Case Study: GGF Standards and TeraGrid

Charlie Catlett

Director, TeraGrid University of Chicago and Argonne National Laboratory

Founding Chair, GGF

GGF: Six Years Sustained Growth

GridForge: Community Portal

GGF Standards Document Series

()		DOC	Title	DOC	Title		
hU	1	GFD.1	GGF Document Series	GFD.23	A Hierarchy of Network Performance		
00					Characteristics for Grid Applications and		
					Services		
		GFD.2	GGF Structure	GFD.24	GSS-API Extensions		
		GFD.3	GGF Management	GFD.25	An analysis of "Top N" Event Descriptions		
		GFD.4	Ten Actions When	GFD.26	Persistent Archive Concepts		
ΓΛ			Superscheduling				
5U	1	GFD.5	Advanced Reservation API	GFD.27	Grid Information Retrieval Requirements		
00		GFD.6	Attributes for Communication	GFD.28	Job Submission Information Model		
			between Scheduling Instances				
		GFD.7	A Grid Monitoring Architecture	GFD.29	Open Grid Services Architecture Use Cases		
		GFD.8	A Simple Case Study of a Grid	GFD.30	The Open Grid Services Architecture,		
			Performance System		Version 1.0		
	И	GFD.9	Overview of Grid Computing	GFD.31	Open Grid Service Infrastructure Primer		
4 U	TI		Environments				
		GFD.10	Grid User Services Common	GFD.32	Site Requirements for Grid Authentication,		
			Practices		Authorization and Accounting		
		GFD.11	Grid Scheduling Dictionary of	GFD.33	GGF UPDT User Development Tools Survey		
			Terms and Keywords				
00		GFD.12_	Security Implications of Typical	GFD.34	Documentation Required to Request		
- (1) -	N		Grid Computing Usage Scenarios		Formation of a Working Group in the GGF		
30		GFD.13	Grid Database Access and	GFD.35	Management of Grid Services in Production		
			Integration: Requirements and		Grids Workshop		
			Functionalities				
		GFD.14	Services for Data Access and	GFD.36	Optical Network Infrastructure for Grid		
			Data Processing on Grids				
J		GFD.15	Open Grid Services	GFD.37	Networking Issues for Grid Infrastructure		
	1		Infrastructure				
- v		GFD.16	Global Grid Forum Certificate	GFD.38	Conceptual Grid Authorization Framework		
			Policy Model	CDD 20	and Classification		
		GFD.I7	CA-based Trust Issues for Grid	GFD.39	Applications and Programming Tools		
			Authentication and Identity				
		CED 19	Delegation	CED 40	Cari Jalin og fan ID sousion inslanan Janos is		
10	И	GFD.18	An Analysis of the UNICORE Security Model	GFD.40	CCE specifications		
IU		CED 10	Job Description for CCE Stooping	CED 41	Survey of IPv4 Dependencies in Clobal Crid		
		GrD.17	Group Mambars	GID.HI	Forum Specifications		
		GFD 20	GridETP: Protocol Extensions to	GFD 42	Authorization Glossary		
		GID.20	FTP for the Grid	GI D.TZ	Autionization Glossary		
		GFD.21	GridFTP Protocol Improvements	GFD.43	Security Requirements of Advanced		
Δ					Collaborative Environments (ACEs)		
- () ·	P	GFD.22	Distributed Resource	GFD.44	Open Grid Services Architecture Glossary of		
v	•		Management Application API		Terms		
		4000	Specification 1.0	000			
		<u>1996</u>	<u>'''''''''''''''''''''''''''''''''''''</u>	/ GHD.4 5	Resource Management in OGSA		
	1						

TeraGrid

TeraGrid: Foundation for NSF Cyberinfrastructure

Persistent, Reliable National Cyberinfrastructure
Coordinated Computing Environment
Coherent User Outreach, Training, and Support
Common, open infrastructure services (directories, storage, authentication services)

- Science Gateways: Engaging Scientific Communities
- 90+ Community Data Collections
- 2+ PB Online Data Storage
- World's most powerful network (national footprint)
- NSF's Most powerful compute resources (40+ TF)
- National data visualization facilities
- National Science Foundation
 - \$100M 3-year construction
 (2001-2004)
 - \$150M 5-year operation & enhancement (2005-2009)

RP Resources and Services

	ANL/UC	Caltech	IU	NCSA	ORNL	PSC	Purdue	SDSC	TACC
Compute Resources and User Support	Itanium2 (0.5 TF) IA-32 (0.5 TF)	Itanium2 (0.8 TF)	Itanium2 (0.2 TF) IA-32 (2.0 TF)	Itanium2 (10 TF) SGI SMP (6.5 TF)	IA-32 (0.3 TF)	XT3 (10 TF) TCS (6 TF) Marvel (0.3 TF)	Hetero (1.7 TF)	Itanium2 (4.4 TF) Power4+ (1.1 TF)	IA-32 (6.3 TF) Sun (Vis)
Network (Gb/s,Hub)	30 CHI	30 LA	10 СНІ	30 CHI	10 ATL	30 CHI	10 СНІ	30 LA	10 СНІ
Online Storage	20 TB	155 TB	32 TB	600 TB	1 TB	150 TB		540 TB	50 TB
Archive Storage			1.2 PB	3 PB		2.4 PB		6 PB	2 PB
Data Collections			Yes	Yes			Yes	Yes	Yes
Instruments		Yes	Yes		Yes				
Visualization	Yes		Yes			Yes	Yes		Yes
Public Affairs	Yes	Yes	Yes	Yes		Yes		Yes	Yes

Grid Infrastructure Group (GIG)

Architecture, Software, Operations, Common Services, Coordinated User Support, Science Gateways

TeraGrid: Science Examples

Aquaporin mechanism

Animation pointed to by 2003 Nobel chemistry prize announcement. Klaus Schulten, UIUC

Reservoir Modeling

Joel Saltz, OSU

Atmospheric Modeling Kelvin Droegemeier, OU

Industry Candidates currently using TeraGrid resources at individual sites:

- Engineering (vehicle design, cellular network optimization)
- Finance (risk analysis)
- Operations (transportation, fraud detection)
- Pharmaceutical (drug design)

Groundwater/Flood Modeling David Maidment, Gordon Wells, UT

Lattice-Boltzman Simulations Peter Coveney, UCL

The TeraGrid Vision

- TeraGrid DEEP: Enabling the Nation's Terascale Science
 - Make Science More Productive through a unified set of very-high capability resources.
 - Strategy: leverage TeraGrid's unique resources to create new capabilities driven & prioritized by science partners
- TeraGrid WIDE: Empowering communities to leverage TeraGrid capabilities
 - Bring TG capabilities to the broad science community (no longer just "big" science).
 - Strategy: Science Gateways connecting communities, Integrated roadmap with peer Grids and software efforts
- Base TeraGrid Cyberinfrastructure: Integrating the Nation's Most Powerful Resources
 - Provide a unified, general purpose, reliable set of services and resources.
 - Strategy: An extensible virtual organization of people and resources across TeraGrid partner sites.

User Types

- Expert and Advanced Users (n x 10²)
 - Want to log into supercomputers and optimize code
 - Explicit, first-party authentication
 - Shell access with full user-level functionality
 - Resource consumption limited by allocation
 - Interest in turnaround, can use a variety of platforms
 - Actual "user" typically a graduate student willing to deal with details of computing and data management in order to fully optimize workflow
- Broad Science Community (n x 10³)
 - Want to use specific applications provided by others, but with large variation in job size (and/or number of jobs)
 - Trusted third-party authentication
 - Limited functionality access through portal and/or restricted shell
 - Resource consumption limited by allocation
 - Interest in turnaround and avoiding details of computing and data management
 - Interest in workflow management tools to automate procedures
- Public Access (including education, n x 10⁴)
 - Want to use simple applications for small (possibly fixed set of) jobs
 - Limited trust authentication
 - Limited functionality access through restricted portal methods
 - Limited resource consumption

TeraGrid: Service Oriented Approach

- Defines service offerings, interactions, and "interfaces"
 - Allows local implementation decisions and approaches
- Common Integration Infrastructure
 - Verification and Validation
 - Inca (Beckman (UC/ANL), Smallen (SDSC), et. al.)
 - Account management and accounting
 - AMIE (Quinn (NCSA), et. al.)
 - GGF Resource Usage Record format standard
 - Public Key Infrastructure (system-wide) authentication, high-performance data movement & staging infrastructure
 - Globus Toolkit (GSI a GGF/IETF standard; GridFTP a GGF standard)
- Defined Services
 - Compute Service
 - Coordinated TeraGrid Software and Services (CTSS) defines the user environment baseline provided by all compute servers
 - Comprises clients, libraries, tools, \$ENV variables, etc.
 - Additional Services
 - File-based archives (GridFTP interface in addition to native, e.g. HPSS)
 - Storage Resource Broker (SRB (SDSC)) archive
 - Wide area parallel file system (IBM GPFS)
 - Metascheduler (MOAB)

Inca Verification & Validation

— Pete Beckman (beckman@mcs.anl.gov) and Shava Smallen (ssmallen@sdsc.edu) —

May 2005

http://inca.sdsc.edu

TeraGrid: User Driven Priorities

Results of in-depth discussions with 16 TeraGrid user teams.

TeraGrid DEEP: Terascale Science

- TeraGrid User Support
 - Unified team from PSC, NCSA, SDSC, TACC, Caltech, UC/ANL, ORNL, Purdue, Indiana
- Advanced Support
 - "Embedded" consultants working with application teams to enable terascale science.
- Applications exploiting unique TeraGrid resources and services

Top: Computational Steering (Source TeraGyroid project, Peter Coveney, UCL)

Bottom: Adaptive Computational Weather Forecast (Source LEAD project, Kelvin Droegemeier, OU)

Grid Portal Gateways

- The Portal accessed through a browser or desktop tools.
 - Provides Grid authentication and access to services
 - Provide direct access to teragrid hosted applications as services
- Required Support Services
 - Searchable Metadata catalogs
 - Information Space Management.
 - Workflow managers
 - Resource brokers
 - Application deployment services
 - Authorization services.
- Building on NSF & DOE software investments
 - Use NMI Portal Framework,
 - NMI Grid Tools
 - Condor, Globus, In-VIGO
 - OSG and HEP tools
 - Clarens, MonaLisa

Initial TeraGrid Science Gateway Prototypes

<u>Science Gateway Prototype</u>	Discipline	<u>Science Partner(s)</u>	<u>TeraGrid Liaison</u>
Linked Environments for Atmospheric Discovery (LEAD)	Atmospheric	Droegemeier (OU)	Gannon (IU), Pennington (NCSA)
National Virtual Observatory (NVO)	Astronomy	Szalay (Johns Hopkins)	Williams (Caltech)
Network for Computational Nanotechnology (NCN) and "nanoHUB"	Nanotechnology	Lundstrum (PU)	Goasguen (PU)
National Microbial Pathogen Data Resource Center (NMPDR)	Biomedicine and Biology	Schneewind (UC), Osterman (Burnham/UCSD), DeLong (MIT), Dusko (INRA)	Stevens (UC/Argonne)
NSF National Evolutionary Biology Center (NESC), NIH Carolina Center for Exploratory Genetic Analysis, State of North Carolina Bioinformatics Portal project	Biomedicine and Biology	Cunningham (Duke), Magnuson (UNC)	Reed (UNC), Blatecky (UNC)
Neutron Science Instrument Gateway	Physics	Dunning (ORNL)	Cobb (ORNL)
Grid Analysis Environment	High-Energy Physics	Newman (Caltech)	Bunn (Caltech)
Transportation System Decision Support	Homeland Security	Stephen Eubanks (LANL)	Beckman (Argonne)
Groundwater/Flood Modeling	Environmental	Wells (UT-Austin), Engel (ORNL)	Boisseau (TACC)

Science and Multimodal: Flood Modeling

Volume 13, Issue 5 August/September 2004

Geospatial Technologies in Your World

Teraflops Tackle TeraGrid

Merry Maisel, with Gordon Wells

magine that a major hurricane will make landfall over a heavily populated coastal city like Houston, Texas, within the next 24 hours. With the storm approaching the mainland, a continuing deluge of rainfall already blocks several primary exacuation routes. You are responsible for providing emergency managers with an accurate forecast of the flash-flood potential in broad areas threatened by constantly changing conditions, as rain bands sweep across the coastline and streams begin to rise beyond their banks (Figure 1).

If you are Gordon Wells of the Center for Space Research (CSR) at The University

Three Groups from The University of Texas at Austin Are Working on Real-time Flood Hazard Prediction

of Texas at Austin (UT Austin), you have at your disposal hundreds of gigabytes of detailed elevation data collected by LiDAR and recent high-resolution orthoimacevy from satellite and aerial

surveys. You can run a sophisticated hydraulic and hydrologic model with which to simulate floods, using real-time NEXRAD Doppler radar data for estimating rainfall accumulation, and you can

Figure 1 A model simulation shows the extent of the fish flood at the Texas Medical Center in Houston caused by Tropical Storm Allison during the morning of Jane 9, 2001. Highresolution LiDAR elevation data is used to compute the inundation surface.

REPRINTED WITH PERMISSION • Earth Observation Magazine • August/September 2004 • www.eomonline.com • ALL RIGHTS RESERVED

Adoption: Science Gateways and Education

Current Work: GGF and TeraGrid

• Science Gateways

- Portal interactions with resources and Grids via Web services
 - Workshop in June 2004 (Chicago, GGF-14)
- Discipline-specific GGF Research Groups
 - E.g. Life Sciences (pharma, bioinformatics, genomics)
- Security
 - Policy Management Authorities
 - Based on GGF Certificate Authority guidelines
 - Graduated authorization based on authentication levels
- Open Grid Services Architecture
 - Participation in development of service specifications (e.g. execution services)