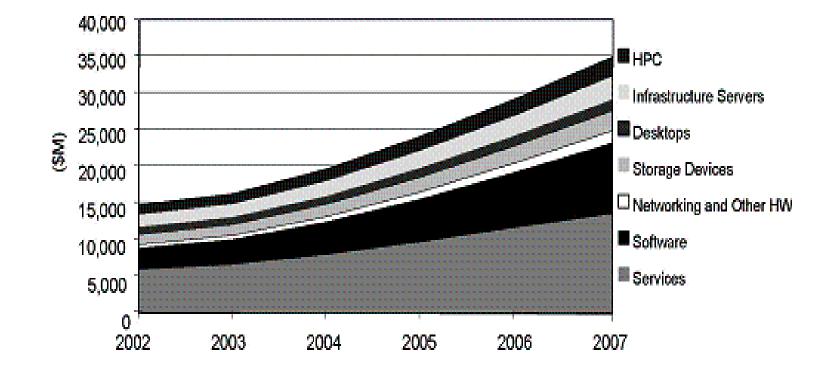

Update on Progress Towards an Open Life Science Reference Architecture


Rick Stevens Argonne National Laboratory University of Chicago stevens@mcs.anl.gov

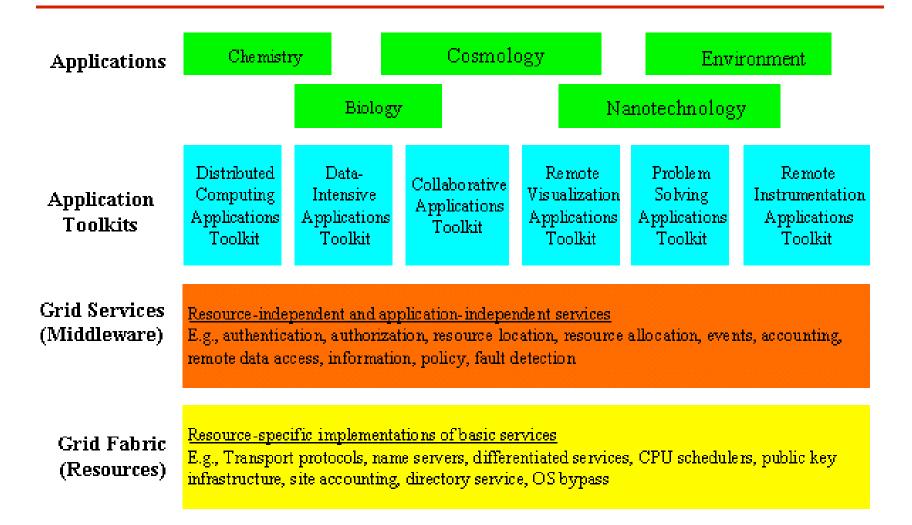
Genomics is Powering the New Biology, but Computing is in the Drivers Seat

IDC Worldwide Bio-IT Market

The New Biology

- Genomics
- Functional Genomics
- Proteomics
- Structural Biology
- Gene Expression
- Metabolomics
- Advanced Imaging

- High-throughput methods
 - Low cost
 - Robotics
- Bioinformatics driven
- Quantitative
- Enables a systems view
- Basis for integrative understanding
 - Global state
 - Time dependent


Open Life Science Grid Infrastructure

Open Grid Services Infrastructure

The Grid Software Stack

Future Headlines

- First synthetic model prokaryotic organism
- Characterization of human microbial ecology
- Global index to life on earth
- Characterization of microbial life
- Theory of cell evolution and organization
- Theory of evolution of intelligence
- First synthetic eukaryotic organism
- Confirmation of extra-solar earthlike planets
- Synthetic self-reproducing biomemetic nanosystem

Determining Requirements for the version 1 of the Open BioGrid (OBG-1)

- Model for Community Involvement
 - MPEG-7 process
 - MPI Forum
 - More focused effort than the current GGF LSG processes
- Developing a call for proposals
 - Technologies (mostly existing tools and capabilities)
 - Architectures (following from the Bluetooth concept of usage scenarios)
 - Interfaces and APIs (leverage GGF, W3C, I3C)
- Requirements Collection (for the next say the next six months)
 - Input for an eventual RFP
 - Scope the components of a (set of) "Standard" (s)
 - Related to existing Standards (GGF, W3C, I3C, etc.)

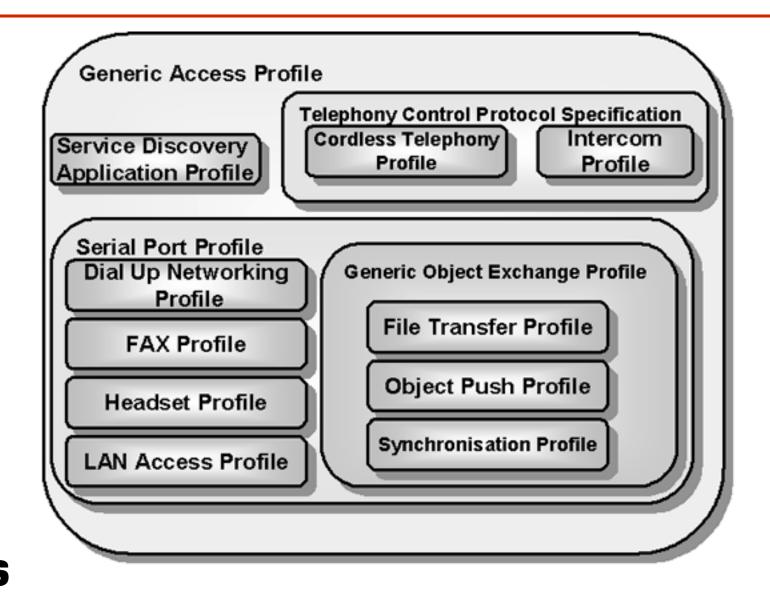
Some High-Level Requirements Driven by Life Science Demographics

- Platform for highly distributed data sharing and curation
 - Directly supports distributed networks of LS researchers
- Peer-to-peer updates and resource management
 - Decentralized administration
 - Provides for the concept of super-Peers
 - Enables self-organizing groups
- Services rich environment
 - Workflows (standard protocols.. links to "current protocols")
 - Data update and access services (wrappers around major data providers)
 - Tools (informatics) suites and code push services
 - Ontologies and conceptual discovery frameworks
 - Computing services
 - Generic computing services (cycles on platforms.. Reseller grid type services)
 - Specific computing services (named, typed services, e.g. BLASTP, etc.)
- Bio applications neutral
 - Genomics, Proteomics, SysBio, Imaging, Discovery, etc.

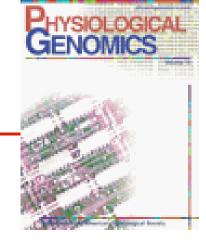
An International Systems Biology Grid

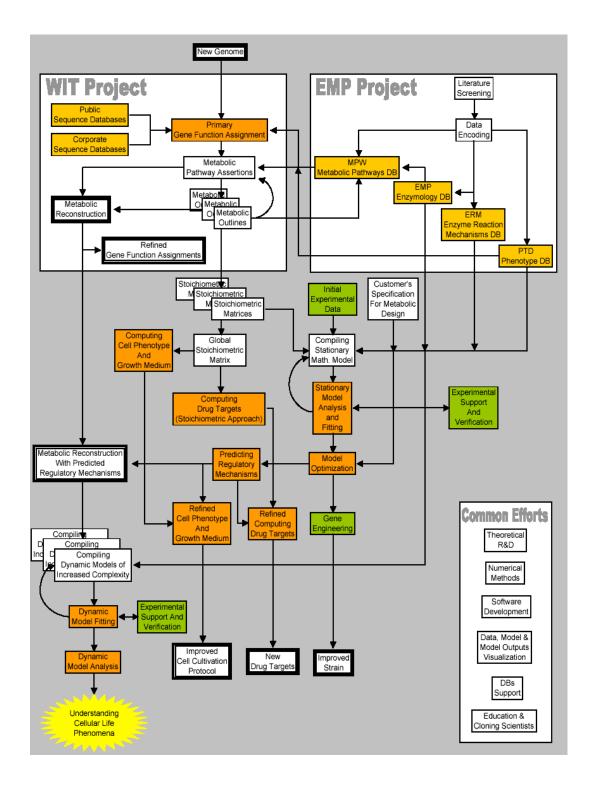
- A Data, Experiment and Simulation Grid Linking:
 - People [biologists, computer scientists, mathematicians, etc.]
 - Experimental systems [arrays, detectors, MS, MRI, EM, etc.]
 - Databases [data centers, curators, analysis servers]
 - Simulation Resources [supercomputers, visualization, desktops]
 - Discovery Resources [search servers perhaps optimized]
 - Education and Teaching Resources [classrooms, labs, etc.]
- More fine grain than many current Grid projects
 - More laboratory integration [need small laboratory software interfaces]
 - Most of the participants will be experimentalists [workflow, visualization]
 - More diversity of data sources and databases [integration, federation]
 - More portals to simulation environments [ASP models]

Bluetooth "Profiles"

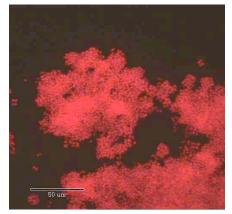

- A profile is just a description of how to use a specification to implement a given end-user function. The International Standards Organization (ISO) first came up with the idea of profiles. Profiles help interoperability in four key ways:
 - Implementation options are reduced, so applications share the same features.
 - Parameters are defined, so applications operate in similar ways.
 - Standard mechanisms for combining different standards are defined.
 - User interface guidelines are defined, giving uniformity across devices.
- The profiles describe minimum implementations

Bluetooth "profiles"


Mậc


Open BioGrid Example Scenario

- A P2P Distributed Curation Environment
 - Core database(s)
 - Extensible core schemas
 - Object modeland external data representation support
 - Language independence (PERL, Python, Java)
 - High-performance services interfaces
 - Bulk data xfer
 - HPC conduit for Local and Grid computing
 - Web based interfaces
 - Human (portals)
 - WSDL
 - Peer-to-Peer synchronization/updates
 - Open Sub/Pub model
 - Data and Code



A Systems Biology Approach to Understanding Cellular Life Integrating:

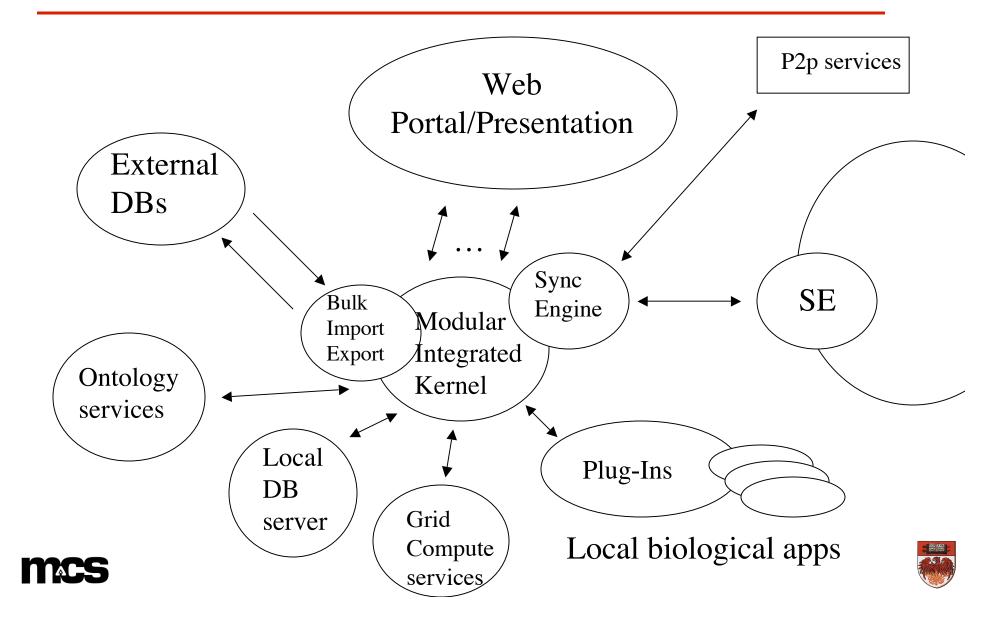
- Theory
- Numerical methods
- Software development
- Data models and Visualization
- DB support
- Education

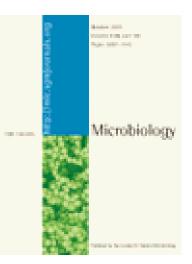
Mathematical Toolkits Focused on Biological Systems

- "A Mathematica for molecular, cellular and systems biology"
 - Core data models and structures [see db]
 - Optimized functions [see core libraries]
 - Scripting environment [e.g. Python, PERL, ruby, etc.]
 - Database accessors and built-in schemas
 - Simulation interfaces
 - Parallel and accelerated kernels
 - Visualization interfaces [info-vis and sci-vis]
 - Collaborative workflow and group use interfaces

Proposed Scope of an Initial Effort

- Open SW platform for biological data integration
 - Supporting distributed (ad hoc) team curation with versioning
 - Supporting rapid update cycles and annotations
 - Extensible data classes
- "Conduits" for synchronization (implemented via 'profiles')
 - Major community databases
 - Peer-to-peer services (instances of the standard infrastructure)
- An Open Architecture
 - Open interface for components
 - DB independent kernel (Oracle, SQL, DB2, Postgres, etc.)
 - Language independent design (PERL, Python, Java, C/C++)
 - Extensible APIs for local applications support
 - Grid/Web services (OGSA/OGSI, WSDL, etc.)
 - Flexible data sharing
 - Publish/subscription model of data sharing with IP

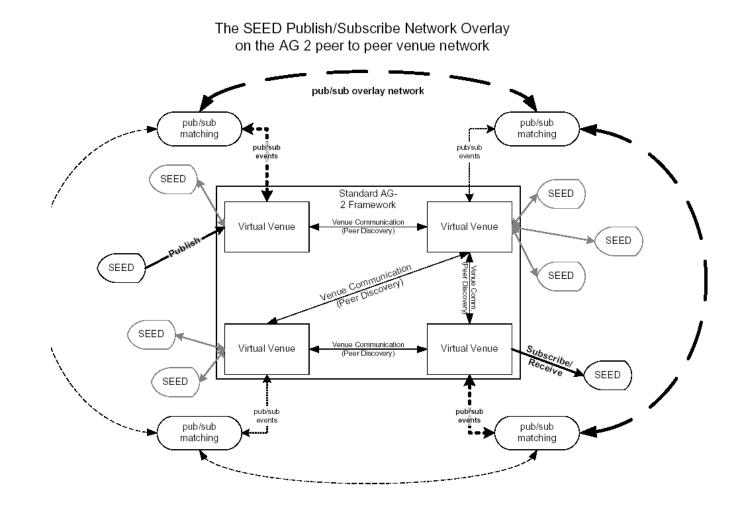

Scope II


- Supports multiple views and protection of proprietary data
 - Private data can be integrated with public data (policy engine)
 - Public data from many sources
- Interfaces
 - Web (WSDL) based Transactions
 - High-throughput data paths, bulk transfers
 - External Computing/Simulation and DB connections
 - Import/export APIs
- Scalability
 - Peer Target is 1000 instances in 36 months
 - Super Peer Target is 50 instances in 36 months
- Security
 - Based on PKI and GT3 technologies
- Portability
 - Reference implementations for Mac, Windows, Linux

Peer-to-Peer Open Life Sciences Grid the prototype SEED

More Details on the P2P 'profile'

- Kernel server
 - Services registry
 - Computation on the DB
 - External representation of objects
 - Security
 - Versioning
 - Transaction support
 - Update (local) support
 - Schema extensions
- Import/Export engine
 - Portable formats
 - Interfaces to external sources/sinks
- Synchronization engine
 - Publish and subscription services
 - Update channels


Scalability Goals of the P2P Design

- 100,000s of genomes (organisms)
 - Including support of many close variants
- Millions of genes and gene products (proteins, etc)
 - GBs-TBs of annotation per gene or pathway
- Thousands of Deployed Instances
 - Thousands of cooperating sites
 - Gigabit class networks
- Update Channels (pub/sub)
 - Thousands (some private, some open)
- Loose synchrony
 - Hourly/Daily/Weekly/Monthly updates

Example Peer-to-Peer Network Overlay

Proposed Process to Move Forward

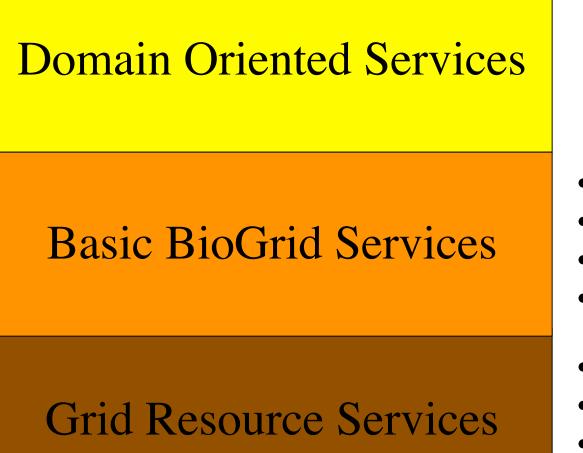
- Inventory of stakeholders
 - Email directory of interested parties (goal is broad participation)
- Issue an initial informal RFI (request for information)
 - Requirements for reference an architecture and use scenarios
 - 3-4 meetings resulting in a RFP document
- RFP announcement
 - 90 days (proposals tech/arch/interface)
 - Evaluation of proposals \leftarrow criteria/reviewers
- Draft standard open architecture LSG
 - 3-4 meetings digest-negotiation/compromise
- Standard is developed in Chapters in a "standards book"
 - Each area of the standard has an defined authorship
 - Reviews are by committee of the whole
- Reference Implementation(s)
 - Interoperability and use of profiles
 - Ideally two or more reference implementations should be developed
- Publication open source
 - Document should be open
 - Reference implementation(s) can/should track the proposals

Principal Partners and Stakeholders

- Biology and Biomedical Communities
 - Genomics, proteomics, medical imaging, neuroscience and sysbio
- Computer Science Community
 - University and Laboratories
- Industry
 - User community (pharma, bt, discovery, etc.)
 - Technology providers (IBM, Oracle, Sun, HP, etc.)
- Agencies (NIH, NSF, DOE, etc.)
- Standards Organizations
 - GGF, W3C, I3C, ISO(?)
- Professional Societies
 - ISCB, ASM, APS, ACM, IEEE etc.

Open Issues

- Determining scope of "The Standard"
 - Build on existing technology
 - Not just LS x OGSA
- Core team
 - 4 to 10 people are required for this to have critical mass
 - MPI Forum was successful with about 10 key authors and 40-60 participants
- Fast track process with a meeting every 6 weeks of 2-3 days
 - I propose to host the first meeting in December at Argonne/U Chicago
- Buy-in from stakeholders
 - Interest appears high, particularly in funding agencies and in researcher labs for demonstration of scalability and potential ubiquity of infrastructure
- Sponsorship
 - Under development
- License issues
 - Wide support for open source reference implementation and BSD style licensing
- Time Frame for completion
 - 12 to 18 months is a reasonable target for version 1.0


The Stack

- OLSG Services
 - Discovery, Directory and Data Brokering services
 - IP Access Policy Engine
 - Code and Data Synchronization Update Services
 - Namespace/Ontology Services
 - Sub/Pub "Channel" Subscription Services
 - Computing Services (generic and typed)
 - Web Interfaces
- Grid services
 - Peer-to-Peer services
 - Security
 - Transport
 - Etc.

An Example BioGrid Services Model

- Drug Discovery
- Microbial Engineering
- Molecular Ecology
- Oncology Research
- Integrated Databases
- Sequence Analysis
- Protein Interactions
- Cell Simulation
- Compute Services
- Workflow Services
- Data Service
- Collaboration Services

Next Steps

- Determine if LSG would like to sign on to this process
- If so, then we need to:
 - Plan a kick-off meeting for developing the scope of a standard
 - Recruit some leadership from the community
 - Recruit some support/sponsorship for the effort
 - Process to develop some white papers for the first meeting

