
GWD-R Manuel Pereira – IBM Almaden Research Center
Category: Recommendations Osamu Tatebe - Grid Technology Research Center
 Leo Luan, IBM Almaden Research Center
 Ted Anderson, IBM Almaden Research Center
 Jane Xu, IBM Systems and Technology Group

GFS-WG September 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp

Virtual Filesystem Directory Service Specification

Status of This Memo

This memo provides information to the Grid community about file system directory services. It does
not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2004). All Rights Reserved.

Abstract

This document describes the specification a file system directory service, which will be one of the
essential services for Grid file systems or virtual file systems in the Grid environment. It manages
the namespace of federated and virtualized data from file system resources, access control
mechanisms, and meta-data management. This document proposes a set of operations needed to
be supported by file system directory services. For scalable, large-scale and distributed file system
directory management, this document also proposes two types of federation of file system directory
services.

Contents

Abstract.. 1
1. Introduction.. 2
2. Virtual Filesystem Directory Services ... 2

2.1 Virtual Filesystem Directory Service Objects... 3
2.2 Operations of the Virtual Filesystem Directory Service .. 5
2.3 Description of WSDL Complex Types ... 14
2.4 Operation Sequence of VFDS .. 35

3. Federation of Virtual Filesystem Directory Services.. 35
3.1 Service Referrals.. 36
3.2 Delegated Resolution ... 36

4. Considerations... 36
5. Summary and conclusion... 37
6. Appendix: Sample WSDL for VFDS ... 37
Author Information.. 40
Intellectual Property Statement... 40
Full Copyright Notice .. 40
References... 41

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 2

1. Introduction

Data in the Grid can be of any format and be stored in any type of storage system. There can be
many hundreds of petabytes of data in grids, among which a very large percentage is stored in files.
A standard mechanism to describe and organize file-based data is essential for facilitating access to
this large amount of data. The Grid File System Working Group (GFS-WG) was established in GGF
data area to standardize a mechanism to address this need by providing a Grid File System (GFS)
or virtual file system in the Grid environment.

Two major deliverables of the WG are (1) architecture of Grid File System Services and (2)
specification of Virtual Filesystem Directory Services. File system directory services will manage
the namespace of federated and virtualized data from file system resources, access control
mechanisms, and meta-data management [1]. It will provide features such as (a) virtualized
hierarchical namespaces for files or potentially other types of data (such as live data feeds), (b)
efficient and transparent file sharing, and (c) ability to describe and manage file-system and
application-specific metadata.

This document intends to present the Virtual Filesystem Directory Service specification. It proposes
a set of operations needed to be supported by file system directory services. For scalable, large-
scale and distributed file system directory management, it also proposes two types of federation of
the file system directory services.

The overall architecture of the Grid File System will be specified later in GFS-WG, which provides
infrastructure of virtual file systems facilitating federation and sharing of virtualized data from file
systems in the Grid environment by using Virtual Filesystem Directory Services.

2. Virtual Filesystem Directory Services

The Virtual Filesystem Directory Service, which will henceforth be referred to as VFDS, enables
construction of a uniform, global, hierarchical namespace.[1] This directory service enables
federation of individual files as well as filesystem trees that are exported by a variety of distributed
file systems. It is comprised of two fundamental namespace components: virtual directories and
junctions. These two essential namespace components, also referred to as entries, are employed
to federate existing files and filesystem trees and construct a uniform hierarchy.

A virtual directory is a VFDS entry that is represented as a filesystem directory, however does not
have any corresponding position in any physical filesystem; hence it is virtual. A virtual directory,
therefore, is purely a namespace entity that functions in much the same way as a conventional
filesystem directory by maintaining a list of subentries, which thereby demonstrate a hierarchical
relationship.

A junction is a VFDS entry that interconnects an existing file or filesystem tree into the global
namespace. It functions in much the same way as traditional distributed file system mount points,
with the unique property of maintaining uniform namespace representation while facilitating logical
as well as physical referencing to external resources. Junctions are therefore categorized into four
basic types: physical junctions, logical junctions, referrals, and aliases. A physical junction
maintains a URL pointer to the physical location of a filesystem tree or single file; an example URL
might look something like: gsiftp://gridftp.abc.com/filesetX. In contrast, a logical junction contains a
URL that points to a secondary service, like a Replica Location Service (RLS), for logical-to-physical
resolution given a logical name; an example URL might look something like:

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 3

rls://rls.abc.com/logical_name_xyz. Referrals are junctions that link to other VFDS instances,
thereby facilitating such features as federation of independent domains of control, scalability of a
single domain of control, availability of redundant service instances that may or may not be
geographically distributed, etc; an example referral URL might look something like:
vfds://vfds.abc.com/. An alias entry is a junction that references another entry within the same
service instance, behaving in much the same way as a convention symbolic-link; an example alias
URL might look something like: “alias:/target/path” for path aliases or “alias:012345” for entry
aliases. In all cases, junctions are capable of maintaining a list of references (URL pointers) per
entry, that is a single junction my render several available URLs, each of which represent replicas
or copies of the same data or service instance.

The following sections explore the objects and interface definitions that exemplify the operations of
VFDS. This material is not comprehensive, is subject to change, and does not examine the internal
procedures of the interface. Error and status codes are not specified at this time.

2.1 Virtual Filesystem Directory Service Objects

VFDS employs an object oriented service interface that consists of two chief objects: Reply and
Entry. The service port type corresponds to the principal service class, that is the VFDS class,
which defines the interface methods or port type definition in WSDL. These methods package all
reply messages in Reply objects. Therefore, all interface methods return a Reply object to the
requester in response to both mutator and accessor operations. The Reply object encapsulates the
following basic members: status/error code, time-to-live expiration, array of Entry objects (if
applicable), and textual server description. The Reply object therefore not only discloses
information consequent from the request made, but also delivers all Entry objects corresponding to
the response if the request was made to an accessor method. The Entry object simply represents
the VFDS entry maintained by the directory service.

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 4

Following is an object diagram of the VFDS objects represented in this document:

As illustrated here, and previously mentioned, an Entry object can be represented as either a virtual
directory or a junction. This is shown in the second row of objects in the object diagram as a

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 5

subclass relationship. Notice that the Junction class, however, is an abstract class and is further
extended by its subclasses, which represent the various types of junctions previously mentioned.
Finally, notice that both the physical and logical classes are abstract and also extended to be
represented by concrete classes that denote file or filesystem junctions, which are physical or
logical respectively. Incidentally, these classes are as follows: PFN=Physical File Name,
PFSN=Physical File System Name, LFSN=Logical File System Name, and LFN=Logical File Name.

2.2 Operations of the Virtual Filesystem Directory Service

The basic operations of VFDS are:

1) Lookup operation, governed by access control permissions, to convert a globally unique
path name to the corresponding VFDS entry.

2) Creation, removal, move/rename, and update operations for all entry types.
3) Operations for managing attributes or status of an entry.

As revealed by the VFDS object diagram, the VFDS service definition specifically contains the
following operations:

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 6

Operation: create

Description:

Creates a new VFDS entry in the directory service database that corresponds to the entry object
provided and positions the new entry at the absolute path specified by the first parameter, or
optionally by the OID specified in the third parameter.

This method is designed to process all defined types of entry objects, so the entry parameter
should reflect the appropriate runtime cast of the abstract Entry class.

If the optional oid parameter is used, then the path argument is treated as a relative path; relative
to the VFDS entry denoted by the oid parameter. If both an absolute path and a valid OID are
provided, then an exception is thrown (absolute paths are identified by a leading slash, ie.
“/gfs/ggf.org/vfds”).

(similar to a mkdir and mount in a Unix shell).

Signature:
public Reply create(String path, Entry entry, [String oid]) throws
ProtocolException;

Parameters:

path: Absolute path, or relative path if oid is used, of the parent of the object to create.
entry: A valid Entry object populated with all of the member values necessary to represent the

entry to create. Please note: the oid member of this object will be ignored, as the service
will assign a new OID during the create operation.

oid: [Optional] Object ID of the immediate parent object, provided path is null, otherwise it acts
as a reference directory used in conjunction with the relative path value of path. A practical
use for this parameter is to specify the object ID of the parent object and set path to null.

Returns:

Reply object that contains the status of the requested operation

Example:
 try {
 /* Construct a new Virtual Directory object */
 VirtualDirectory d = new VirtualDirectory("New Folder");

 /* Create a new directory entry record using
 * the newly constructed object */
 vfds.create("/gfs/ggf.org/dir1/", d);

 } catch (Exception e) {
 // Handle
 }

WSDL:
 <operation name='create' parameterOrder='path entry'>
 <input message='tns:VFDS_create__Request_Soap'/>
 <output message='tns:VFDS_create_Response_Soap'/>
 <fault name='ProtocolException1' message='tns:ProtocolException1'/>
 </operation>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 7

Operation: update

Description:

Updates an existing VFDS entry in the directory service database that corresponds to the entry
object represented by original. The values of the entry record are overwritten to reflect the values
contained in the updated entry object.

When updating an existing VFDS entry, the updated Entry object must represent the complete set
of values to be stored. The updated Entry object does not symbolize the modifications to be
applied to the original record, but rather embodies the complete set of values designated to
replace all previously stored values in the record. Effectively this method can be used to
conveniently accomplish multiple field modifications in a single transaction.

This method is designed to process all defined types of entry objects, so the entry parameter
should reflect the appropriate runtime cast of the abstract Entry class.

Signature:
public Reply update(Entry original, Entry updated) throws
ProtocolException;

Parameters:

original: A valid Entry object that represents the existing VFDS entry record in the directory
service database to be updated. Please note: the oid member of this object must
accurately signify the record to be updated; member values for this object should not be
modified.

updated: A fully populated Entry object that comprehensively represents the VFDS entry record
to be stored. Please note: any modification of the oid member of this object will be
ignored, as the oid member of a VFDS entry is immutable.

Returns:

Reply object that contains the status of the requested operation

Note:
The following members of updated are ignored by this method:
- Parent ID
- Object ID
- AliasCount
- ChildCount (for Virtual Directories only)

Example:
 VFDS vfds = new VFDS();
 LookupReply r = vfds.lookup("/some/path");

 try {
 Junction orig = (Junction)r.getEntry();
 Junction updated = (Junction)orig.clone();

 /* Add a new target value */
 updated.addTarget("gsiftp://abc.com/fileset2");

 /* Update directory service entry */
 vfds.update(orig, updated);

 } catch (Exception e) {
 // Handle
 }

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 8

WSDL:
 <operation name='update' parameterOrder='original updated'>
 <input message='tns:VFDS_update__Request_Soap'/>
 <output message='tns:VFDS_update_Response_Soap'/>
 <fault name='ProtocolException1' message='tns:ProtocolException1'/>
 </operation>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 9

Operation: delete

Description:

Deletes the VFDS entry specified by path and/or oid. If path and oid are null an exception is
thrown.

If path represents a virtual directory, all sub-entries must be deleted before it can be deleted.

If the optional oid parameter is used, then the path argument is treated as a relative path; relative
to the VFDS entry denoted by the oid parameter. If path is null, then the VFDS entry identified by
oid will be deleted.

(similar to a rm in a Unix shell).

Signature:
public Reply delete(String path, [String oid]) throws
ProtocolException;

Parameters:

path: Absolute path, or relative path if oid is used, for the object to delete.
oid: [Optional] Object ID of a reference directory

Returns:
Reply object that contains the status of the requested operation

Example:
 try {
 /* Delete an existing directory entry record using
 * an absolute pathname */
 vfds.delete("/gfs/ggf.org/vfds/oldentry");

 } catch (Exception e) {
 // Handle
 }

WSDL:
 <operation name='delete' parameterOrder='path'>
 <input message='tns:VFDS_delete__Request_Soap'/>
 <output message='tns:VFDS_delete_Response_Soap'/>
 <fault name='ProtocolException' message='tns:ProtocolException'/>
 </operation>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 10

Operation: list

Description:

Returns a Reply object that represents the directory listing of the specified path that symbolizes a
virtual directory; if path and oid are null then an exception is thrown.

If path represents a virtual directory, its contents will be returned; otherwise an exception is
thrown.

If the optional oid parameter is used, then the path argument is treated as a relative path; relative
to the VFDS entry denoted by the oid parameter. If path is null, then the VFDS entry identified by
oid will be listed (see example).

(similar to a ls -al in a Unix shell).

Signature:
public ListReply list(String path, [String oid]) throws
ProtocolException;

Parameters:

path: The full path, or relative path if oid is used, to the virtual directory to be listed.
oid: [Optional] Object ID of a reference virtual directory (signifies the virtual directory to list if
path is null).

Returns:
A ListReply object containing directory listing (array of Entry objects).

Example:
 try {
 /* Get current working directory */
 VirtualDirectory cwd = (VirtualDirectory)
 vfds.lookup("/gfs/ggf.org/vfds/").getEntry();

 /* List the current working directory (cwd) */
 ListReply r = vfds.list(null, cwd.getObjectID());
 ...
 } catch (Exception e) {
 // Handle
 }

WSDL:
 <operation name='list' parameterOrder='path'>
 <input message='tns:VFDS_list__Request_Soap'/>
 <output message='tns:VFDS_list_Response_Soap'/>
 <fault name='ProtocolException3' message='tns:ProtocolException3'/>
 </operation>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 11

Operation: lookup

Description:

Returns a Reply object that contains an Entry object, which represents the VFDS entry and all
associated attributes of the specified path; if path and oid are null then an exception is thrown.

If the path denotes a virtual directory, then only the Entry object that represents that VFDS virtual
directory is returned; not its sub-entries. (see list() for a listing of sub-entries)

If the optional oid parameter is used, then the path argument is treated as a relative path; relative
to the VFDS entry denoted by the oid parameter. If path is null, then the VFDS entry identified by
oid will be looked-up.

(similar to a stat() call).

Signature:
public LookupReply lookup(String path, [String oid]) throws
ProtocolException;

Parameters:

path: The full path, or relative path if oid is used, to the entry whose attributes are desired.
oid: [Optional] Object ID of a reference virtual directory (signifies the entry to lookup if path is
null).

Returns:
A LookupReply object containing the Entry object requested.

Example:
 try {
 /* Lookup a specific entry */
 LookupReply r = vfds.lookup("/gfs/ggf.org/vfds/entry1");

 Entry e = r.getEntry();
 if (e instanceof VirtualDirectory) {
 // Cast to a virtual directory object
 } else if (e instanceof Referral) {
 // Cast to a referral object
 } else if (e instanceof PFN) {
 // Cast to a Physical File Name object
 } else if (e instanceof PFSN) {
 // Cast to a Physical Filesystem Name object
 } else if (e instanceof LFN) {
 // Cast to a Logical File Name object
 } else if (e instanceof LFSN) {
 // Cast to a Logical Filesystem Name object
 } else if (e instanceof EntryAlias) {
 // Cast to an entry alias object
 } else if (e instanceof PathAlias) {
 // Cast to a path alias object
 }
 } catch (Exception e) {
 // Handle
 }

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 12

WSDL:
 <operation name='lookup' parameterOrder='path'>
 <input message='tns:VFDS_lookup__Request_Soap'/>
 <output message='tns:VFDS_lookup_Response_Soap'/>
 <fault name='ProtocolException4' message='tns:ProtocolException4'/>
 </operation>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 13

 Operation: move

Description:

Moves or renames the VFDS entry denoted by src to dest.

At least one source (src and/or srcOID) and one destination (dest and/or destOID) parameter is
required.

(similar to a mv in a Unix shell)

Signature:
public Reply move(String src, String dest, [String srcOID], [String
destOID]) throws ProtocolException;

Parameters:

src: Absolute path, or relative path if srcOID is used, to source/original VFDS entry.
dest: Absolute path, or relative path if destOID is used, to destination for the VFDS entry

denoted by src.
srcOID: [Optional] Object ID of a reference source entry (signifies the source entry if src is null).
destOID: [Optional] Object ID of a reference destination entry (signifies the destination entry if

dest is null).

Returns:
Reply object that contains the status of the requested operation

Example:
 try {
 /* Lookup parent dir */
 Entry e = vfds.lookup("/gfs/ggf.org/vfds/").getEntry();

 /* Rename "name1" to "new-name1" */
 Reply r = vfds.move("name1", "new-name1",
 e.getObjectID(), e.getObjectID());
 } catch (Exception e) {
 // Handle
 }

WSDL:
 <operation name='move' parameterOrder='src dest'>
 <input message='tns:VFDS_move__Request_Soap'/>
 <output message='tns:VFDS_move_Response_Soap'/>
 <fault name='ProtocolException2' message='tns:ProtocolException2'/>
 </operation>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 14

2.3 Description of WSDL Complex Types

The objects used as components of the communication interface defined by WSDL, also referred to
as complex types, are the two chief service interface objects previously enumerated: Reply and
Entry. These two objects serve as integral components in the task of communicating and
representing the VFDS service.

2.3.1 Reply Object

The following describes the interface definition for the VFDS Reply object:

Method: getExpirationDate

Description:

Returns the expiration timestamp of this Reply, which is the time at which the Reply should be
considered stale. This property is analogous to time-to-live (TTL).

Signature:
public Date getExpirationDate();

Returns:

The expiration date of this Reply, if available and appropriate; otherwise a null value is used to
indicate this reply is a point-in-time reply.

WSDL:
 <xsd:complexType name="Reply">
 ...
 <xsd:sequence>
 <xsd:element name="expirationDate" type="xsd:dateTime" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: getStatusCode

Description:

Returns the status or error code; otherwise referred to as a reply code. Every reply from the
VFDS service will contain some status or error code and is readily available via this method. A
value of zero '0' indicates success, while a value other than zero may correspond to an error.

Signature:
public int getStatusCode();

Returns:

Status/error code

WSDL:
 <xsd:complexType name="Reply">
 ...
 <xsd:sequence>
 <xsd:element name="statusCode" type="xsd:int"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 15

Method: getServerDesc

Description:

Returns a simple character string that represents the text that VFDS server implementations use
to identify themselves to VFDS service users for usage tracking, version identification, etc.

Signature:
public String getServerDesc();

Returns:

VFDS server implementation description

WSDL:
 <xsd:complexType name="Reply">
 ...
 <xsd:sequence>
 <xsd:element name="serverDesc" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

2.3.1.1 Reply Subclass: LookupReply

The VFDS LookupReply class is a concrete class that is a direct subclass of Reply. It appends one
accessor method to the structural definition of Reply for the purpose of enabling access to enclosed
content:

Method: getEntry

Description:

Returns the Entry object representing the result of a lookup operation. This method will return null
if there were no Entry objects returned by the remote operation.

Signature:
public Entry getEntry();

Returns:

The Entry object contained within this LookupReply object

WSDL:
 <xsd:complexType name="Reply">
 ...
 <xsd:sequence>
 <xsd:element name="entry" type="tns:Entry" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 16

2.3.1.2 Reply Subclass: ListReply

The VFDS ListReply class is a concrete class that is a direct subclass of Reply. It appends two
accessor methods to the structural definition of Reply for the purpose of enabling access to
enclosed content:

Method: getEntryCount

Description:

Returns the number of entries contained within this ListReply object.

Signature:
public int getEntryCount();

Returns:

The number of entries contained within this ListReply object

WSDL:
 <xsd:complexType name="Reply">
 ...
 <xsd:sequence>
 <xsd:element name="entryCount" type="xsd:int"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: getEntries

Description:

Returns an array of Entry objects representing the result of a list operation. This method will
return null if there were no Entry objects returned by the remote operation.

Signature:
public Entry[] getEntries();

Returns:

The array of Entry objects contained within this ListReply object

WSDL:
 <xsd:complexType name="Reply">
 ...
 <xsd:sequence>
 <xsd:element name="entries" type="tns:ArrayOfEntry" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 17

2.3.2 Entry Object

All valid VFDS Entry objects are characterized by the following abstract class definition, which is to
say that the base Entry class is abstract and serves as a structural definition for its various subclass
heirs.

The following describes the interface definition for the VFDS Entry object:

Method: getLastModified

Description:

Returns the last modified timestamp of the VFDS entry represented by this object. This
timestamp reflects the last time the corresponding VFDS entry was modified within the
namespace repository and does not reflect the last modified timestamp from any physical target.

Last modified timestamps may be set by an administrator, however in practice the last modified
value of an entry is updated automatically and thereby denotes the last time the directory service
database record was modified.

Signature:
public Date getLastModified();

Returns:

Modification timestamp of the VFDS entry this object represents

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="lastModified" type="xsd:dateTime" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: getName

Description:

Returns the name of the VFDS entry this object represents.

Signature:
public String getName();

Returns:

Name of the represented VFDS entry

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 18

Method: getObjectID

Description:

Returns the session specific object ID that uniquely identifies the VFDS entry this object
represents.

Signature:
public String getObjectID();

Returns:

Object ID of the represented VFDS entry

Note:
The Object ID member is a read-only member and once a directory service entry is created, the
Object ID of the entry cannot be changed.

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="oid" type="xsd:string" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: getParentID

Description:

Returns the session specific object ID of the parent object that uniquely identifies the parent
VFDS entry of the VFDS entry this object represents.

Signature:
public String getParentID();

Returns:

Parent object ID of the represented VFDS entry

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="pid" type="xsd:string" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 19

Method: getAliasCount

Description:

Returns the number of aliases this VFDS entry has associated with it. An alias is a VFDS entry
that symbolizes another VFDS entry via a different pathname (see 2.3.2.2.2 Junction Subclass:
Alias).

Signature:
public int getAliasCount();

Returns:

Number of the associated aliases

Note:
The alias count member is a read-only attribute and cannot be set by any method.

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="aliasCount" type="xsd:ArrayOfInt" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setLastModified

Description:

Sets the last modified timestamp of the VFDS entry represented by this object. This timestamp
reflects the last time the corresponding VFDS entry was modified within the namespace
repository and does not reflect the last modified timestamp from any physical target.

Last modified timestamps may be set by an administrator, however in practice the last modified
value of an entry is updated automatically and thereby denotes the last time the directory service
database record was modified.

Signature:
public void setLastModified(Date timestamp);

Parameters:

timestamp: The timestamp to be used to represent the last modified time of the namespace
entry

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="lastModified" type="xsd:dateTime" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 20

Method: setName

Description:

Sets the name of the VFDS entry this object represents.

Signature:
public void setName(String name);

Parameters:

name: The name to be assigned to the entry represented by this object.

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setParentID

Description:

Sets the session specific object ID of the parent object that uniquely identifies the parent VFDS
entry of the VFDS entry this object represents.

Signature:
public void setParentID(String pid);

Parameters:

pid: The Object ID of the parent directory.

WSDL:
 <xsd:complexType name="Entry">
 ...
 <xsd:sequence>
 <xsd:element name="pid" type="xsd:string" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: refresh

Description:

Refreshes, or re-synchronizes, the member values of the current in memory object with the
values stored in the directory service database.

Signature:
public void refresh();

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 21

2.3.2.1 Entry Subclass: VirtualDirectory

The VFDS VirtualDirectory class is a concrete class that is a direct subclass of Entry. It appends
one method to the structural definition of Entry:

Method: getChildCount

Description:

Returns the number of immediate subentries related to this virtual directory in the directory
hierarchy.

Signature:
public int getChildCount();

Returns:

Number of immediate subentries related to this VirtualDirectory

Note:
The child count member is a read-only attribute and cannot be set by any method.

WSDL:
 <xsd:complexType name="VirtualDirectory">
 ...
 <xsd:sequence>
 <xsd:element name="childCount" type="xsd:int"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 22

2.3.2.2 Entry Subclass: Junction

The VFDS Junction class is an abstract class that is a direct subclass of Entry. It appends one
method to the structural definition of Entry:

Method: getTargets

Description:

Returns at least one String, typically a URL, that identifies the target resource for the VFDS
junction represented by this object. The URL syntax must comply with RFC 1738.

Signature:
public String[] getTargets();

Returns:

An array of URLs or end point references that refer to target resources denoted by this junction

WSDL:
 <xsd:complexType name="Junction">
 ...
 <xsd:sequence>
 <xsd:element name="targetURL" type="xsd:ArrayOfString" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setTargets

Description:

Sets the target String array, typically in the form of URLs, that identifies all available target
resources for the VFDS junction represented by this object. Any given junction may have more
than one target resource, identical in content but different in reference or location.

The URL syntax must comply with RFC 1738.

Signature:
public void setTargets(String[] targets);

Parameters:

targets: A String array of target URLs

WSDL:
 <xsd:complexType name="Junction">
 ...
 <xsd:sequence>
 <xsd:element name="targetURL" type="xsd:ArrayOfString" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 23

Method: addTarget

Description:

Adds a single target URL to the list of registered targets of the current Junction object. This
method automatically increases the internal array of targets and assigns the target parameter to
the end of the array.

The URL syntax must comply with RFC 1738.

Signature:
public void addTarget(String target);

Parameters:

target: A String representing a target resource, typically in the form of a URL, to be added to
the list of targets for a given junction

WSDL:
 <xsd:complexType name="Junction">
 ...
 <xsd:sequence>
 <xsd:element name="targetURL" type="xsd:ArrayOfString" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: removeTarget

Description:

Removes a single target URL from the list of registered targets of the current Junction object.
This method automatically removes the target parameter from the list of existing targets and
resizes the internal array.

Notice that this method does not in any way affect the physical target, but rather “dereferences”
the physical target by removing the reference to it from the junction’s list of target resources.

The URL syntax must comply with RFC 1738.

Signature:
public void removeTarget(String target);

Parameters:

target: A String representing a target resource, typically in the form of a URL, to be removed
from the list of targets for a given junction. Please note: the target parameter is case
sensitive and must match exactly before the target will be removed from the list.

WSDL:
 <xsd:complexType name="Junction">
 ...
 <xsd:sequence>
 <xsd:element name="targetURL" type="xsd:ArrayOfString" nillable="false"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 24

2.3.2.2.1 Junction Subclass: Referral

The VFDS Referral class is an abstract class that is a direct subclass of Junction. A Referral is a
VFDS entry that refers to another VFDS service instance. This enables delegate VFDS service
instances with the potential of separation of administrative ownership and control.

2.3.2.2.2 Junction Subclass: Alias

The VFDS Alias class is an abstract class that is a direct subclass of Junction. An Alias is a VFDS
entry that symbolizes another VFDS entry. It is effectively an “alias” or alternate name for the entry
being symbolized, and may have a different path and/or name that uniquely identifies it in the global
namespace.

2.3.2.2.2.1 Junction Subclass: EntryAlias

The VFDS EntryAlias class is a concrete class that is a direct subclass of Alias. An EntryAlias
persistently maintains its referential relationship with the VFDS entry it is aliasing by object ID.
Since entry aliases point to target entries by their respective object IDs, the targeted VFDS entry
may be moved and/or renamed without dereferencing the alias entry.

Entry aliases truly symbolize the VFDS entry that they target by simply presenting an alternate
name to the same entry. Provided that the user creating the alias entry has the appropriate
authorization, the establishment of the alias entry will transactionally increment an alias/link count
attribute of the targeted entry. If the user creating the alias entry does not have adequate
permission to alter the alias count attribute of the target entry, then the alias is created without a
corresponding “alias count” reference.

Method: isLinked

Description:

Identifies whether or not this EntryAlias is considered “linked”, which if true denotes a special
relationship between the targeted VFDS entry object and the alias object in that the target object
includes this alias object in its alias count.

Similar to Unix style “hard-links”, a “linked” EntryAlias enables the original entry to be deleted
without losing access to its content. An entry will remain accessible as long as there is at least
one “linked” EntryAlias reference to it; even if the original entry has been deleted. If the
EntryAlias object, for whatever reason, is not “linked” to its target then the target entry will not
have “knowledge” of this reference and consequently act as a Unix style “soft-link”; this implies
that a non-linked EntryAlias can become an orphaned object, pointing to an extinct target.

Signature:
public boolean isLinked();

Returns:

True if the target VFDS entry’s alias count attribute was incremented; false if it was not.

Note:
The linked member is a read-only attribute and cannot be set by any method.

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 25

WSDL:
 <xsd:complexType name="EntryAlias">
 ...
 <xsd:sequence>
 <xsd:element name="linked" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

2.3.2.2.2.2 Junction Subclass: PathAlias

The VFDS PathAlias class is a concrete class that is a direct subclass of Alias. A PathAlias refers
to a target VFDS entry by pathname. If the VFDS entry object that represents the target pathname
is moved, renamed, or deleted, the PathAlias object reference will become invalid.

2.3.2.2.3 Junction Subclass: LogicalJunction

The VFDS LogicalJunction class is an abstract class that is a direct subclass of Junction. A
LogicalJunction is a VFDS entry that junctions a resource by its unique logical name, which implies
the necessity of a Logical-to-Physical resolver in order to obtain a physical location of the data
represented; an example resolver might be something like a Replica Location Service.

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 26

2.3.2.2.4 Junction Subclass: PhysicalJunction

The VFDS PhysicalJunction class is an abstract class that is a direct subclass of Junction. It
appends four methods to the structural definition of Junction:

Method: isComplete

Description:

Identifies whether or not the file or filesystem source targeted by this VFDS entry is complete. In
the case of files, a value of true connotes all of the file content is embodied in the file; for filesets
(filesystem subtrees) this identifies whether or not the fileset is complete in terms of number of
files participating and the coherency of these files.

Signature:
public boolean isComplete();

Returns:

True if the data source is complete or “all there”; false if it is a partial data source.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="complete" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: isMutableSource

Description:

Identifies whether or not the file or filesystem source targeted by this VFDS entry can change.

Signature:
public boolean isMutableSource();

Returns:

True if the data source is mutable; false if it is not.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="mutableSource" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 27

Method: isReadOnly

Description:

Identifies whether or not a local copy of the data should be locally read-only.

Signature:
public boolean isReadOnly();

Returns:

True if the local copy of the data should be read-only; false if the local copy allows writes.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="readOnly" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: isReplica

Description:

Identifies whether or not the file or filesystem source targeted by this VFDS entry is a replica
copy.

Signature:
public boolean isReplica();

Returns:

True if the data source is a replica copy; false if it is an original data source.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="replica" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 28

Method: getChecksum

Description:

Returns a string representation of the actual checksum corresponding to the physical file or fileset
symbolized by this PhysicalJunction object.

Signature:
public String getChecksum();

Returns:

The checksum of the file or fileset

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="checksum" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: getChecksumType

Description:

Returns a string representation of the checksum type or algorithm used to produce the checksum
(see getChecksum()).

Signature:
public String getChecksumType();

Returns:

The algorithm employed to produce the checksum
(example checksum types may include: MD5, CRC-32, RSA-MD4, DES)

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="checksumType" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 29

Method: getSize

Description:

This represents the physical size of the targeted data source. If the target data is in the form of a
file (implying a PFN) then this value discloses the size of the file in bytes. If the target data is in
the form of a fileset (implying a PFSN) then this value discloses the summation size of all the
contained files.

Signature:
public long getSize();

Returns:

Number of bytes used by the targeted data if available

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="size" type="xsd:long"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: getTimestamp

Description:

This represents a replica or fileset’s point-in-time timestamp corresponding to the time at which
the source snapshot was made.

Signature:
public Date getTimestamp();

Returns:

The point-in-time timestamp of the targeted data

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 30

Method: getVersion

Description:

This represents a version number of the targeted data if available.

Signature:
public float getVersion();

Returns:

Version number of the targeted data if available

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="version" type="xsd:float"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setComplete

Description:

Set the complete state for the object representing the physical resource (see isComplete()).

Signature:
public void setComplete(boolean flag);

Parameters:

value: True if the corresponding physical resource is complete

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="complete" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 31

Method: setMutableSource

Description:

Sets whether or not the file or filesystem source targeted by this VFDS entry can change.

Signature:
public void setMutableSource(boolean flag);

Parameters:

value: True if the corresponding physical resource can change

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="mutableSource" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setReadOnly

Description:

Sets whether or not a local copy of the data should be locally read-only.

Signature:
public void setReadOnly(boolean flag);

Parameters:

value: True if the corresponding physical resource only exports read access. Please notice: this
doesn’t necessarily indicate the source copy of data is read-only, but rather identifies
whether the source copy allows writes from foreign replicas.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="readOnly" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 32

Method: setReplica

Description:

Sets whether or not the file or filesystem source targeted by this VFDS entry is a replica copy.

Signature:
public void setReplica(boolean flag);

Parameters:

value: True if the corresponding physical resource is a replica copy and not the “authoritative”
source.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="replica" type="xsd:boolean"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setChecksum

Description:

Sets the string that represents the actual checksum corresponding to the physical file or fileset
symbolized by this PhysicalJunction object. See also setChecksumType().

Signature:
public void getChecksum(String checksum);

Parameters:

checksum: The checksum value that represents the checksum of the physical resource.

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="checksum" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 33

Method: setChecksumType

Description:

Sets the string that represents the checksum type or algorithm used to produce the checksum
(see setChecksum()).

Signature:
public void setChecksumType(String checksumType);

Parameters:

checksum: The checksum type or algorithm

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="checksumType" type="xsd:string" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setSize

Description:

Sets the value representing the physical size of the targeted data source. If the target data is in
the form of a file (implying a PFN) then this value discloses the size of the file in bytes. If the
target data is in the form of a fileset (implying a PFSN) then this value discloses the summation
size of all the contained files. See also getSize().

Signature:
public void setSize(long size);

Parameters:

size: The physical size of the targeted data source (number of bytes)

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="size" type="xsd:long"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 34

Method: setTimestamp

Description:

Sets the point-in-time timestamp corresponding to the time at which the targeted source snapshot
was made, if such a value is appropriate and available.

Signature:
public void setTimestamp(Date date);

Parameters:

date: The point-in-time timestamp of the corresponding physical data source

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime" nillable="true"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

Method: setVersion

Description:

Sets the version number of the targeted data, if such a value is appropriate and available.

Signature:
public void setVersion(float version);

Parameters:

version: The version number of the corresponding physical data source

WSDL:
 <xsd:complexType name="PhysicalJunction">
 ...
 <xsd:sequence>
 <xsd:element name="version" type="xsd:float"/>
 ...
 </xsd:sequence>
 </xsd:complexType>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 35

2.4 Operation Sequence of VFDS

This section will briefly outline the operational sequence of communicating and interacting with
VFDS.

2.4.1 List entries of a virtual directory

To retrieve a list of directory entries for a given virtual directory in the global namespace hierarchy,
the list operation is utilized. The client making such a request would simply perform a list service
operation against the VFDS service, whose returning messages will be constructed into a Reply
object. The requesting client then retrieves the list of all subentries, via the getEntries method,
immediately related to the virtual directory specified by the path used in the list operation. At this
point the requesting client can process any number (or all) of the returned Entry objects. If an
unexpected exception occurs, the status code available via the Reply object can be checked.

In summary, the following operations are necessary to retrieve a directory listing in VFDS:

1) Invoke the list operation of the VFDS service, specifying the globally unique path of the
virtual directory to list.

2) Retrieve all Entry objects from the Reply object by calling the getEntries method.
3) Enumerate the Entry objects delivered via the Reply object.

2.4.2 Create a virtual directory

To create a virtual directory in the global namespace hierarchy, the create operation is utilized. The
client placing such a request would simply perform a create service operation against the VFDS
service, specifying the global path and providing an instantiated VirtualDirectory object as the Entry
parameter. Once the service completes this operation, its returning messages will be constructed
into a Reply object. The requesting client then evaluates the status code available via the
getStatusCode method of the Reply object. If an unexpected exception occurs, the status code
available via the Reply object can be checked.

In summary, the following operations are necessary to retrieve a directory listing in VFDS:

1) Construct a VirtualDirectory object with the appropriate property values assigned (name,
modification time, etc.).

2) Invoke the create operation of the VFDS service, specifying the globally unique path of the
virtual directory to create and providing the previously instantiated VirtualDirectory object
from step 1 as the Entry parameter.

3) Evaluate the status code returned by the service via the getStatusCode method of the
Reply object.

3. Federation of Virtual Filesystem Directory Services

A global namespace service directly implies the employment of a multitude of namespace servers
by virtue of geographical distribution, segregated domains of ownership and control, scalability, and
redundancy/availability. A principal goal of a global namespace service is to provide a location
independent view of consistent access paths to data. Since these access paths are represented by
hierarchal path names, symbolizing a globally unique identifier of data, it is a natural extension of
the design to postulate an architecture that federates multiple namespace servers in a hierarchical
fashion. Similar to the well established DNS model, VFDS servers can be interlinked by referrals
whilst providing a seamless and transparent view of the namespace. Once several instances of the
namespace service are interlinked, the most obvious challenge is related to path name resolution

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 36

when dealing with paths that cross referral boundaries. There are two fundamental approaches to
resolving path names that span multiple namespace domains or service instances: service referrals
and delegated resolution.

3.1 Service Referrals

The most straightforward and arguably the most secure and truly scalable approach to resolving
path names that span multiple domains or service instances is to place the onus of handling VFDS
referrals on the VFDS client. In this approach, the namespace server would simply return a VFDS
referral to the VFDS client when a junction to another namespace server is encountered. The client
implementing the VFDS API is then responsible for continuing the task of resolving the original path
name by connecting to the namespace server indicated by the VFDS referral and querying the
newly connected server for further (relative) path name resolution.

One clear advantage of this approach is the direct management of namespace service connections,
which implies authentication and authorization control per connection, rather than accessing a
referred namespace server via proxied security. Additionally, this approach promotes distributed
work load balancing; instead of requiring VFDS servers to handle namespace requests for both
locally managed namespace and remotely managed namespace via proxy.

3.2 Delegated Resolution

Another possible approach to resolving path names that span multiple domains or service instances
is to empower the VFDS server to delegate queries to other VFDS servers for complete resolution
of any given path. Although this approach is demonstrated in DNS, it should be noted that the
security requirements are quire different. Since DNS generally operates in a public read-only
manner without authentication and authorization per DNS server, it is not too unreasonable to
endorse such an approach. VFDS, however, facilitates the possibility of requiring authentication per
service instance and enforcing access control per entry. Nevertheless, an approach that allows for
the possibility of delegated resolution should be considered as at least an optional mode of
operation; incidentally DNS is capable of both approaches.

4. Considerations

There are several issues to consider, with respect to VFDS, that have not been explored in this
document.

? Security – The topic of security as a whole is not discussed in this specification document.
Security is recognized as a substantial are of interest and will require further investigation.

? Replication of VFDS databases – To enhance fault tolerance and reliability, replication of
namespace service data is indispensable. The consistency model required by VFDS needs
to be investigated.

? Backup – Backup of VFDS data may be required.

? Discussion of access control lists (ACLs) within VFDS, their purpose, scope, representation,
and enforcement. If access permissions defined by physical filesystems are to be
represented within VFDS then significant consideration must be taken with respect to
consistency problems between access permissions of a virtual file and the corresponding
file data.

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 37

? Removal or modification of a file data without notification to the file system directory
services.

? Consistency problems between file data replicas.

? Interoperability issue with NFSv4 and CIFS.

5. Summary and conclusion

This document intended to describe the specification of the Virtual Filesystem Directory Service,
which will be one of the essential services for the realization of a Grid File System. It manages the
namespace of federated and virtualized data from file system resources, access control
mechanisms, and meta-data management.

This document proposed a set of operations needed to be supported by VFDS. Additionally, it
proposed two approaches to federation of VFDS service instances for scalable, large-scale and
distributed namespace management.

Further detailed discussion for specification and evaluation by implementing file system directory
services are needed with respect to security, performance, consistency, scalability, and reliability.
The evaluation needs to consider functionality of a client library, especially, with and without client
attribute cache.

6. Appendix: Sample WSDL for VFDS

The following is a sample Web Services Description Language (WSDL) file intended to describe
VFDS in terms of a web service using a standard XML format.

 <service name='VFDS'>
 <port name='VFDS' binding='tns:VFDS'>
 <soap:address location='http://vfds.almaden.ibm.com:6060/VFDS/'/>
 </port>
 </service>
 <portType name='VFDS'>
 <operation name='create' parameterOrder='path entry'>
 <input message='tns:VFDS_create__Request_Soap'/>
 <output message='tns:VFDS_create_Response_Soap'/>
 <fault name='ProtocolException1' message='tns:ProtocolException1'/>
 </operation>
 <operation name='delete' parameterOrder='path'>
 <input message='tns:VFDS_delete__Request_Soap'/>
 <output message='tns:VFDS_delete_Response_Soap'/>
 <fault name='ProtocolException' message='tns:ProtocolException'/>
 </operation>
 <operation name='list' parameterOrder='path'>
 <input message='tns:VFDS_list__Request_Soap'/>
 <output message='tns:VFDS_list_Response_Soap'/>
 <fault name='ProtocolException3' message='tns:ProtocolException3'/>
 </operation>
 <operation name='lookup' parameterOrder='path'>
 <input message='tns:VFDS_lookup__Request_Soap'/>
 <output message='tns:VFDS_lookup_Response_Soap'/>
 <fault name='ProtocolException4' message='tns:ProtocolException4'/>
 </operation>
 <operation name='move' parameterOrder='src dest'>
 <input message='tns:VFDS_move__Request_Soap'/>
 <output message='tns:VFDS_move_Response_Soap'/>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 38

 <fault name='ProtocolException2' message='tns:ProtocolException2'/>
 </operation>
 <operation name='update' parameterOrder='original updated'>
 <input message='tns:VFDS_update__Request_Soap'/>
 <output message='tns:VFDS_update_Response_Soap'/>
 <fault name='ProtocolException1' message='tns:ProtocolException1'/>
 </operation>
 </portType>
 <binding name='VFDS' type='tns:VFDS'>
 <soap:binding transport='http://schemas.xmlsoap.org/soap/http' style='document'/>
 <operation name='create'>
 <map:java-operation name='create' signature='xxx'>
 <map:fault name='ProtocolException1' java-
type='com.ibm.vfds.ProtocolException'/>
 </map:java-operation>
 <soap:operation
 soapAction='http://systinet.com/wsdl/com/ibm/vfds/VFDS#create?xxx'
style='document'/>
 <input>
 <soap:body parts='path entry' use='literal'/>
 </input>
 <output>
 <soap:body parts='response' use='literal'/>
 </output>
 <fault name='ProtocolException1'>
 <soap:fault name='ProtocolException1' use='literal'/>
 </fault>
 </operation>
 <operation name='delete'>
 <map:java-operation name='delete' signature='xxx'>
 <map:fault name='ProtocolException' java-
type='com.ibm.vfds.ProtocolException'/>
 </map:java-operation>
 <soap:operation
 soapAction='http://vfds.almaden.ibm.com/wsdl/com/ibm/vfds/VFDS#delete?xxx'
 style='document'/>
 <input>
 <soap:body parts='path' use='literal'/>
 </input>
 <output>
 <soap:body parts='response' use='literal'/>
 </output>
 <fault name='ProtocolException'>
 <soap:fault name='ProtocolException' use='literal'/>
 </fault>
 </operation>
 <operation name='list'>
 <map:java-operation name='list' signature='xxx'>
 <map:fault name='ProtocolException3' java-
type='com.ibm.vfds.ProtocolException'/>
 </map:java-operation>
 <soap:operation
soapAction='http://vfds.almaden.ibm.com/wsdl/com/ibm/vfds/VFDS#list?xxx'
 style='document'/>
 <input>
 <soap:body parts='path' use='literal'/>
 </input>
 <output>
 <soap:body parts='response' use='literal'/>
 </output>
 <fault name='ProtocolException3'>
 <soap:fault name='ProtocolException3' use='literal'/>
 </fault>
 </operation>
 <operation name='lookup'>
 <map:java-operation name='lookup' signature='xxx'>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 39

 <map:fault name='ProtocolException4' java-
type='com.ibm.vfds.ProtocolException'/>
 </map:java-operation>
 <soap:operation
 soapAction='http://vfds.almaden.ibm.com/wsdl/com/ibm/vfds/VFDS#lookup?xxx'
 style='document'/>
 <input>
 <soap:body parts='path' use='literal'/>
 </input>
 <output>
 <soap:body parts='response' use='literal'/>
 </output>
 <fault name='ProtocolException4'>
 <soap:fault name='ProtocolException4' use='literal'/>
 </fault>
 </operation>
 <operation name='move'>
 <map:java-operation name='move' signature='xxx'>
 <map:fault name='ProtocolException2' java-
type='com.ibm.vfds.ProtocolException'/>
 </map:java-operation>
 <soap:operation
soapAction='http://vfds.almaden.ibm.com/wsdl/com/ibm/vfds/VFDS#move?xxx'
 style='document'/>
 <input>
 <soap:body parts='src dest' use='literal'/>
 </input>
 <output>
 <soap:body parts='response' use='literal'/>
 </output>
 <fault name='ProtocolException2'>
 <soap:fault name='ProtocolException2' use='literal'/>
 </fault>
 </operation>
 <operation name='update'>
 <map:java-operation name='update' signature='xxx'>
 <map:fault name='ProtocolException2' java-
type='com.ibm.vfds.ProtocolException'/>
 </map:java-operation>
 <soap:operation
 soapAction='http://vfds.almaden.ibm.com/wsdl/com/ibm/vfds/VFDS#update?xxx'
 style='document'/>
 <input>
 <soap:body parts='original updated' use='literal'/>
 </input>
 <output>
 <soap:body parts='response' use='literal'/>
 </output>
 <fault name='ProtocolException2'>
 <soap:fault name='ProtocolException2' use='literal'/>
 </fault>
 </operation>
 </binding>

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 40

Author Information

Osamu Tatebe
Grid Technology Research Center, AIST
1-1-1 Umezono, Tsukuba
Ibaraki 3058568 Japan
o.tatebe@aist.go.jp

Manuel Pereira, Leo Luan, Ted Anderson
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120, USA
mpereira@us.ibm.com
leoluan@us.ibm.com
ota@us.ibm.com

Jane Xu
IBM Systems and Technology Group
5600 Cottle Road
San Jose, CA 95193, USA
jxu@us.ibm.com

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to the GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF Document
process must be followed, or as required to translate it into languages other than English.

GWD-R June 2004

mpereira@us.ibm.com o.tatebe@aist.go.jp
 41

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE."

References

[1] Leo Luan and Ted Anderson, “Grid Namespace for Files”, GGF working draft, GGF8, 2003
https://forge.gridforum.org/projects/gfs-wg/document/Grid_Namespace_for_Files/en/1
[2] S. Shepler, et al., “Network File System (NFS) version 4 Protocol”, RFC3530, 2003

