processes can be used to achieve them.

1.1. Business Requirements Document – Describes the business objectives, market
opportunity, and strategic goals of the proposed product.
1.2. Technical Constraints Document – Provides an initial technical feasibility,
constraints, and effort estimate for the proposed product.
1.3. Statement of Work – Combines the Business Requirements and Technical
Constraints Documents for ease of review.
1.4. Product Plan – Provides a comprehensive overview of the product and the
development effort required to produce it. Includes product requirements overview,
feature-level technical effort estimates, quality, cost, and delivery, risk analysis, roles
and responsibilities, and key deliverables. Serves as a decision point for proceeding
with the project.
1.5. Product Requirements Documents – Expand on the information provided in the
Product Plan to provide detailed, feature-level requirements specifications.
1.6. Preliminary Project Plan – Provides a milestone-level project schedule. Will be
expanded in later stages.
1.7. Product Prototype – Validates the product architecture and further refines the
technical effort estimates.

2.1. Architecture Specification – Provides a detailed description of the
product architecture.
2.2. Technical Design Documents – Provide detailed descriptions of the technical
requirements, development methods, and implementation specifications for each
product feature. Must conform to the Product Requirements Documents and
Architecture Specification.
2.3. User Interaction Specification – Describes the manner in which users will
interact with the product. Includes items such as task flow, navigation, coding
guidelines, display of data, page layout, and textual and graphical elements.
2.4. Software Quality Assurance Test Plan – Provides a comprehensive overview of
all software testing activities.
2.5. Field Test Plan – Provides an overview of all pre-release field testing activities
such as Alpha and Beta testing.
2.6. Documentation Plan – Outlines all technical documentation to be produced in
support of the product.
2.7. Final Project Plan – Expands on the Preliminary Project Plan to provide
task-level detail.
2.8. Establish Launch Team – Establishes a cross-functional team to oversee the
progress of the project.

3.1. Develop Code – Develop and test all product code.
3.2. Technical Unit Testing – Tests each code module individually, prior to integration
or handover to Software Quality Assurance. White box testing involving code review.
3.3. Test Cases – Provide a high-level overview of the product components to be
tested during software testing activities.
3.4. Test Scripts – Document the specific scenarios to be tested during software
testing activities in step by step detail.
3.5. Functional Unit Testing – Tests each code module individually. Black box testing.
3.6. Engineering System Testing – Tests integrated product.
3.7. Frozen User Interface – Marks completion of user interface.
3.8. Frozen Code Base – Marks completion of all product code. Change control is
initiated at this point.
3.9. Migration Scripts – Developed to enable users to upgrade from an earlier
product version.
3.10. Alpha System Testing – Tests integrated product. May be opened to participants
external to the organization.
3.11. Draft User Documentation – Provide drafts for review.
3.12. Training Plan – Describes all product training activities.
3.13. Launch Strategy – Describes key product launch activities.

4.1. Beta Testing – Enlists participants external to the development organization to
use and test the product.
4.2. Release Demonstration Version – Enables pre-release product demonstrations
and facilitates training, marketing, and documentation activities.
4.3. Marketing and Channel Plan – Documents all marketing-related activities.
4.4. Service and Support Plan – Documents the strategy for supporting the product
and the activities necessary to prepare support staff.
4.5. Product Training – Trains internal staff to use, sell, and support the product.
4.6. Final System Testing – Tests the product once all bug fixes and other code
changes have been completed.
4.7. Final Code Freeze – Marks the final completion of all product code. No further
changes are permitted.
4.8. Final User Documentation – Complete all final user documentation.
4.9. Product Packaging – Complete packaging materials.
4.10. Release Readiness Checkpoint – Confirms organization-wide release readiness.

5.1. Release Notes – Provides users critical product information and any late updates
to the user documentation. Includes key product enhancements, corrected defects,
known issues, and references to comprehensive documentation.
5.2. Quality Statement – Summarizes the outcome of all software testing activities.
5.3. Release Announcement – Announces the product release. May be internal
or external.
5.4. Product Release – Releases the product to its intended audience.
5.5. Release Acceptance Activities – Confirm acceptance of the product by a
sampling of early adopters. Validate usability of product, documentation, collateral
materials, and support infrastructure.

6.1. Internal Post-Release Analysis – Identifies the successes and challenges
of the project. Measures planned versus actual results and identifies areas for
future improvement.
6.2. Monitor Customer Adoption – Monitor and facilitate customer adoption
of the product.
6.3. Review Customer Issues – Review customer-reported issues and support
requests to assess the quality of the product and identify possible need for
remedial action.
6.4. Review Feature Requests – Review customer feature requests for potential
inclusion in patches or upcoming releases.
6.5. Patch Process – Issue product updates or patches as needed to address
critical customer issues.
6.6. Quantify Release Results – Prepare detailed report of all post-release
analysis results. Measure progress against established goals. Use as preparation
for beginning a new project and when reaching the product’s end-of-life.
6.7. Modify CDP Processes – Identify areas for process improvement and
implement necessary changes. Repeat this process before beginning a new project,
when reaching the product’s end-of-life, and as needed to reach established
process improvement goals.

Organizational responsibility for assessing, developing,
maintaining, and improving software process activities
is established.

Establish a software engineering process group. Set up a
SourceForge project to store all of the team’s documents,
files, forums, mailing lists, and other materials.

The software project plan is developed based on require-
ments and effort estimates. All commitments are agreed to
and documented.

Use the SourceForge Project Management Console to manage
your project plan and Reporting to measure the success of
past estimation efforts and aid in project planning.

Actual results are measured against the plan. Corrective
actions are taken and managed to closure and the plan is
adjusted if necessary.

Use the SourceForge Project Management Console to
maintain visibility into and control of all deviations from your
project plan, and Tracker reporting to monitor status on
tracker artifacts.

Qualified software subcontractors are selected.
Commitments are mutually agreed upon, ongoing
communication maintained, and progress tracked.

Use the SourceForge Project Management Console to manage
actions assigned to subcontractors and Mailing Lists to
maintain communication.

QA activities are planned, performed and verified. Products
are tested to established standards and noncompliance
issues are addressed.

Use the SourceForge Tracker to track bug status, the
Document Manager to store test plans and other documents,
and Reporting to report on QA activity.

SCM activities are planned, baselined, monitored and
controlled. All code changes and adherence to SCM policies
are tracked.

Use the SourceForge SCM interface to browse your repository
and the Tracker/SCM integration to associate code commits
with bugs and requirements artifacts.

Product requirements are defined & controlled. A baseline
is established and software plans are kept consistent with
the requirements.

Use the SourceForge Tracker to manage feature requests,
Tracker/SCM integration to map code to requirements, and
the Document Manager to store requirements documentation.

A set of standard software processes for the organization
is established, maintained, and used by all software
projects.

Use your SourceForge project as a central repository for
all of the organization’s process documents, templates,
and other process library materials.

Build and maintain the product software following the
project’s defined software processes.

Use the SourceForge Tracker/SCM integration with code
commits, the SCM interface to browse your repository,
and your project to access process documents.

Identify and provide the training needed by the
organization, projects, and individuals to perform their
roles effectively.

Use the SourceForge Document Manager to store training
plans and materials. Conduct product training during the
Release Preparation phase of every project.

Each software project follows a set of processes tailored
from the organization’s standard software processes.

During each project’s Product Definition and Design
phases, select and tailor project-specific processes from
your SourceForge process repository project.

Software Engineering groups work with other engineering
groups to address system-level requirements, objectives,
and issues.

Use SourceForge Forums and Mailing Lists to coordinate
the groups’ activities and the Project Management
Console to manage all actions and deliverables.

Peer reviews of code are conducted to remove defects
from the software early and efficiently.

Use the SourceForge SCM interface to access the code
and the Document Manager to store review templates.
Conduct throughout the Development phase.

VA Software Corporation ˚ 47071 Bayside Parkway ˚ Fremont, CA 94538
877.825.4689 toll free ˚ 510.687.7000 phone ˚ 510.683.0710 fax
http://www.vasoftware.com

The Iterative Document Review and Approval
Process uses the SourceForge Document Manager
to automatically route documents for review and
approval. The document submitter establishes
the review criteria. Reviewers then receive email
notifications, review instructions, and overdue
reminders if necessary. All review comments are
archived in the Document Manager for later reference.

