

Related Work: TMForum and ITU

Freek Dijkstra

TMForum IPR Policies Apply (2) Open G

TMForum and ITU-T

ITU-T International Telecommunication Union (Standards Sector)

ITU founded1865 (!); ITU-T (CCIT) founded 1925.

Focus on transmission technology and telecom services.

TMForum Telemanagement Forum

Founded 1984

"The voice of the OSS/BSS industry"

(OGF founded 1988; focus on grid service)

Operations & Business Support Systems

TMForum Standards

- Business Process Framework (eTOM)
 Common vocabulary for both business and functional processes.
 Describes relation between service plane and business plane (long document)
- Information Framework (SID)

 Common language and ability to align data with pertinent business processes.
- Application Framework (TAM)
 Standardized model for grouping function and data into recognizable applications or services.
 tmf@rum Frameworx
- Integration Framework (TNA)
 Unifying function in the Solution Frameworks
- Service Delivery Framework (SDF)
 Maintain control of service lifecycle management
- IPsphere Framework
 Business layer for rapid service delivery

TMForum Best Practices

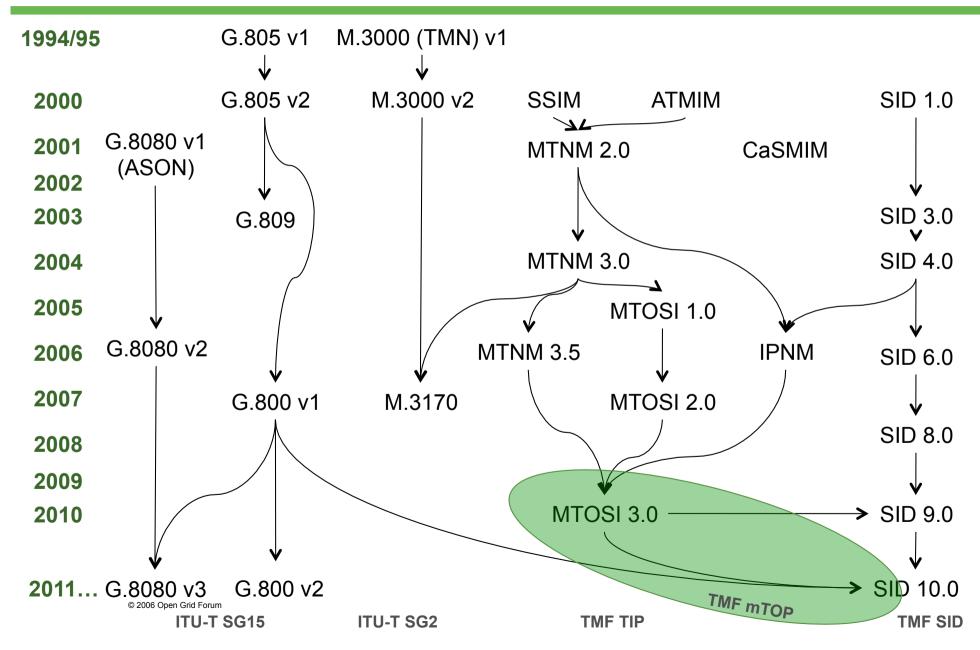
- Revenue Assurance
- Managing Service Quality
- Certified Compliance Testing
- Catalyst Program (Rapid Prototyping)

TMForum Software Interfaces (=API)

TMForum Interface Program (TIP)

- MTOSI (Multi-Technology Operations System Interface)
 Interfaces for network and service management for transport networks
- MTNM (Multi-Technology Network Management)
 Interfaces that model the management of multi-technology networks
- OSS/J (Operations Support Systems / Java)
 Multi-technology APIs that deliver on Solution Frameworks (NGOSS (next gen OSS)) design guidelines for component-based management systems
- IPDR (Internet Protocol Detail Record)
 Interfaces used for usage data management and accounting
- Identity Management
 Unified identity management across operational systems

MTNM


- UML-based interface between the Network Management Layer (NML) and Element Management Layer (EML).
- Support for ATM, frame relay, SONET/SDH, DSL and Ethernet.
- Business Scenarios:
 - Inventory Discovery
 - Connection Provisioning
 - Equipment Provisioning
 - Performance Management

TMForum Resource Management

- Ensures consistency of resource descriptions between frameworks
- Resources are Logical Network Resources (note: everything is logical, physical is irrelevant!)
- Three tasks (2010)
 - ConConConvergence (Connection-Connectionless Convergence)
 - SID-MTNM/MTOSI Alignment
 - Model inspired by G.800
- Integration of MTNM, MTOSI and SID models
 - Phase I (completed): Integrate MTNM and MTOSI and include in SID as-is.
 - Phase II (started sep 2009): Create a new model based on G.800
- MTNM, MTOSI and SID are all UML models

Timeline

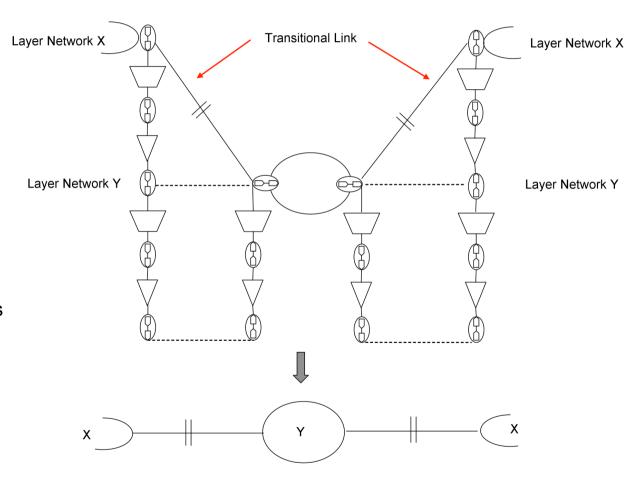
Study Period 2009-2012:

Q 1/15	Coordination of Access Network Transport standards	
Q 2/15	Optical systems for fibre access networks	
Q 3/15	General characteristics of transport networks	
Q 4/15	Transceivers for customer access and in-premises networking syste conductors	ms on metallic
Q 5/15	Characteristics and test methods of optical fibres and cables	
Q 6/15	Characteristics of optical systems for terrestrial transport networks	
Q 7/15	Characteristics of optical components and subsystems	
Q 8/15	Characteristics of optical fibre submarine cable systems	
Q 9/15	Transport equipment and network protection/restoration	
Q 10/15	OAM for transport networks	
Q 11/15	Signal structures, interfaces and interworking for transport networks	
Q 12/15	Transport network architectures	
Q 13/15	Network synchronization and time distribution performance	
Q 14/15	Management and control of transport systems and equipment	
Q 15/15	Test and measurement techniques and instrumentation	
Q 16/15	Optical physical infrastructure and cables	
Q 17/15	Maintenance and operation of optical fibre cable networks	
Q 18/15	Development of optical networks in the access area	www.ogf.org

ITU-T Q12/15

Tasks in Q12/15 (Transport network architectures):

- Maintenance of Recommendations I.326 and G.803
- Refinement and enhancement of Recommendations G.800, G.805, G.809, G.8080, G. 8010, G.8110 and G.872
- Develop a revised version of Recommendation G.8110.1 to align with the MPLS-TP architecture.


Current revisions:

•	G.800	Unified functional architecture of transport networks		
•	G.803	Architecture of Transport Networks based on the Synchronous Digital Hierarchy (SDH)		
•	G.872	Architecture of Optical Transport Networks		
•	G.8010/Y.1306	Ethernet Layer Network Architecture		
•	G.8080/Y.1304	Automatic Switched Optical Networks		
•	G.8110/Y.1370	MPLS Layer Network Architecture		
•	G.8110.1/Y.1370.1	Architecture of MPLS-TP Layer Network		

Transitional Link Concept

A transitional link consists of the link port at the edge of one Laver Network X subnetwork and a corresponding link port at the edge of another subnetwork that operates on different instances of characteristic information or whose characteristic information is the same but with different Laver Information. A transitional link (topological component) is supported by or implemented by layer processors and/or adaptation/termination functions (transport processing functions). A transitional link can be partitioned into parallel transitional links, or a concatenation of transitional links. It can also be partitioned into a concatenation of transitional links and zero or more links.

Feedback on Transitional Links Open

- Distinguish between Transport functions and Transform functions
- Transitional Link is not a new topological component
- Component in a topology view for (multilayer) routing.
- The described routing topology view is incomplete (e.g. it does not describe routing restrictions, which is needed for a complete view).
- There may be more application specific views.
- Define each derivation from topology to a specific view in a separate document
- Requirement of 1:1 relation between source and sink is very limited (multiplexing and inverse multiplexing are not supported).