
 1

Web Services Agreement Specification
(WS-Agreement)

Version 1.0

2/21/2004

Authors (alphabetically):

Alain Andrieux, (Globus Alliance / USC/ISI)
Karl Czajkowski, (Globus Alliance / USC/ISI)
Asit Dan (IBM)
Kate Keahey, (Globus Alliance / ANL)
Heiko Ludwig (IBM)
Jim Pruyne (HP)
John Rofrano (IBM)
Steve Tuecke (Globus Alliance / ANL)
Ming Xu (Platform Computing)

Abstract
This document describes Web Services Agreement Specification (WS-Agreement),

an XML language for specifying an agreement between a resource/service provider
and a consumer, and a protocol for creation of agreement through negotiation using
an agreement template.

Status
This document is a draft of the WS-Agreement Specification from the Global Grid
Forum (GGF). This is a public document being developed by the participants of the
GRAAP Working Group (Grid Resource Allocation and Agreement Protocol WG) of the
Scheduling and Resource Management (SRM) Area of the GGF.

 2

GLOBAL GRID FORUM

office@ggf.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2003, 2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF website).

 3

Table of Contents

Web Services Agreement Specification (WS-Agreement)...................................... 1
Full Copyright Notice .. 2
Table of Contents... 3
1 Introduction... 4

1.1 Goals and Requirements .. 5
1.1.1 Requirements.. 5
1.1.2 Non-Goals .. 5

1.2 Notational Conventions .. 6
1.3 Namespace .. 6

2 Example Scenarios ... 7
2.1 Job submission ... 7
2.2 Service Parameterization ... 7

3 Agreement Structure... 8
4 Agreement Context..10
5 Agreement Terms..12

5.1 Service Description Terms...12
5.1.1 Service Description Term Definition ...12
5.1.2 Service Descriptions..13
5.1.3 Variables ...14

5.2 Guarantee Terms ...15
5.2.1 Guarantee Term Definition ...16
5.2.2 Qualifying Condition and Service Level Objective...............................16
5.2.3 Business Value ...16

6 Agreement Template and Negotiability Constraints18
6.1 Negotiability Description Type..18
6.2 Negotiation Item..19
6.3 Constraints ...19
6.4 Example ...20

7 Layered Service Model..21
7.1 Conceptual Model...21
7.2 Practical Model ..24

7.2.1 One Factory per Layer ...24
7.2.2 One Factory for Both Negotiation and Agreement25
7.2.3 One Factory for Both Agreement and Service....................................26
7.2.4 One factory for all Layers...27
7.2.5 Design Considerations ...28

7.3 Offer Types and Negotiation State ..29
7.4 Canonical Port Types and Operations ..30

7.4.1 Port Type wsag:NegotiationFactory ...30
7.4.2 Port Type wsag:Negotiation ...34
7.4.3 Port Type wsag:AgreementFactory ..36
7.4.4 Port Type wsag:Agreement ..38

8 Common Use Cases ...40
8.1 Simple Agreement Creation ...40
8.2 Agreement Negotiation ...40
8.3 Agreement Renegotiation..41

9 Acknowledgements ..41
10 References ...42
Appendix 1 - Document Schema ...43

 4

Appendix 2 - WSDL ...47
Appendix 3 - Example..47

1 Introduction
In a distributed service-oriented computing environment, service consumers like to
obtain guarantees related to services they use, often related to quality of a service.
Whether service providers can offer – and meet – guarantees usually depends on
their resource situation at the requested time of service. Hence, quality of service
and other guarantees that depend on actual resource usage cannot be advertised as
an invariant property of a service using, for example, WS-Policy, and then bound to
by a service consumer. Resource state-dependent guarantees must be negotiated
between a service consumer and provider resulting in an agreement on the service
and the associated guarantees. Additionally, the guarantees on service quality must
be monitored and failure to meet these guarantees must to be notified to consumers.
The objective of the WS-Agreement specification is to define a language for
agreements and offers, a mechanism for negotiating agreements, and the ability to
monitor agreement compliance at runtime.

An agreement between a service requester and a service provider specifies one or
more service level objectives both as expressions of requirements of the service
consumer and assurances by the provider on the availability of resources and/or on
service qualities. For example, an agreement may provide assurances on the bounds
on service response time and service availability. Alternatively, it may provide
assurances on the availability of minimum resources such as memory, CPU MIPS,
storage, etc.

To obtain this assurance on service quality, the service consumer or an entity acting
on its behalf must establish a service agreement with the service provider, or
another entity acting on behalf of the service provider. Because the service
objectives relate to the definition of the service, the service definition must be part of
the terms of the agreement or be established prior to agreement creation. This
specification provides a schema for defining overall structure for an agreement
document. An agreement includes information on the agreement parties and
references to prior agreements, referred to as agreement context, one or more
discipline specific service definition terms, and one or more guarantee terms
specifying service level objectives and business values associated with these
objectives.

The agreement creation process typically starts with a pre-defined agreement
template specifying customizable aspects of the documents, and rules that must be
followed in creating an agreement. These rules are defined by negotiability
constraints. This specification defines a schema for an agreement template.

The creation of an agreement can be initiated by the consumer side or by the
provider side. While simple scenarios for agreement creation may involve little or no
negotiation, creation of an agreement through negotiation can involve numerous
scenarios depending on the consumer or provider side acting as initiator, maintainer
of negotiation state and finally maintainer of agreement state. This specification
defines a core set of messages and resources modeling these states for supporting
many usage scenarios.

We use a coherent example of a hypothetical job submission to illustrate various
aspects of the WS-Agreement specification, particularly relationship of service level

 5

objectives with service description, an agreement template specifying alternative
service description terms and use of WS-Policy compositor, and negotiability
constraints in negotiating service level objectives. Details of the example scenario
are described in section 2.

Sections 3, 4, 5 specify the overall agreement structure, service description as
agreement terms and guarantee terms, respectively. Section 6 specifies schema for
the agreement template and negotiability constraints. Section 7 describes the
layered service model and introduces the port types and operations in the
specification. Section 8 specifies various phases of the agreement creation process,
namely, simple flow for agreement creation, negotiation in initial agreement creation
and renegotiation of agreements, respectively.

1.1 Goals and Requirements
The goals of WS-Agreement are to standardize the terminology, concepts, overall
agreement structure with types of agreement terms, agreement template with
negotiability constraints and protocols for creation, negotiation and renegotiation of
agreements, including WSDL needed to express the message exchanges and
resources needed to express the state.

1.1.1 Requirements

In meeting these goals, the specification must address the following specific
requirements:

• Must allow use of any service description term: It must be possible to
create agreements for services defined by any domain specific service
description terms, such as job specification, data service specification,
network topology specification and web service description language (WSDL).
Service objective description will reference the elements defined in service
description.

• Must allow creation of agreements for existing and new services: It
must be possible to create agreements for predefined services and resources
modeling service state. Additionally, service description can be passed as
agreement terms for coordinated creation of agreements and new service
specific resources.

• Must allow use of any condition specification language: It must be
possible to use any domain specific or other standard condition expression
language in defining service level objectives and negotiability constraints.

• WS-Agreement creation must be independent of specific negotiation
model: A large number of negotiation scenarios are possible depending on
whether a provider or consumer initiates agreement creation, and also where
the agreement state is maintained. The basic messages defined in this
document can be applied for modeling various usage specific scenarios.

• Relationship to other WS-* specifications: WS-Agreement must be
composable with other Web services specifications, in particular WS-Security,
WS-Policy, WS-Federation, WS-Addressing, WS-Coordination, WS-
ResourceProperties, WS-ResourceLifetime, Web Services for Remote Portals,
and WS-ReliableMessaging and the WS-Resource framework [WS-Resource].

1.1.2 Non-Goals

The following topics are outside the scope of this specification:

 6

• Defining domain-specific expressions for service descriptions.

• Defining specific condition expression language for use in specifying
guarantee terms and certain negotiability constraints. We assume standards
will emerge elsewhere for a common expression definition language.
Alternatively, different expression language may be used in different usage
domain.

• Defining specific service level objective terms for a specific usage domain
such as network, server, applications, etc.

• Defining specification of metrics associated with agreement parameters, i.e.,
how and where these are measured.

• Protocol and conventions for claiming services according to agreements is
considered domain-specific. For example, agreement identification in SOAP
headers might suit a Web service, another mechanism is required for
networking services, etc.

1.2 Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119 [RFC 2119].

When describing abstract data models, this specification uses the notational
convention used by the [XML Infoset]. Specifically, abstract property names always
appear in square brackets (e.g., [some property]). When describing concrete XML
schemas, this specification uses the notational convention of [WS-Security].
Specifically, each member of an element’s [children] or [attributes] property is
described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of

an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an

attribute wildcard (<xsd:anyAttribute/>).

1.3 Namespace
This is an XML or other code example:

 http://www.ggf.org/namespaces/ws-agreement (Code)

The following namespaces are used in this document:

Prefix Namespace

wsag http://www.ggf.org/namespaces/ws-agreement (temporary)

wsa http://schemas.xmlsoap.org/ws/2003/03/addressing

wsbf http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseFaults

wssg http://www.ibm.com/xmlns/stdwip/web-services/WS-ServiceGroup

wsrp http://www.ibm.com/xmlns/stdwip/web-services/WS-
ResourceProperties

 7

xs/xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

wsdl http://schemas.xmlsoap.org/wsdl/

2 Example Scenarios
WS-Agreement covers a wide scope of application scenarios relating to the
establishment of an agreement between a service provider and a service consumer.
This is achieved by using a single format of document and a protocol comprising few
states. Two examples are chosen here to illustrate the range of applications that this
specification covers. These examples are referred to throughout the specification.

2.1 Job submission
A typical application scenario is the request for executing a computing job. A service
provider may post an agreement template available to interested requesters. In this
scenario, the agreement template defines the list applications to be executed, and
the software execution environment typically specified in a job submission. Service
consumers are given a quality of service guarantee in terms of number of nodes
and/or per node memory and storage for a specific time period. Alternatively, the
guarantees can be on the completion time. A service consumer requesting a
submitted job must fill in the name of the application to be executed, input and
output files. In addition, a service consumer chooses the number of nodes (or any
other resource requirements) that are guaranteed for the application to be executed
on.

To submit a job, a service consumer retrieves the template from the provider,
selects the application name, and provides URL of the input and output files as well
as the details of resource guarantees. The filled template is sent as an offer to the
provider. The provider decides whether to accept or reject the requested job. This
may depend on the queue of jobs waiting to be processed and the current allocation
of resources. The service provider answers the offer with a confirmation or a fault. In
due time, the service provider processes the job and writes the output file to the URL
defined in the agreement.

2.2 Service Parameterization
In the second scenario, the service contracted is an authentication and access
control service. The service exposes an interface to register a new user, set an
access control policy, manage a user’s passwords, authenticate a user and check a
requested user action against the corresponding access control policy. In an access
control environment, quality of service aspects such as response to for access
verification and service availability is critical. Depending on particular needs, service
consumers require different service quality levels and are prepared to pay differently
for their quality of service requirements.

The service is very convenient for event organizers or other temporary projects. For
example, sports events such as

an athletics meeting or a soccer tournament require access control services for a
limited amount of time to a large and diverse group of constituents such as athletes,
journalists, jurors, and spectators who access the event’s Web site or applications.

 8

A service provider offers an agreement template describing the service and its
guarantees, including the options available to the customer. The service description
includes the WSDL of the service interface. Customer can choose among a service
using Kerberos-based authentication or a proprietary authentication system.
Furthermore, customers can choose how many users ID should be managed.
Customers can add availability and response time guarantees to individual operations
of the interface, e.g., to distinguish quality requirements for management and access
control operations. For operation availability, customers choose between 95%, 98%,
99%, and 99.9%, defined as receiving an reply in 15 seconds. For average response
time guarantees, customers choose between 0.5, 1 or 2 seconds, and set the
number of operations per minute for which the response time goal must hold. Also,
customers can set the time when the service will be available.

This template offers many options to service consumers. Service consumers send a
completed offer to the service provider. Based on capacity limitations, the provider
may accept the offer or counter-proposes. For example, if a service consumer asks
for 1 sec response time for up to 1000 requests per minute, the provider might only
have capacity for up to 500 requests and counter-proposes an agreement for 500
requests, maybe for a lower price, suggesting that the service consumer can buy the
rest of the capacity from a different provider.

Once the agreement is “signed”, the provider provisions the service and exposes
status information on guarantee compliance to the user. The service consumer may
shop for the remaining capacity needs at different providers.

In the course of the event, it may turn out that more or less capacity is needed.
Hence, the service consumer want to be able to renegotiate the agreement.

3 Agreement Structure
An agreement document is composed of three distinct parts. We summarize the
structure in the following diagram:

Figure 1: Agreement structure.

 9

The first section is the context, which contains the meta-data describing the
agreement as a whole. It names the participants in the agreement, the agreement’s
lifetime and links to other agreements related to this agreement. The next section
contains the terms that describe the agreement itself. The terms are contained
within a WS-Policy compositor allowing the terms to be combined in logical groups
providing the possibility of creating agreements with alternative. We define two
types of terms: Service Description Terms and Guarantee Terms. The Service
Description Terms provide information needed to instantiate or otherwise identify a
service to which this agreement pertains. The guarantee terms specify the service
levels that the parties are agreeing to. Management systems may use the guarantee
terms to monitor the service and enforce the agreement. Lastly, the constraints
provide guidelines as to how the values of the terms may be changed during the
lifetime of the agreement by specifying the valid ranges or distinct values that the
terms may take. The constraints refer back to individual terms they apply to using
XPATH.

Ultimately, a WS-Agreement document has the following structure:

<wsag:Agreement Name="xs:NCName"?>

 <wsag:AgreementContext>

 wsag:AgreementContextType

 </wsag:AgreementContext>

 <wsp:all>

 <wsag:ServiceDefinitionTerm> ...

Structure of an agreement template document

Agreement

Context

WS-Policy Compositor

Negotiability Constraints

Service Description Terms

Guarantee Terms

 10

 </wsag:ServiceDefinitionTerm> ?

 <wsag:GuaranteeTerm> ... </wsag:GuaranteeTerm> ?

 </wsp:all>

 <wsag:NegotiabilityDescription>…</wsag:NegotiabilityDescription> ?

</wsag:Agreement>

The following describes the attributes and tags listed in the schema outlined above:

/wsag:Agreement

This is the outermost document tag which encapsulates the entire agreement.
An agreement contains and agreement context and a collection of agreement
terms.

/wsag:Agreement/@Name

This is an OPTIONAL name that can be given to an agreement

/wsag:Agreement/AgreementContext

This is a REQUIRED element in the agreement and provides information about
the agreement that is not specified in the terms such as who the involved parties
are, what the services is that is being agree to, the length of the agreement, and
references to any related agreements.

/wsp:all

The terms of an agreement comprises one or more service definition terms, and
zero or more guarantee terms grouped using the WS-Policy compositor.

/wsag:Agreement/ServiceDefinitionTerms

These terms are OPTIONAL and MAY specify the parameters used to instantiate
a service which will fulfill this agreement or to describe a service to be used by
the agreement.

/wsag:Agreement/GuaranteeTerms

These terms are OPTIONAL and MAY specify the guarantees (both promises and
penalties) that are associated with the other terms in the agreement.

/wsag:Agreement/NegotiabilityDescription

These are OPTIONAL elements that MAY provide constraints on the values that
the various terms may take.

4 Agreement Context
An agreement is scoped by its associated context that SHOULD include parties to an
agreement, and additionally, SHOULD include reference to the service(s) provided in
support of the agreement. The context MAY also include other prior and/or related
agreements. The new agreement thus augments prior related agreements, between
the service consumer and the service provider.

The <wsag:AgreementContext> element is used to describe the involved parties and
the identify the service that the agreement is about. It can also optionally contain
references to other related agreements.

<wsag:AgreementContext>

 <wsag:AgreementInitiator>xs:AnyURI</wsag:AgreementInitiator>

 <wsag:AgreementProvider>xs:anyURI</wsag:AgreementProvider>

 11

 <wsag:TerminationTime>xs:DateTime</wsag:TerminationTime>

 <wsag:ServiceReference>

 <wsa:EndpointReference xmlns:wsa="..." xmlns:fabrikam="...">

 <wsa:Address>http://www.fabrikam123.com/acct</wsa:Address>

 <wsa:PortType>fabrikam:JobSubmissionPortType</wsa:PortType>

 </wsa:EndpointReference>

 </wsag:ServiceReference>

 <wsag:RelatedAgreements>...</wsag:RelatedAgreements>

</wsag:AgreementContext>

The following describes the attributes and tags listed in the schema outlined above:

/wsag:AgreementContext

This is the outermost tag which encapsulates the entire agreement context

/wsag:AgreementContext/AgreementInitiator

This is element identifies of the initiator of the agreement. The URI for an
agreement provider MAY be an wsa:EndpointReference from WS-Addressing or
MAY identify the initiator by more abstract naming, e.g. by security identity of
the owner or operator.

/wsag:AgreementContext/AgreementProvider

This is element identifies the provider of the agreement. The URI for an
agreement provider MAY be an wsa:EndpointReference from WS-Addressing or a
Grid Service Handle (GSH) [OGSI] to an existing service or MAY instead identify
the provider by more abstract naming, e.g. by security identity of the owner or
operator.

/wsag:AgreementContext/TerminationTime

This element specifies the time at which this agreement is no longer valid.
Agreement initiators MAY use this mechanism to negotiate Agreement service
lifetime. Extended negotiation languages MAY define other mechanisms to
negotiate lifetime integrated with other negotiation terms. The resulting
negotiated lifetime MUST be exposed as wsag:TerminationTime and further
negotiation MUST be possible through the basic OGSI mechanisms.

/wsag:AgreementContext/ServiceReference

This element is OPTIONAL and defines references to the provided service(s) for
which the agreement terms are defined.

/wsag:AgreementContext/RelatedAgreements

This element defines references to any number of related agreements that
define existing agreement terms which are being augmented via this agreement.
The related agreements are represented in the agreement service as related
agreement services (see Section 4.6).

/wsp:AgreementContext/{any}

Additional child elements MAY be specified to make additional agreement
contexts but MUST NOT contradict the semantics of the parent element; if an
element is not recognized, it SHOULD be ignored.

/wsp:AgreementContext/@{any}

Additional attributes MAY be specified but MUST NOT contradict the semantics of
the owner element; if an attribute is not recognized, it SHOULD be ignored.

 12

A wsag:AgreementContext element of type wsag:AgreementContextType MAY be
used in an agreement to define an agreement context. Alternatively, the agreement
context MAY be extended, through XSD extension of wsag:AgreementContextType,
to define other attributes of the parties or services to an agreement.

5 Agreement Terms
The terms of an agreement comprises one or more service definition terms, and zero
or more guarantee terms grouped using the WS-Policy compositor. The specification
defines schema for service description and agreement terms as abstract types, that
must be extended for specific usage domain.

5.1 Service Description Terms
Service description terms are a fundamental component of an agreement: at the
very least the service provider agrees to provide a service described by service
description terms. Providing this service may be qualified, and additional service
level objectives on how the service is performed may be imposed by the service
guarantee; service terms define the functionality that will be delivered under an
agreement. The service description content itself is dependent on the particular
domain. A ServiceDescriptionTerm consists of two parts,

Service EPR: Any number of EPRs referring to service instances, and

ServiceDescriptions, which describe the service and are typically expressed in a
domain-specific language.

This ServiceDescriptionTerm type and element defined here encompass a general
top-level attribute and they are expected to be extended to capture a domain-
specific form of service specification. An Agreement MAY contain any number of
SDTs, as an agreement can refer to multiple different service components.

5.1.1 Service Description Term Definition

The following definition describes the simple generic content of this type:

<wsag:ServiceDescriptionTerm name=”xs:NCName”>

 <wsa:EndpointReference>…</wsa:EndpointReference> *

 <wsag:ServiceDescription>…</wsag:ServiceDescription> *

 <wsag:Variables>…</wsag:Variables>

</wsag:ServiceDescriptionTerm>

The following describes the elements of the schema above:

/wsag:ServiceDescriptionTerm

ServiceDescriptionTerm encloses a description of a service.

/wsag:ServiceDescriptionTerm/@name

The name attribute (of type xs:NCName) represents the name given to a term.
Since an Agreement MAY encompass multiple ServiceDescriptionTerms each
term MUST be given a unique name for convenient referencing (see guarantee
term section).

/wsag:ServiceDescriptionTerm/wsa:EndpointReference

 13

The element is taken from the WS-Addressing specification. An Endpoint
Reference points to a particular instance of a resource. An EPR can be provided if
the service has been instantiated before the agreement is concluded. This
applies either to known services that are made available by a provider to
different service consumers or the service provider creates the service instance
in the course of the negotiation prior to accepting an offer.

/wsag:ServiceDescriptionTerm/wsag:ServiceDescription

ServiceDescriptions contain information to either explain the semantics of the
ERP, e.g., by means of a WSDL, or contain information that is needed to
instantiate the agreed service. The ServiceDescriptionType is expected to be
extended by domain-specific types and the ServiceDescriptionTerm element MAY
be substituted by element of a subtype of ServiceDescriptionTermType.

/wsag:ServiceDescriptionTerm/wsag:Variables

This element, of type VariableSetType, defines variables that can be referred to
in guarantee expressions.

The EPR(s) of the service instance may be passed by the initiator, when an existing
instance is being referred (possibly, based on agreement template). However, when
a new service instance is created based on the ServiceDescriptions, the EPR of a
newly created service instance is (most likely) being generated by the agreement
factory. Note that the initiator can always pass a reference to be assigned to the
newly created service instance. For a more complex service, one or more EPRs may
be returned.

5.1.2 Service Descriptions

Service descriptionss are intended to describe the service in a domain-specific way,
for example by using domain-specific term languages such as JSDL. A job execution
service may for example include a job name together with all the argument values
for a specific job execution. The service description MAY be associated with a WSDL
definition if the service is to be implemented by a Web service.

The definition of the XML Infoset of this supertype is:

<wsag:ServiceDescription >

...

</wsag:ServiceDescription>

It must be extended to contain domain-specific descriptions.

To illustrate one way of describing the service, we provide a Service descriptions
extension containing a reference to a WSDL file:

<wsag:WSDLFileReference >

 <wsag:URL> … </wsag:URL>

</wsag:WSDLFileReference >

The following describes the elements above:

 14

/wsag WSDLFileReference

WSDLFileReference, of WSDLFileReferenceType, contains a pointer to a WSDL
file.

/wsag:Filereference/wsag:URL

This element (of type xs:anyURI) is optional and contains a reference in the
form of a URL to a WSDL file that describes the service to which the Endpoint
Reference points.

In a job submission context, the service descriptions MAY contain a job description,
as illustrated below corresponding to the first example scenario:

<job:JobDescription>

 <job:InputFileURL> … </job:InputFileURL>

 <job:Diskspace> … </job:Diskspace>

 <job:Memory> … </job:Memory>

…

</job:JobDescription>

In this example, the job parameters are described in a job description language,
which is not part of WS-Agreement but contained in a ServiceDescription.

5.1.3 Variables

Guarantees contain conditions, which are logic expressions that refer to attributes of
a service such as metrics for availability and response time that are subject to the
guarantee. The semantics of those variables must be defined to interpret the
condition expression. Individual variables are defined as defined below:

<wsag:Variable name=”xsd:NCName” metric=”xsd:QName”>…</wsagVariable>

/wsag:Variable

This element, of type xsd:string, is an XPATH to a service definition term or any
point within a service definition term where the semantics of this variable is
defined.

/wsag:Variable/@name

This element, of type xsd:NCName, is the unique identifier of the variable in the
scope of this WS-Agreement.

/wsag:Variable/@metric

This element, of type xsd:QName, is an identification of a metric, e.g.,
availability, which is domain-specific. This element is optional and intended for
cases where the XPATH does not sufficiently explain the semantics of a variable.

Example:

<wsag:Variable name=”numberOfNodes”

>/wsag:Agreement/job:JobDescription</wsag:Variable>

 15

In this example, a variable numberOfNodes, whose interpretation is assumed to be
understood in the domain, refers to the service term JobDescription.

Variables are grouped into a set:

<wsag:VariableSet>

 <wsagVariable> … </wsag:Variable> *

</wsag:VariableSet>

/wsag:VariableSet

This element, of type VariableSetType, contains one or more variables.

/wsag:VariableSet/wsag:Variable

Variables are specified above.

5.2 Guarantee Terms
The primary motivation for creating a service agreement between a provider and a
service consumer is to provide assurance to a service consumer on the service
quality and/or resource availability by the provider. Guarantee terms define this
assurance on service quality, associated with the service defined by the service
definition terms. For the job submission example, an agreement may provide
assurance on the bounds (e.g., minimum) on the availability of resources such as
memory, CPU MIPS, storage and/or job execution start or completion time. These
bounds are referred to as the service level objectives (SLO).

An expression of assurance also includes qualifying conditions on external factors
such as time of the day as well as the conditions that a service consumer must meet.
For example, a bound on the average response time of the authorization service (as
per the second example) is assured only if the request rate is below a specified
threshold during weekdays.

An assurance also includes specification of one more forms of business values
associated with an SLO. For example, a business value may represent the strength of
this commitment by the provider. Another example of business value is the
importance of this assurance to the consumer and/or to the provider.

An agreement MAY contain zero or more GuaranteeTerm, where each
GuaranteetTerm consists of three parts,

QualifyingCondition: an optional condition that must be met (when specified) for a
guarantee to be enforced,

ServiceLevelObjective: a condition expressed over service descriptionss, and

BusinessValueList: one or more business values associated with this objective.

Note that a single ServiceLevelObjective can be a complex of objectives expressed as
a complex condition expressing bounds over many service attributes. Meeting the
overall objective may imply meeting all the individual objectives. However, if the
business values associated with individual objectives are different, (for example, if
not all objectives are equally important), then each objective should be expressed as
a separate GuaranteeTerm. Similarly, a QualifyingCondition can be a complex
condition if multiple qualifying conditions need to be met for a guarantee to be
honored.

 16

5.2.1 Guarantee Term Definition

The GuaranteeTerm comprises three elements as defined below:

<wsag:GuaranteeTerm>

 <wsag:QualityingCondition>…</wsag:QualifyingCondition>?

 <wsag:ServiceLevelObjective>…</wsag:ServiceLevelObjective>

 <wsag:BusinessValueList>…</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

/wsag:GuaranteeTerm

This element, of type GuaranteeTermType, represents an individual guarantee
related to the service described in service description terms.

/wsag:GuaranteeTerm/wsag:QualifyingCondition

A qualifying condition, of type ConditionType, represents the precondition under
which a guarantee holds.

/wsag:GuaranteeTerm/wsag:ServiceLevelObjective

This element, of type ConditionType, expresses the condition that must be met
to satisfy the guarantee.

/wsag:GuaranteeTerm/wsag:BusinessValueList

This is the higher level element that contains a list of business value elements
associated with a service level objective. Two standard business value types are
defined later. Customized business value types can be expressed extending an
abstract business value type, defined here.

The detailed description of the types associated with a GuaranteeTerm follows in the
subsections.

5.2.2 Qualifying Condition and Service Level Objective

QualifyingCondition and ServiceLevelObjective are expressed as a condition over
service attributes and/or external factors such as date time. Expression of
arithmetic, Boolean and date-time expression is required in many contexts, and not
just in agreements. An example of condition expression language can be found in
[XQUERYX]. Hence, the conditionType is defined as an abstract type that can be
extended with specific condition expression language, addressing the requirements
of a particular domain.

<wsag:Condition> … </wsag:Condition>

5.2.3 Business Value

Associated with each ServiceLevelObjective is a BusinessValueList that contains
multiple business values, each expressing a different value aspect of the objective.
The values may express relative importance of this objective to a consumer or
penalty to be assessed upon failure to meet this objective. Other customized domain
specific business values can be defined and associated with a service level objective.

Expression of business value in meeting certain assurances and flexible specification
of service consumer requirements may free a provider from fixed allocation of
resources. A provider can dynamically allocate resources based on actual measured
or estimated service consumer requirements, and evaluation of business values. For

 17

example, a new arrival of a high priority job may result in reduction of allocated
resources or suspension of an existing low priority job.

<wsag:BusinessValueList>

<wsag:Importance> xsd:integer </wsag:Importance>?

<wsag:Penalty> </wsag:Penalty>?

<wsag:Reward> </wsag:Reward>?

 <wsag:BusinessValue> … </wsag:BusinessValue>*

</wsag:BusinessValue>

/wsag:BusinessValueList

This element comprises the set of business value expressions.

/wsag:BusinessValueList/wsag:Importance

This element when present expresses relative importance (defined below) of
meeting an objective.

/wsag:BusinessValueList/wsag:Penalty

This element (defined below) when present expresses penalty to be assessed for
not meeting an objective.

/wsag:BusinessValueList/wsag:Reward

This element (defined below) when present expresses reward to be assessed for
meeting an objective.

/wsag:BusinessValueList/wsag:BusinessValue

Zero or more domain specific customized business values can be defined.

5.2.3.1 Importance
In many cases, all service level objectives (SLO) will not carry the same level of
importance. It is necessary therefore, to be able to assign a “business value” in
terms of relative importance to an objective so that its importance can be
understood, and so tradeoffs can be made by the provider amongst various
guarantees when sufficient resources are available. Absolute value of a guarantee on
the other hand specifies business impact of meeting or violating an individual SLO,
expressed via Reward and Penalty. Relative importance can be though of as a
measure of importance with a default measurement unit.

Relative terms, such as high, low, medium, etc. can be used to prioritize across
many guarantees. However, to provide stronger semantics and easier comparison of
this value, this is expressed using an integer.

5.2.3.2 Penalty and Rewards
In business SLAs, this importance is indirectly expressed by specifying the
consequences of not meeting this assurance. Here, each violation of a guarantee
term during an assessment window will incur a certain penalty. The penalty
assessment is measured in a specified unit and defined by a value expression.

<wsag:Penalty>

 <wsag:AssesmentInterval>

 <wsag:TimeInterval> xsd:any </wsag:TimeInterval>?

 18

 <wsag:Count> xsd:integer </wsag:Count>?

 </wsag:AssesmentInterval>

 <wsag:ValueUnit> xsd:string </wsag:ValueUnit>

 <wsag:ValueExpr> xsd:float </wsag:ValueExpr>?

 <wsag:ValueExpr> xsd:any </wsag:ValueExpr>?

</wsag:Penalty>

/wsag:Penalty

This element defines a business value expression for not meeting an associated
objective.

/wsag:Penalty/wsag:AssesmentInterval

This element defines the interval over which a penalty is assessed.

 /wsag:Penalty/wsag:AssesmentInterval/wsag:TimeInterval

 This element when present defines the assessment interval as a time duration.

/wsag:Penalty/wsag:AssesmentInterval/wsag:TimeInterval

 This element when present defines the assessment interval as a service specific
count, such as number of invocation.

/wsag:Penalty/wsag:ValueUnit

This element defines the unit for assessing penalty, such as USD.

/wsag:Penalty/wsag:ValueExpr

This element defines the assessment amount, which can be an integer, float or
an arbitrary domain specific expression.

Alternatively, meeting each objective generates a reward for a provider. The value
expression for reward is similar to that of penalty.

6 Agreement Template and Negotiability Constraints
An Agreement MAY contain a Negotiability Description. The Negotiability Description
specifies constraints that one party of a negotiation includes in an offer. The
specification of a Negotiation Description in an offer does not state a promise that a
replying offer fulfilling the constraints will be accepted. It is a voluntary disclosure of
a preference to reduce the number of offers to be exchanged to agree or terminate a
negotiation. Typically, a provider, e.g., MAY publish an agreement template in the
form of an offer containing a Negotiability Description, outlining agreements it is
generally willing to accept. Whether the provider accepts a given offer might depend
on its current resource situation.

6.1 Negotiability Description Type
The element NegotiabilityDescription is of NegDescriptionType.

<wsag:Agreement>

 …

 <wsag:NegotiabilityDescription> ?

 <wsag:Item>…<wsag:Item> *

 <wsag:Constraint>…<wsag:Item> *

 </wsag:NegotiabilityDescription>

 19

</wsag:Agreement>

/wsag:Agreement/wsag:NegotiabilityDescription

 This optional element of an Agreement, of type NegDescriptionType,
represents to which extent an offer is negotiable. It contains any number of
Items and Constraints in any order.

/wsag:Agreement/wsag:NegotiabilityDescription/wsag:Item

Items, of type ItemType are field that are to be filled out in the course of the
negotiation.

/wsag:Agreement/wsag:NegotiabilityDescription/wsag:Constraint

A Constraint , of type ConstraintType, defines any restriction that the sender of
an offer request relating to values of one or more Items.

6.2 Negotiation Item
A Negotiation Item is a description field of an offer that is expected be filled in the
course of the negotiation. It contains a label, a pointer to the position of the field in
the terms of the offer and a definition of its acceptable values.

 <wsag:Item name=”xs:NCName” location=”xs:string”>

 <xs:restriction>…<xs:restriction> ?

 </wsag:Item>

/wsag:Item

An Item represents a negotiable field of an offer.

/wsag:Item/@name

The name is a label of the field that uniquely identifies the field in the offer and
can be used to refer to item in a convenient way.

/wsag:Item/@location

The location is an XPATH expression that points to the location in the terms of
the Agreement that can be changed and filled in. The value currently set at the
location to which the XPATH expression points to is the default value of the item.

/wsag:Item/xs:restriction

The restriction, of the group xs:simpleRestrictionModel, is a constraint that
restricts the domain beyond the type definition of the particular term syntax of
the item, which can be domain-specific. The restriction syntax is taken from the
corresponding XML schema schema. It is the responsibility of the sender of the
offer to make sure that the restriction defined in the Item is a valid restriction of
the type to which the item location points to.

6.3 Constraints
Constraints restrict the possible values of the item set of an offer beyond restrictions
of individual items. For example, an offered response time may only be valid for a
given range of throughput values of a service. This specification does not define a
constraint language but proposes to choose a suitable existing one. Hence, the

 20

Constraint is an empty top-level element that must be extended by a specific,
suitable constraint language:

 <wsag:Constraint />

A general purpose constraint language has been proposed as part of the XQuery and
XPATH language. The XML rendering of this expression language, XQueryX, contains
a suitable constraint language that can be used to phrase contrains referring to
multiple items.

 <wsag:XQueryXConstraint>

 <wsag:Expression> … </wsag:Expression>

 </wsag:XQueryXConstraint>

/wsag:XQueryXContraint

 This element, of type XQueryXConstraintType, substitutes the Constraint
element to contain XQueryX expressions.

/wsag:XQueryXContraint/wsag:Expression

This element, of type operatorExpr, taken from the XQueryX schema, contains an
operator expression according to this syntax. However, the syntax design of
XQueryX is very liberal and, hence, expressions can be phrased that are not
semantically valid.
In XQueryX expressions, Item names are mapped to variable names.

Any other constraint language MAY be equally or better suited for particular
purposes.

6.4 Example
The following example of a modified JSDL term statement illustrates the use of the
NegotiabilityDescription:

<?xml version="1.0" encoding="UTF-8"?>

<wsag:Agreement>

 <job:JobDescription wsp:Usage="wsp:required"

 wsag:Negotiability=”wsag:Negotiable”>

 <job:InputFile></job:InputFile>

 <job:DiskSize>1000</job:DiskSize>

 …

 </job:CPUUtilization>

 <wsag:GuaranteeTerm name=”NodeGuarantee”

 <wsag:Precondition> … </wsag:Precondition>

 <wsag:ServiceLevelObjective>

 21

 <cl:Less>

 <cl:Variable>nodeNumber</cl:Variable>

 <cl:Constant><cl:Constant>

 <cl:Less>

 </wsag:ServiceLevelObjective>

 <wsag:BusinesValue> … </wsag:BusinesValue>

 <wsag>GuaranteeTerm>

 <wsag:NegotiabilityDescription>

 <wsag:Item name="nodeNumber"

location="/wsag:Agreement/wsag:GuaranteeTerm/wsagServiceLevelObjctive/c

l:less/cl/Constant">

 <xsd:restriction>

 <xsd:minInclusive value="10">

 <xsd:maxExclusive value=”100">

 </xsd:restriction>

 <wsag:Item>

 <wsag:Item name="file"

 location="/wsag:Agreement/job:JobDescription/job:InputFile">

 <wsag:Item>

 </wsag:NegotiabilityDescription>

</wsag:Agreement>

The service consumer of the job description example fills in two values, the items of
the NegotiabilityDescription: The input file, which does not have any additional
description beyond its type, and the guaranteed number of nodes. The job
description language and the constraint language are not part of the WS-Agreement
specification. Any language suitable for the application domain can be used.

Both items are defined in the negotiability section. The number of nodes CAN be
between 10 and 100.

7 Layered Service Model

7.1 Conceptual Model

 22

Application Instance

Factory
create()

foo()

create()
Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Factory

Consumer Provider

Manager

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Status

Factory
create()

negotiate()

Negotiator

Figure 2: WS-Agreement Conceptual Layered Service Model.

The conceptual model for the architecture of WS-Agreement has three layers (see
figure 1), which are from bottom to top:

1. The service layer represents the application-specific layer of business service
being provided. The class of provided service MAY or MAY NOT be exposed as
a Web service interface. For instance, computational jobs may be virtualized
as Web service instances, but other legacy services may not be referable as
separate instances, let alone be exposed as Web services. Network availability
can be seen as a class of service with no Web service representation, but it
can be useful to manage its controllable QoS characteristics via agreements
defined at layers above the service layer.

The interface to this layer is domain-specific. This layer MAY be exposed as
Web services. If it is, it SHOULD expose port types such as:

• An application domain-specific service port type virtualizes the concrete
service(s) being performed by the provider. It exposes domain-specific
operations. For instance the virtualization of a file transfer service into a
FileTransfer port type could expose operations such as “suspend”,
“resume”, etc. In addition is can expose domain-specific state that the
client (which can be a different actor than the initiator) can query or

 23

monitor. For instance a FileTransfer port type could expose a
“bytesTransfered” resource property.

• A service is created by a service factory which creation operation takes a
set of domain-specific parameters as arguments. For instance:
createFileTransferService(sourceURL, destinationURL, ...).

2. The agreement layer provides a Web service-based interface that can be used
to represent and monitor agreements with respect to provisioning of services
implemented in the service layer.
The agreement layer has the following port types:

• An agreement port type, without any operation other than getters for
state and metadata of the agreement such as the terms, the context,
etc….

• An agreement factory exposes an operation for creating an agreement out
of an input set of terms. It returns an EPR to an Agreement service. The
agreement factory also exposes resource properties such as the templates
of offers acceptable for creation of an agreement.

The creation parameters can be defined independently of the domain-
specific agreement terms defined at the agreement layer. What is merely
needed is an unambiguous mapping between the two. The binding
between the agreement and the domain-specific service(s) it manages
MUST be described in the agreement, and can take alternative forms:

a. Existing services MAY be referenced by the agreement as part of its
terms (thus, these references can be negotiated if it makes sense).

b. Services MAY be created as per agreement, i.e. the agreement
implementation has control over service (instance) creation with the
agreement describing the behavior of the newly created service.

c. Services MAY be created externally but bear domain-specific identifiers
enabling the binding of a particular agreement. For instance an
agreement on the bandwidth of a computer network can refer to
network-specific metadata (such as fields in message headers) as a
way to state QoS guarantees on specific network traffic.

3. The negotiation layer provides a Web service-based interface for negotiating
an agreement so that it eventually satisfies both negotiating parties and
become observed, and for renegotiating existing agreements after they have
been observed.
The negotiation layer has the following port types:

• A negotiation port type exposes a negotiate operation that the initiator
can call in order to negotiate the related agreement. Eventually
negotiation leads to the agreement being observed (i.e. both parties
commit to it). The operation can then be called again in order to
renegotiate the agreement (if the implementation service permits it of
course).

• A negotiation factory exposes a negotiation service creation operation
which takes an agreement EPR as a parameter. The operation creates
a negotiation service related to that specific agreement. The only way
for the initiator to modify the agreement is through the negotiation
protocol exposed by the negotiation port type.

 24

In this conceptual layering the agreement layer hides the service layer from the
negotiation layer. It also decouples the negotiation model from the agreement and
service provisioning layers, thus making it possible to swap different negotiation
models independently of the agreement model and the service virtualization.

7.2 Practical Model
There are variants in translating this conceptual model of WS-Agreement services
into a practical design model. An agreement-based party MAY implement one of the
following variants of service design:

1. One factory per layer

2. One factory for both negotiation and agreement creation

3. One factory for both agreement and service creation

4. One factory for all layers

The following subsections explain each design variant.

7.2.1 One Factory per Layer

This design features the same port types as in the conceptual model i.e. each layer is
composed of a service port type and its corresponding factory.

 25

Application Instance

Factory
create()

foo()

Consumer Provider

create()
Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Factory

Manager

Policy

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Status

Factory
create()

negotiate()

Negotiator
Agrmnt

Application Instance

Factory
create()

foo()

Consumer Provider

Application Instance

Factory
create()

foo()

Consumer Provider

create()
Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Factory

Manager

Policy

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Status

Factory
create()

negotiate()

Negotiator
Agrmnt

Figure 3: WS-Agreement Service Design 1: One Factory per Layer.
Some implementation relationships such as the ones involving a hidden
policy repository are shown in grayed.

7.2.2 One Factory for Both Negotiation and Agreement

This variant is the same as variant 1 except that the negotiation factory and the
agreement factory are merged into one single factory port type which aggregates the
functionality of both, thereby sitting across the negotiation and the agreement layer.
Note: in this form of design, swapping negotiation models is not as easy as in variant
1 although the negotiation is still decoupled from the agreement.

 26

Application Instance

Factory
Policycreate()

foo()

Consumer Provider

create()
Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Factory

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Statusnegotiate()

Manager

Negotiator

Agrmnt

Application Instance

Factory
Policycreate()

foo()

Consumer Provider

create()
Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Factory

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Statusnegotiate()

Manager

Negotiator

Agrmnt

Figure 4: One Factory for both Agreement and Negotiation Creation

7.2.3 One Factory for Both Agreement and Service

This is the same as variant 1 except that the agreement factory and the service
factory are merged into one single factory port type which aggregates the
functionality of both, thereby sitting across the agreement and the service layer.
The factory can expose a service creation operation where the arguments are the
agreement terms. Note: such an operation would return an array of services in the
case an agreement could manage several services.

 27

Application Instance

Factory
Policycreate()

foo()

Agreement
Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Consumer Provider

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Status

Factory
create()

negotiate()

Negotiator

Manager

Agrmnt

Application Instance

Factory
Policycreate()

foo()

Agreement
Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Consumer Provider

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Status

Factory
create()

negotiate()

Negotiator

Manager

Agrmnt

Figure 5: One Factory for both Service and Agreement Creation

7.2.4 One factory for all Layers

In this variant, one single factory port type merges all conceptual factories and acts
a façade to the layered system of service creation. This design strategy is applicable
only when a default negotiation model is implemented and does not need to be
replaced by another.

 28

Application Instance

Factory
Policycreate()

foo()

Agreement
Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Statusnegotiate()

Consumer Provider

Negotiator

Manager

Agrmnt

Application Instance

Factory
Policycreate()

foo()

Agreement
Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts.

inspect()

Negotiation
Ops:
terminate(limits)
negotiate(...)
...
SDEs:

Terms Statusnegotiate()

Consumer Provider

Negotiator

Manager

Agrmnt

Figure 6: One Factory for all layers

7.2.5 Design Considerations

Each variant preserves the Negotiation and Agreement port types as separate port
types, in order to keep the decoupling between negotiation protocol and agreement
modeling. The Agreement port type MAY also virtualize the domain-specific service
being provided, although the decision to design it as such would depend on the
desired strength of the coupling between the agreement and the service.

Variants 2 and 3 increase coupling between layers by merging factories, but
potentially increase simplicity of service deployment and reduce the number of
network-addressable interfaces exposed publicly.

Because of the multiple possibilities in terms of design of a WS-Agreement system,
domain-specific and application-specific decisions SHOULD be made in terms of
composition of operation and port type design that cannot be mandated by this
specification. This document specifies canonical factories and port types
corresponding to the variant 1 explained above. It also specifies one operation
(wsg:createNegotiatedAgreement) that can be used in merged factories. Designers
of WS-Agreement services MAY reuse WSDL port types, operations, messages, and
input/output types specified here although they will always have to define the
binding between the agreement and service layer, which is domain-specific.

 29

7.3 Offer Types and Negotiation State
There are six types of offer than can be provided to, or returned from negotiation
operations in the WS-Agreement model. For simplicity, each offer type corresponds
directly to a state in the negotiation state machine, as depicted in Figure 6.

Note: we define the responder as the party that is invoked by the initiator.

Figure 7: Negotiation Protocol State Machine. The advisory start state is
changed to solicited or committed by one of the parties sending an
appropriate offer. The terminal observed state is reached by acceptance
from one of the committed states. The terminal fault state is reached by
explicit termination or by terminal faults. A synchronous continuing fault
invalidates a state change implied by the faulted offer.

The offer is a suggestion to enter the state named in the offer. The offer type is
encoded using the /@commitment attribute:

<offer commitment="offer type">

 ...

</offer>

The six message types are represented as follows:

1. Advisory offers bear the wsag:advisory value and indicate no obligations or
restrictions on further negotiation.

2. Soliciting offers indicate no obligations but require that a counter-offer be
committed. There are role-specific solicitation offer types:

a. Initiator-solicited offers are sent by the initiator and bear the
wsag:initiatorSolicited value.

b. Responder-solicited offers are sent by the responder and bear the
wsag:responderSolicited value.

term

fault

observed advisory

initiatorSolicited responderCommited

responderSolicited initiatorCommited

 30

3. Committing offers indicates that the sender is obligated to the offer terms if
the recipient decides to observe. There are role-specific commitment offer
types:

c. Initiator-committed offers are sent by the initiator and bear the
wsag:initiatorCommited value.

d. Responder-committed offers are sent by the responder and bear the
wsag:responderCommited value.

4. Accepting offers bears the wsag:observed value and indicates that the
sender accepts the offer that has been committed by the recipient.

5. Termination uses the underlying WS-RF termination mechanisms and
indicates a destruction of all shared Negotiation, Agreement, or Renegotiation
state. Third-party resolution, outside the scope of WS-Agreement, may still
be used to resolve obligations from terminated Agreements.

6. Rejection uses the underlying WS-RF fault mechanisms to signal rejection of
an offer, without losing the shared state that existed prior to the rejected
offer.

The protocol state machine and operation message requirements restrict the
conditions and means by which these offers may be delivered. The protocol states
are named according to offer type. Practically speaking, the state of the sender
changes when he decides to send an offer of that type, and the state of the receiver
changes when he processes a received offer of that type.

Issue 3: Faults are unavoidable in widely distributed systems; we do not wish WS-
Agreement to be fragile in the face of such faults, so we include the rejection
mechanism. Does there need to be a way to reject offers through an input message,
in addition to the fault-response as an output message?

7.4 Canonical Port Types and Operations
In this section we detail the Negotiation and Agreement port types. We also detail
the factories of the same layers that correspond to the first variant in designing a
WS-Agreement Web service-based interface. Note that designers can reuse the
operations defined in those factories and compose them in their own specialized
factories.

Per the reuse principles of the WS-Resource Framework on which the Web service
expression of this specification is based, interface reuse can be achieved by copying
and pasting operation and resource definitions specified here.

Every port type exposes a GetResourceProperty operation as defined in [WS-
ResourceProperties]. This enables to expose read-only resource properties. The
definition of this operation is identical to the one in [WS-ResourceProperties] and has
not been repeated here.

Full WSDL definition of the port types can be found in Appendix.

7.4.1 Port Type wsag:NegotiationFactory

7.4.1.1 Operation wsag:createNegotiation
The wsag:createNegotiation operation is used to generate a wsag:Negotiation related
to a wsag:Agreement passed as input.

7.4.1.1.1 Input

 31

Issue : Should we rename “input” messages as “request” messages to follow WSRF
habits? I think I prefer input/output as it follows the WSDL naming. What we are
using now is a mix: “input”/”response”.

The form of the wsag:createNegotiation input message is:

<wsag:createNegotiationInput>

 <initiatorNegotiationEPR>

 EPR1

 </initiatorNegotiationEPR> ?

 <existingAgreementEPR>

 EPR2

 </existingAgreementEPR>

 <firstOffer commitment="offer type">

 ...

 </firstOffer> ?

</wsag:createNegotiationInput>

The contents of the input message are further described as follows:

/wsag:createNegotiationInput/initiatorNegotiationEPR

This optional element provides a contact point EPR1 where the invoked party can
send messages pertaining to this stateful negotiation (this is applicable only in
the case of a symmetric deployment of the wsag:Negotiation port type).

/wsag:createNegotiationInput/existingAgreementEPR

This is the contact point EPR2 of the existing wsag:Agreement to which the
wsag:Negotiation to create MUST be related. This element MUST appear.

/wsag:createNegotiationInput/firstOffer

This is the initial offer to start the negotiation with. This is a shorthand for calling
the negotiation operation at the returned wsag:Negotiation EPR. If the offer is
accepted a counter-offer will be returned. This element MAY be omitted to start
a named conversation with no initial state.

/wsag:createNegotiationInput/firstOffer/@commitment

This is the offer type of the agreement offer.

7.4.1.1.2 Result
The successful result of wsag:createNegotiation is the EPR of a newly created
wsag:Negotiation.

The form of the response is:

<wsag:createNegotiationResponse>

 <createdNegotiationEPR>

 EPR3

 </createdNegotiationEPR>

 <counterOffer commitment="offer type">

 ...

 </counterOffer> ?

 32

</wsag:createNegotiationResponse>

The contents of the response message are further described as follows:

/wsag:createNegotiationResponse/createdNegotiationEPR

This is an endpoint reference EPR3 to a wsag:Negotiation service where the
initiator can send messages pertaining to this stateful negotiation. The
wag:Negotiation MUST be related to the input wsag:Agreement at EPR2.

/wsag:createNegotiationResponse/counterOffer

This is the agreement offer in response of the optional initial offer.

/wsag:createNegotiationResponse/counterOffer/@commitment

This attribute specifies the offer type of the response offer. The value is
governed by the negotiation protocol state machine.

7.4.1.1.3 Faults
A fault response indicates that no wsag:Negotiation was created and may also
indicate domain-specific reasons.

7.4.1.2 Operation wsag:createNegotiatedAgreement
The wsag:createNegotiatedAgreement operation is used to generate a
wsag:Agreement and a wsag:Negotiation to negotiate it.

7.4.1.2.1 Input
Issue : Should we rename “input” messages as “request” messages to follow WSRF
habits? I think I prefer input/output as it follows the WSDL naming. What we are
using now is a mix: “input”/”response”.

The form of the wsag:createNegotiatedAgreement input message is:

<wsag:createNegotiatedAgreementInput>

 <initiatorNegotiationEPR>

 EPR1

 </initiatorNegotiationEPR> ?

 <initiatorAgreementEPR>

 EPR2

 </initiatorAgreementEPR> ?

 <offer commitment="offer type">

 ...

 </offer> ?

</wsag:createNegotiatedAgreementInput>

The contents of the input message are further described as follows:

/wsag:createNegotiatedAgreementInput/initiatorNegotiationEPR

This optional element provides a contact point EPR1 where the invoked party can
send messages pertaining to this stateful negotiation. This is applicable only in
the case of a symmetric deployment of the wsag:Negotiation port type.

/wsag:createNegotiatedAgreementInput/agreementEPR

 33

This is the optional contact point EPR2 of an existing wsag:Agreement to which
the wsag:Negotiation referenced by EPR1 MUST be related. This is applicable
only in the case of a symmetric deployment of the wsag:Agreement port type.

/wsag:createNegotiatedAgreementInput/offer

This is the initial offer to start the negotiation with. If the offer is accepted a new
wsag:Agreement EPR will be returned as well as the EPR of the new
wsag:Negotiation.

/wsag:createNegotiatedAgreementInput/offer/@commitment

This is the offer type of the agreement offer.

7.4.1.2.2 Result
The successful result of wsag:createNegotiatedAgreement is the EPRs of each of a
newly created and related wsag:Negotiation and wsag:Agreement.

The form of the response is:

<wsag:createNegotiatedAgreementResponse>

 <createdNegotiationEPR>

 EPR3

 </createdNegotiationEPR>

 <createdAgreementEPR>

 EPR4

 </createdAgreementEPR>

 <counterOffer commitment="offer type">

 ...

 </counterOffer> ?

</wsag:createNegotiatedAgreementResponse>

The contents of the response message are further described as follows:

/wsag:createNegotiatedAgreementResponse/createdNegotiationEPR

This is an endpoint reference EPR3 to a wsag:Negotiation service where the
initiator can send messages pertaining to this stateful negotiation.

/wsag:createNegotiatedAgreementResponse/createdAgreementEPR

This is an endpoint reference EPR4 to a newly created wsag:Agreement service
which terms can be negotiated by sending messages to EPR3.

/wsag:createNegotiatedAgreementResponse/counterOffer

This is the counter-offer. This element MAY appear, in which case the agreement
MAY include extra negotiability constraints that the next offer sent by the
initiator MUST comply with.

/wsag:createNegotiatedAgreementResponse/counterOffer/@commitment

This attribute specifies the offer type of the response offer. This attribute MUST
appear in the counter-offer. The value is governed by the negotiation protocol
state machine.

7.4.1.2.3 Faults
A fault response indicates that no wsag:Negotiation nor wsag:Agreement was
created and may also indicate domain-specific reasons.

 34

7.4.1.3 Resource Property wsag:entry
The wsag:NegotiationFactory port type can create new resource-qualified endpoint
references to services (with associated resources) of port types wsag:Negotiation
(beginning of a new negotiation in order to eventually reach an agreement). It may
be desirable to expose in the interface the created services, for instance for
monitoring clients to use. The wsag:NegotiationFactory port type is therefore
modeled as a service group with respect to the [WS-ServiceGroup] specification, and
records information about each service-resource pair it creates in a new wsag:entry
resource property instance. The entry typically includes the EPR of the new qualified
service and MAY contain optional information (see the WS-ServiceGroup specification
for more information) that this specification does not define.

7.4.1.4 Resource Property wsag:membershipContentRules
This resource property is defined so as to assert the specific content of the
wsag:entry resource property and is mandated by [WS-ServiceGroup].

The wsag:membershipContentRules resource property contains a set of
wssg:MembershipContentRule elements that specify the intentional constraints on
each member service of the service group (see resource property wsag:entry). Each
wsgg:membershipContentRule specifies at least a port type that every member
service in the service group must implement.

In the context of the wsag:NegotiationFactory, there must be one
wsgg:membershipContentRule specifying wsag:Negotiation as the member port
type.

The form of the wsag:membershipContentRules resource property is:

<wsag:membershipContentRules>

 <wsgg:MembershipContentRule

 MemberInterface="port type"

 ContentElements="qnames"/> *

 <wsgg:MembershipContentRule

 MemberInterface="wsag:Agreement

 ContentElements="qnames"/> +

 <wsgg:MembershipContentRule

 MemberInterface="port type"

 ContentElements="qnames"/> *

</wsag:membershipContentRules>

See the [WS-ServiceGroup] specification for more information on the
wsgg:MembershipContentRuleType.

7.4.2 Port Type wsag:Negotiation

7.4.2.1 Operation wsag:Negotiate
The wsag:negotiate operation is used to send offers for purpose of negotiating the
agreement represented by the wsag:Agreement that the wsag:Negotiation is related
to.

7.4.2.1.1 Input

 35

The form of the wsag:negotiate input message is:

<wsag:negotiateInput>

 <offer commitment="offer type">

 ...

 </offer>

</wsag:negotiateInput>

The contents of the input message are further described as follows:

/wsag:negotiateInput/offer

 The input agreement submitted as an offer for negotiation.

/wsag:negotiateInput/offer/@commitment

This is the offer type, which MUST be one of wsag:advisory,
wsag:initiatorSolicited, wsag:responderSolicited, wsag:initiatorCommitted,
wsag:responderCommited, or wsag:observed as governed by the protocol state
machine depicted in Figure 6.

7.4.2.1.2 Result
The successful result of wsag:negotiate is any counter-offer:

<wsag:negotiateResponse>

 <counterOffer commitment="offer type">

 ...

 </counterOffer>

</wsag:negotiateResponse>

The contents of the result message are further described as follows:

/wsag:negotiateResponse/counterOffer

This is the counter-offer. It MAY be nil, if the wsag:Negotiation wishes to return
successfully without issuing a counter-offer. In that case, the wsag:Negotiation
is in the state defined by the input offer. The agreement MAY include extra
negotiability constraints that the next offer sent by the initiator MUST comply
with.

/wsag:negotiateResponse/counterOffer/@commitment

This is the commitment type of the response offer. If the response offer is not
nil, it MUST bear an offer type governed by the negotiation protocol state
machine.

7.4.2.1.3 Faults
A continuing fault indicates that the wsag:Negotiation was unable to accept the input
offer and the state remains unchanged from before the invocation. A terminal fault
indicates that the wsag:Negotiation was unable to accept the offer and the
wsag:Negotiation will terminate immediately.

7.4.2.2 Resource Property wsag:relatedAgreementEPR
The wsag:relatedAgreementEPR resource property is the contact point of the
wsag:Agreement the wsag:Negotiation is related to, i.e. the wsag:Agreement that

 36

the wsag:Negotiation updates if its wsag:negotiate operation is successfully invoked.
This resource property is of type wsa:EPRType.

7.4.2.3 ResourceProperty wsag:terms
This resource property represents the offer terms being currently negotiated. They
can be changed via the wsag:negotiate operation.

7.4.2.4 ResourceProperty wsag:negotiabilityConstraints
This resource property represents the negotiability constraints on the terms being
currently negotiated. They can be changed via the wsag:negotiate operation.

7.4.2.5 Resource Property wsag:negotiationState
The wsag:negotiationState is the status of the negotiation with respect to the
commitment of the negotiating parties to the current offer. It is governed by the
negotiation protocol state machine (see Figure 6).

7.4.3 Port Type wsag:AgreementFactory

7.4.3.1 Operation wsag:createAgreement
The wsag:createAgreement operation is used to directly generate an Agreement
without any intervening Negotiation.

7.4.3.1.1 Input
The form of the wsag:createAgreement input message is:

<wsag:createAgreementInput>

 <initiatorAgreementEPR>

 EPR1

 </initiatorAgreementEPR> ?

 <offer commitment="wsag:initiatorCommitted">

 ...

 </offer>

</wsag:createAgreementInput>

The contents of the input message are further described as follows:

/wsag:createAgreementInput/initiatorAgreementEPR

This optional element is an endpoint reference (EPR) providing a contact point
EPR1 where the invoked party can send messages pertaining to this negotiated
Agreement. The invoked party MUST NOT invoke operations on EPR1 after
returning a fault on this operation.

/wsag:createAgreementInput/offer

The agreement offer made by the sending party. It MUST satisfy the constraints
explicated in one or more of the templates the AgreementFactory exposes. Also,
the offer MUST NOT contain negotiability constraints (they do not make sense
here since the invoked party is not supposed to, and cannot, reply to this
request with a counter-offer).

/wsag:createAgreementInput/offer/@commitment

 37

The value of this attribute specifies the offer type, in terms of commitment. It
MUST be wsag:initiatorCommitted. TODO: percolate this reference to state
machine into the negotiation layer, because the agreement layer has no concept
of negotiation. The offer terms MUST satisfy the negotiability constraints
exposed in one or more templates, or be empty.

7.4.3.1.2 Result
The successful result of wsag:createAgreement is a combination of the optional EPR
of a newly created Agreement and the acceptance of the initiator’s offer:

<wsag:createAgreementResponse>

 <createdAgreementEPR>

 EPR2

 </createdAgreementEPR>

</wsag:createAgreementResponse>

The contents of the response message are further described as follows:

/wsag:createAgreementResponse/createdAgreementEPR

This is the EPR to a newly created Agreement bearing the same observed terms.
This element MUST appear.

/wsag:createAgreementResponse/agreement

The response offer MUST be textually equivalent to the input offer except that
the offer type MUST follow the rules of the protocol state machine.

7.4.3.1.3 Faults
A fault response indicates that the offer was rejected and may also indicate domain-
specific reasons.

7.4.3.2 Resource Property wsag:template
The templates resource property represents 0 or more templates of offers that can
be accepted by the wsag:AgreementFactory operations in order to create an
Agreement. A template defines a grouping of certain agreement terms along with
negotiability constraints.

Issue: the definition of the template XML Schema type remains to be defined?

7.4.3.3 Resource Property wsag:entry
The wsag:AgreementFactory port type can create new resource-qualified endpoint
references to services (with associated resources) of port types wsag:Agreement. It
may be desirable to expose in the interface the created Agreements, for instance for
monitoring clients to use. The wsag:AgreementFactory port type is therefore
modeled as a service group with respect to the [WS-ServiceGroup] specification, and
records information about each service-resource pair it creates in a new wsag:entry
resource property instance. The entry typically includes the EPR of the new qualified
service and MAY contain optional information (see the WS-ServiceGroup specification
for more information) that this specification does not define.

7.4.3.4 Resource Property wsag:membershipContentRules
This resource property is defined so as to assert the specific content of the
wsag:entry resource property and is mandated by [WS-ServiceGroup].

 38

The wsag:membershipContentRules resource property contains a set of
wssg:MembershipContentRule elements that specify the intentional constraints on
each member service of the service group (see resource property wsag:entry). Each
wsgg:membershipContentRule specifies at least a port type that every member
service in the service group must implement.

In the context of the wsag:AgreementFactory, there must be one
wsgg:membershipContentRule specifying wsag:Agreement as the member port type.

The form of the wsag:membershipContentRules resource property is:

<wsag:membershipContentRules>

 <wsgg:MembershipContentRule

 MemberInterface="port type"

 ContentElements="qnames"/> *

 <wsgg:MembershipContentRule

 MemberInterface="wsag:Agreement

 ContentElements="qnames"/> +

 <wsgg:MembershipContentRule

 MemberInterface="port type"

 ContentElements="qnames"/> *

</wsag:membershipContentRules>

See the [WS-ServiceGroup] specification for more information on the
wsgg:MembershipContentRuleType.

7.4.4 Port Type wsag:Agreement

The wsag:Agreement port type does not expose any WS-Agreement-specific
operations.

7.4.4.1 Resource Property wsag:context
The wsag:context resource property is of type wsag:AgreementContextType. The
context is static information about the agreement such as the parties involved in the
agreement. See the section in this document about the agreement context.

7.4.4.2 Resource Property wsag:terms
This property specifies the terms of the agreement.

Note: In some application cases it might be worthwhile to decorate a specialized
Agreement port types with a QueryResourceProperty operation as defined in [WS-
ResourceProperties], in order to expose the terms of the agreement in a more
granular way.

Issue: declaration of this resource property requires the existence of a
wsag:TermSetType. Should we define such a type or merely reuse
wsag:AgreementType and merge the 4 resource properties into one? Should we then
create a QueryResourceProperties taking an XPath argument? It seems better to
define separate resource properties for the top-level elements of an agreement.

7.4.4.3 ResourceProperty wsag:negotiabilityConstraints
This resource property specifies the constraints that MUST be satisfied by any offer
when renegotiating this agreement.

 39

7.4.4.4 Resource Property wsag:agreementState
The commitment state is the state of the agreement. It has a simple value which can
be one of the following: wsag:observed, wsag:beforeObserved, wsag:afterObserved.
It is of type wsag:AgreementType.

Issue: Do we want to have this as a separate property like this, or merely as an
attribute in the element wsag:agreement that we would expose as a resource
property? If we want to expose the commitment state by itself, we can also define
QueryResourceProperty so that clients can do XPath queries (but it put some burden
on implementers to implement XPath query, and I don’t know if mandating it is a
good idea). Or we can have an operation wsag:getCommitmentState. Or we can just
say that designers are free to implement one of these two operations in specialized
Agreement port types if they so desire, but we are not mandating it in the
wsag:Agreement port type.

7.4.4.5 Resource Property wsag:entry
A wsag:Agreement can be related to others wsag:Agreement for chaining or
composition. (how much do we want on this topic in the spec?). This one-to-many
relationship is modeled as a service group (see [WS-ServiceGroup]), and records
information about each service-resource pair in a wsag:entry resource property
instance. An entry includes the EPR of a related wsag:Agreement and MAY contain
optional information that this specification does not define.

7.4.4.6 Resource Property wsag:membershipContentRules
This resource property is defined so as to assert the specific content of the
wsag:entry resource property (see [WS-ServiceGroup]).

The wsag:membershipContentRules resource property contains a set of
wssg:MembershipContentRule elements that specify the intentional constraints on
each member service of the service group (see resource property wsag:entry). Each
wsgg:membershipContentRule specifies at least a port type that every member
service in the service group must implement.

In the context of the wsag:Agreement, there must be one
wsgg:membershipContentRule specifying wsag:Agreement as the member port type.

The form of the wsag:membershipContentRules resource property is:

<wsag:membershipContentRules>

 <wsgg:MembershipContentRule

 MemberInterface="port type"

 ContentElements="qnames"/> *

 <wsgg:MembershipContentRule

 MemberInterface="wsag:Agreement

 ContentElements="qnames"/> +

 <wsgg:MembershipContentRule

 MemberInterface="port type"

 ContentElements="qnames"/> *

</wsag:membershipContentRules>

See the [WS-ServiceGroup] specification for more information on the
wsgg:MembershipContentRuleType.

 40

8 Common Use Cases
In this section we present common usage patterns of the WS-Agreement service
model.

Note: the binding between the agreement and service layer being out of the scope of
this specification, we omit the steps and operations that expose service layer
services or application functionality. Suggestions include using the [WS-
ServiceGroup] idiom to have the Agreement service expose the list of services it
binds to.

8.1 Simple Agreement Creation
Note: In this simple use case where no multi-round negotiation capability needs to
be implemented, we assume a design based on variant 3 (as explained in the
previous chapter) where we omit the negotiation layer of the WS-Agreement service
stack.

The merged Factory MAY be a domain-specific specialization of the
AgreementFactory described in the port types section of this document. In particular
it MAY choose to replicate/reuse the wsag:createAgreement operation.

Process:

1. The initiator is interested in obtaining an agreement for service provisioning
with the party implementing the factory. In order to create an agreement in
one shot, the initiator calls the createAgreement operation on the Factory
service, passing in offer terms that satisfy the negotiability constraints of one
the templates exposed by the Factory as resource properties. Since there is
no negotiation layer, the offer is committed by the initiator. If it is not
accepted by the Factory, the createAgreement operation will not return any
counter-offer but merely a fault.

2. Assuming the factory accepts the terms, it returns an endpoint reference
(EPR) to an observed Agreement service.

8.2 Agreement Negotiation
Note: In this use case with negotiation, we assume a design based on variant 2.

The merged Factory MAY compose the wsag:createNegotiatedAgreement operation
defined in the canonical wsag:NegotiationFactory port type.

Process:

1. The initiator calls the createAgreementAndNegotiation operation on the
Factory service.

1. The Factory service returns an EPR to an Agreement and an EPR to a
Negotiation.

2. The initiator calls the negotiate operation on the Negotiation service in order
to change the current state of the agreement: the terms being negotiated or
the commitment status. The Negotiation service either rejects the offer using

 41

a non-terminating i.e. continuing fault or accepts the offer and updates the
state of the Agreement.

3. Step 3 is repeated until one party decides to stop negotiation or both parties
commit to the current offer. For example the Negotiation service can send a
terminal fault, indicating unwillingness to accept any further message.

4. Eventually both parties commit to an offer and the agreement becomes
observed.

8.3 Agreement Renegotiation
Since renegotiation can occur whether initial negotiation took place or not, we can
illustrate renegotiation of an existing agreement by reusing either of the two
previous designs exemplified respectively in the simple agreement creation use case
and in the agreement negotiation use case. However, there SHOULD be an additional
operation in the Factory port type for the initiator to obtain the EPR to a Negotiation
service in case it lost the Negotiation EPR obtained when requesting creation of the
agreement (agreement negotiation use case) or if it never requested a Negotiation in
the first place (simple agreement creation use case). Therefore, the Factory MAY
choose to compose an equivalent of the wsag:createNegotiation operation defined in
the wsag:NegotiationFactory.

Process:

1. The steps in the simple agreement creation use case or the steps in the
negotiation use case are used here.

2. The initiator calls the createNegotiation operation on the Factory in order to
retrieve the EPR to a Negotiation service related to the agreement which EPR
was supplied to the operation.

3. Negotiation iterative process: Steps 3-5 of the negotiation use case are
performed.

9 Acknowledgements
This document is the work of the GRAAP Working Group GRAAP Working Group (Grid
Resource Allocation and Agreement Protocol WG) of the Scheduling and Resource
Management (SRM) Area of the GGF.

Members of the Working Group are (at the time of writing, and by alphabetical
order): Alain Andrieux, (Globus Alliance / USC/ISI), Takuya Araki (ANL), Carl
Czajkowski, (Globus Alliance / USC/ISI), Asit Dan (IBM), Kate Keahey (Globus
Alliance / ANL), Chris Kurowski (PSNC), Heiko Ludwig (IBM), Jon MacLaren
(University of Manchester), Steven Newhouse (London e-Science Centre), Steven
Pickles (University of Manchester), Jim Pruyne (HP), John Rofrano (IBM), Volker
Sander (*Forschungszentrum Jülich *), Chris Smith (Platform Computing), Steve
Tuecke (Globus Alliance / ANL), Alan Weissberger (NEC), Ming XU (Platform
Computing), Wolfgang Ziegler (*Fraunhofer–Institute*).

Contributions of the following people are also acknowledged (alphabetically): Ian
Foster (ANL), Robert Kearney (IBM), David Kaminsky (IBM), Carl Kesselman
(ANL/USC/ISI), Miron Livny (University of Wisconsin), Jeff Nick (IBM), Ellen Stokes
(IBM), John Sweitzer (IBM).

 42

10 References
[SOAP 1.2]

http://www.w3.org/TR/soap12-part1/

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.
http://www.ietf.org/rfc/rfc2396.txt

[WS-Agreement-old]
http://forge.gridforum.org/docman2/ViewProperties.php?group_id=71&document
_content_id=358

[SNAP]
K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke:

“SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating
Resource Management in Distributed Systems”

http://www.isi.edu/~karlcz/papers/snap-lncs-25370153.pdf

[WS-Addressing]
http://www.ibm.com/developerworks/webservices/library/ws-add/

[WS-Resource]
http://www.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf

[WS-ResourceLifetime]

http://www.ibm.com/developerworks/library/ws-resource/ws-
resourcelifetime.pdf

[WS-ResourceProperties]
http://www.ibm.com/developerworks/library/ws-resource/ws-
resourceproperties.pdf

[WS-BaseFaults]
URL to specification when on-line

[WS-ServiceGroup]

URL to specification when on-line

[WS-Notification]
http://www.ibm.com/developerworks/library/ws-resource/ws-notification.pdf

[WS-Security]

http://www.ibm.com/developerworks/webservices/library/ws-secure/

[XML-Infoset]
http://www.w3.org/TR/xml-infoset/

[XML]
http://www.w3.org/TR/REC-xml

[XML-ns]
http://www.w3.org/TR/1999/REC-xml-names-19990114

[XPath]
http://www.w3.org/TR/xpath

 43

Appendix 1 - Document Schema

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.ggf.org/ws-agreement"

 xmlns:wsag="http://www.ggf.org/ws-agreement"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

 <import schemaLocation="addressing.xsd"

namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"></import>

 <import schemaLocation="XMLSchema.xsd"

namespace="http://www.w3.org/2001/XMLSchema"></import>

 <complexType name="AgreementType">

 <sequence>

<element name="Context"

 type="wsag:AgreementContextType"></element>

 <element name="Terms"

 type="wsag:TermCompositorType"></element>

 <element name="NegotiabilitySection"

 type="wsag:NegotiationSectionType"

 minOccurs="0"></element>

 </sequence>

 </complexType>

 <element name="Agreement" type="wsag:AgreementType"></element>

 <complexType name="AgreementContextType">

 <sequence>

 <element name="AgreementInitiator"

 type="anyURI"></element>

 <element name="AgreementProvider"

 type="anyURI"></element>

 <element name="TerminationTime"

 type="dateTime"></element>

 </sequence>

 </complexType>

 <complexType name="TermCompositorType">

 44

 <sequence>

 <choice>

 <element name="ExactlyOne"

 type="wsag:TermCompositorType"></element>

 <element name="OneOrMore"

 type="wsag:TermCompositorType"></element>

 <element name="All"

 type="wsag:TermCompositorType"></element>

 <element ref="wsag:Term"

 maxOccurs="unbounded"></element>

 </choice>

 </sequence>

 </complexType>

 <complexType name="TermType" abstract="true">

 <attribute name="name" type="string"></attribute>

 </complexType>

 <element name="Term" type="wsag:TermType"

 abstract="true"></element>

 <complexType name="GuaranteeTermType">

 <complexContent>

 <extension base="wsag:TermType">

 <sequence>

 <element

 ref="wsag:QualifyingCondition"></element>

 <element

 ref="wsag:ServiceLevelObjective">

 </element>

 <element name="BusinessValueList"

 type="wsag:BusinessValueListType">

 </element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <element name="GuaranteeTerm"

 type="wsag:GuaranteeTermType"

 substitutionGroup="wsag:Term"></element>

 <element name="QualifyingCondition" type="anyType"></element>

 45

 <element name="ServiceLevelObjective" type="anyType"></element>

 <complexType name="BusinessValueListType">

 <sequence>

 <element name="Importance" type="integer"

 minOccurs="0"></element>

 <element name="Penalty" type="wsag:CompensationType"

 minOccurs="0"></element>

 <element name="Reward" type="wsag:CompensationType"

 minOccurs="0"></element>

 <element ref="wsag:BusinesValue" minOccurs="0"

 maxOccurs="unbounded"></element>

 </sequence>

 </complexType>

 <element name="BusinesValue" type="anyType"></element>

 <complexType name="CompensationType">

 <sequence>

 <element name="AssessmentInterval">

 <complexType>

 <sequence>

 <choice>

 <element name="TimeInterval"

 type="anyType"></element>

 <element name="Count"

 type="integer"></element>

 </choice>

 </sequence>

 </complexType>

 </element>

 <element name="ValueUnit" type="string"

 minOccurs="0"></element>

 <choice>

 <element name="Value" type="float"></element>

 <element name="ValueExpression"

 type="anyType"></element>

 </choice>

 </sequence>

 </complexType>

 <complexType name="ServiceDescriptionTermType">

 46

 <complexContent>

 <extension base="wsag:TermType">

 <sequence>

 <element ref="wsa:EndpointReference"

 minOccurs="0"></element>

 <element ref="wsag:ServiceDescription"

 maxOccurs="unbounded"

 minOccurs="0"></element>

 <element name="Variables"

 type="wsag:VariableSetType"

 minOccurs="0"></element>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <element name="ServiceDescriptionTerm"

 type="wsag:ServiceDescriptionTermType"

 substitutionGroup="wsag:Term"></element>

 <element name="ServiceDescription" type="anyType"></element>

 <complexType name="VariableSetType">

 <sequence>

 <element name="Variable" type="wsag:VariableType"

 maxOccurs="unbounded" />

 </sequence>

 </complexType>

 <complexType name="VariableType">

 <simpleContent>

 <extension base="string">

 <attribute name="name" type="NCName" />

 <attribute name="metric" type="QName" />

 </extension>

 </simpleContent>

 </complexType>

 <complexType name="NegotiationSectionType">

 <sequence>

 <element name="Item"

 type="wsag:NegotiationItemType"></element>

 </sequence>

 47

 </complexType>

 <complexType name="NegotiationItemType">

 <sequence>

 <group ref="simpleRestrictionModel"

 minOccurs="0"></group>

 </sequence>

 <attribute name="name" type="string"></attribute>

 <attribute name="path" type="string"></attribute>

 </complexType>

 <element name="Constraint" type="anyType"></element>

</schema>

Appendix 2 - WSDL

Appendix 3 - Example

