
1

Update on the WS-
Agreement

2005/10/03 GRAAP-WG

GGF Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and
derivative works. However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the GGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures
for copyrights defined in the GGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

3

Just a Brief Overview

4

Overview of WS-Agreement

An agreement defines a dynamically-established and dynamically-
managed relationship between (two) parties. The object of the
relationship is the delivery of a service by one of the parties within the
context of the agreement. The management of this delivery is achieved
by agreeing on the respective roles, rights and obligations of the parties.
The agreement may specify not only functional properties for
identification or creation of the service, but also non-functional
properties of the service such as performance or availability.

Entities can dynamically establish and manage agreements via Web
service interfaces.

WS-Agreement itself is sort of a frame-work for getting agreements on
several different domains. The details of things to be agreed are of
course domain-specific and is out of the scope of the WS-Agreement
Spec.

Eg. Job-submission using JSDL is a candidate to be used within the frame-
work.

Relation to other specification
Relies on WS-Addressing, WS-ResourceProperties, WS-ResourceLifetime
and WS-Base Faults

5

A Two Layered Model

Whether Agreement Initiator becomes a Service Consumer or
Service Provider (ie Agreement Responder becomes a Service
Provider or service Consumer) is completely domain dependent

Consumer Provider

create()

foo()
Application Instance

Factory

Manager

create()
Factory Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms RelatedStatus
Agrmts

inspect()

Agreement
Layer

Service
Layer

Consumer Provider

create()

foo()
Application Instance

Factory

Responder

create()
Factory Agreement

Ops:
terminate(limits)
inspect(query)
...
SDEs:

Terms Statusinspect()

Agreement
Layer

Service
Layer

Initiator
The service layer
represents the application-
specific layer of the
service being provided.
The class of provided
service MAY or MAY NOT
be a Web service interface.

Agreement Layer: Provides
a Web service-based
interface that can be used
to create, represent and
monitor agreements with
respect to provisioning of
services implemented in the
service

6

Simple Sequence-1

Agreement Initiator Agreement Responder

GetTemplate()

(templates)

CreateAgreement(offer)

(EPR to Agreement1)

Based on the
Template create an offer

Decide to agree
To the offer Create an agreement

Agreement1At this moment the agreement is
Observed. A-I cannot refuse to the
Created Agreement Asynchronous versions also available

7

Simple Sequnce-2

Agreement Initiator Agreement Responder

(templates)

CreateAgreement(offer)

(Return a Fault)

Based on the
Template create an offer

Decide to refuse

GetTemplate()

8

Agreement

Terms Compositor

Service Terms

Guarantee Terms

Context

Name

Information about the Agreement itself
・AgreementInitiator
・AgreementResponder
・ExpirationTime
・・・・

Information about the Service Itself
・Contents are Domain Dependent
・Eg.: Job Description(Program name, Number
of nodes etc)

Information about Service Levels which should be
Guaranteed
・QualifyingCondition(An optional condition that must
be met (when specified) for a guarantee to be enforced.
Eg: Timespan when the requests can be
submitted:Weekdays, etc)
・ServiceLevelQbjective(Conditionthe condition that
must be met to satisfy the guarantee. Eg:Needs 128 MB of
memory..)
・・・・

Agreement Structure

The structure of an Agreement Template is the same as that of an agreement, but an
Agreement template MAY also contain a creation constraint section, i.e. a section with
constraints on possible values of terms for creating an agreement. The constraints make
it possible to specify the valid ranges or distinct values that the terms may take.

9

Typical Agreement Lifecycle

Initiator Responder
Get Template

Provider
Agreement

Compositor

Creation constraints

Guarantee Terms

Service
Description
Terms

Context

Create Agreement

Accept (EPR)

GetResourceProperties
Provider
Agreement

Compositor

Guarantee Terms

Service
Description
Terms

Context

Provider
Agreement

Compositor

Guarantee Terms

Service
Description
Terms

Context

Four phases in the lifecycle:
Exploration: a service provides
templates describing possible
agreement parameters
Creation: Consumer fills in
parameters, and makes an
offer
Operation: Agreement state
available as a
ResourceProperty
Termination: Agreement
destroyed explicitly or via soft
state (termination time)

10

What’s new in the current
document

Clear Separation of Agreement Initiator/ Agreement Responder
vs. Service Consumer/ServiceProvider

Obligated attribute in the Guarantee terms
CreatePending Agreement
Service State made extensible
Choices in Creation Constraints

--Not a Spec change but example change–
Use JSDL Description rather than the job domain where possible

11

Clear Separation of Agreement Initiator/ Agreement
Responder vs. Service Consumer/Service Provider

Whether Agreement Initiator (AI) becomes a Service Consumer or Service
Provider is completely domain dependent.
However there always seemed to be a confusion (or assumption) that
Agreement Provider(prev. term) = Service Provider

Domain A:
Initiator: Individual with Job to be
run(=Service Consumer)
Responder: Provider of job
execution service(=Service
Provider)

Domain B:
Initiator: Provider of job execution
service(=Service Provider)
Responder: Individual with Job to
be run(=Service Consumer)

AI(=SC) AP=(SP)

Get Template

Tell me what kind
of Service You

provide

Templates

A
Computation
al Job with 4-
32 2GFlops

CPUs …
Please process
my CFD job with

At least
100GFlops

System Power Create Agreement

Agreement EPR
OK I’ll
do it

AI=(SP) AP(SC)

Get Template

Tell me what kind
of Service You

need

Templates

An engine
to do a CFD
job with 100

Gflops at
less than 1K

dollars

I can do the job
for you @ 800$

Create Agreement

Agreement EPR
OK I’ll
take it

12

Clear Separation of Agreement Initiator/ Agreement
Responder vs. Service Consumer/Service Provider
(Contd.)

In all the document changed Agreement Provider
(Old)=>Agreement Responder
In the Agreement Context we now have a
wsag:ServiceProvider element.

<wsag:Context xsd:anyAttribute>
<wsag:AgreementInitiator>xs:anyType</wsag:AgreementInitiator> +
<wsag:AgreementResponder>xs:anyType</wsag:AgreementResponder> +
<wsag:ServiceProvider>wsag:AgreementRoleType</wsag:ServiceProvider>
<wsag:ExpirationTime>xsd:DateTime</wsag:ExpirationTime> +
<wsag:TemplateId>xsd:string</wsag:TemplateId>
<wsag:TemplateName>xsd:string</wsag:TemplateName> ?
<xsd:any/> *

</wsag:Context>

This element identifies the service provider and is either
AgreementInitiator or AgreementResponder. The
default is AgreementResponder.

While we’re discussing Agreement Context…

This OPTIONAL element refers to the specific
version of the template from which this offer
or agreement is created. If a template was
used to create an offer, the TemplateId in the
Context is MUST be set.

13

Obligated party in the Guarantee terms

Previous assumption had been that service provider was the
only party responsible for guaranteeing service qualities.
However, an agreement MAY require a service consumer to
give guarantees if the provider’s service depends on it. =>
Introduction of the Obligated party attribute.

<wsag:GuaranteeTerm Obligated=”wsag:ServiceRoleType”>
<wsag:ServiceScope ServiceName=”xsd:NCName”>

xsd:any
</wsag:ServiceScope>*
<wsag:QualifyingCondition>…</wsag:QualifyingCondition>?
<wsag:ServiceLevelObjective>…</wsag:ServiceLevelObjective>
<wsag:BusinessValueList>…</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

Can be either ServiceConsumer or ServiceProvider

14

Asynchronous version of Create
Agreement & Agreement States

Sometimes, Agreement Responder might take a long
time to decide whether it can meet the demands of the
Agreement Initiator.

Eg. Proxy for a Wide area network based data-centers
might take to time to determine which of the sites can
provide the service.

=>Introduction of Asynchronous version of
createAgreement named createPendingAgreement +
Introduction of the Agreement States.

Agreement can have the following states:
• Pending: The Pending state means that an Agreement offer

has been made but it has been neither accepted nor rejected
• Observed: The Observed state means that an Agreement offer

has been made and accepted.
• Rejected. The Rejected state means that an Agreement offer

has been made and rejected.
• Complete. The Complete state means that an Agreement offer

has been received and accepted, and that all activities
pertaining to the Agreement are finished.

15

Asynchronous version of Create
Agreement & Agreement States
(Contd.)

createPendingAgreement will return immediately but
the decision for accepting or rejecting the offer
might not have been made in which case the
Agreement’s state is defined as Pending.
So how can an Agreement Initiator who has issued
createPendingAgreement know whether the
Agreement Responder has agreed to the
Agreement or not?

By polling the state of the Agreement
Or at createPendingAgreement time specifying an
EPR where wsag:Accept or wsag:Reject operation
will be invoked by the Agreement Responder.

Cf. Next two pages

16

Sequence Image for Polling

Agreement Initiator Agreement Responder

createPendingAgreement()

AgreementEPR

Poll the status of the agreement
Pending…

Poll the status of the agreement
Observed/Rejected

GetTemplate()

(templates)

create an offer

Decide to
accept/reject offer

create an agreement

Pending

Agreement
State

Pending

Observed/
Rejected

17

Sequence Image for Accept/Reject

Agreement Initiator Agreement Responder

createPendingAgreement(AcceptanceEPR)

AgreementEPR

Invoke Accept / Reject
Accept Response / Reject Response

GetTemplate()

(templates)

create an offer

Decide to
accept/reject offer

create an agreement

Pending

Agreement
State

Pending

Observed/
Rejected

18

Not Ready, Ready and Completed are the normative primary states of a
service description term. Each state can be extended with one or more sub-
states in a specific usage domain. Processing and Idle are two normative
sub-states of the primary state Ready.

Not Ready – The service cannot be used yet.
Ready – The service can start now to be used by a client or to be executed
by the service provider.
Processing – The service is ready and currently processing a request or is
otherwise active.
Idle – The service is ready, however currently not being used.
Completed – The service cannot used any more and any service provider
activity performing a job is finished.

Service State made extensible

Not Ready
Ready

Processing Idle

Completed

19

Choices in creation constraints

In GGF14, there had been requests for Creation
constraints to be able to offer Either serviceA or serviceB
or serviceC. (And have the Agreement Initiator specify
which service it needs.)
One candidate had been the term compositors but that
might make the implementation too complex
=> Allow the use of xsd:typeDefParticle

<wsag:Item Name=”xsd:NCName”>
<wsag:Location>

xsd:anyType
</wsag:Location>
<wsag:ItemConstraint>

<xsd:restriction>
xsd:simpleRestrictionModel

<xsd:restriction> ?
<xsd:group>xs:groupRef</xsd:group> ?
<xsd:all>xs:all</xsd:all> ?
<xsd:choice>xs:explicitGroup</xsd:choice> ?
<xsd:sequence>xs:explicitGroup</xsd:sequence>?

</wsag:ItemConstraint>

20

Job Submission Example Using prototype JSDL
document as Service terms: Template Example

<wsag:ServiceDescriptionTerm
wsag:Name="Job JSDL" wsag:ServiceName="Job">
<jsdl:JobDefinition>

<JobDescription>
<Application>

<jsdl-posix:POSIXApplication>
<FileSizeLimit>1048576</FileSizeLimit>

<CoreDumpLimit>0</CoreDumpLimit>
<OpenDescriptorsLimit>64</OpenDescriptorsLimit>

</jsdl-posix:POSIXApplication>
</Application>
<Resources ...>

<OperatingSystem>
<OperatingSystemType>

<OperatingSystemName>LINUX</OperatingSystemName>
</OperatingSystemType>

</OperatingSystem>
<CPUArchitecture>

<CPUArchitectureName>x86</CPUArchitectureName>
</CPUArchitecture>
<IndividualCPUSpeed>

<Exact>1600000</Exact>
</IndividualCPUSpeed>
<IndividualCPUCount>

<Exact>2.0</Exact>
</IndividualCPUCount>
<IndividualNetworkBandwidth>

<Exact>100000000</Exact>
</IndividualNetworkBandwidth>
<TotalResourceCount>

<Exact>1</Exact>
</TotalResourceCount>

</Resources>
</JobDescription>

<jsdl:JobDefinition>
</wsag:ServiceDescriptionTerm>

•Default 1 MB file size limit
•Default 0 byte core dump size limit
•Default 64 open file descriptors limit

•Default "LINUX" operating system
•Default "x86" CPU type

•Default 1.6 GHz CPU speed
•Default 2 CPUs per node
•Default 100 Mb/s network connectivity for
nodes
•Default 1 node per job

21

Job Submission Example Using prototype
JSDL document as Service terms contd.

<jsdl:JobDefinition>
<JobDescription>

<Application>
<jsdl-posix:POSIXApplication>

<FileSizeLimit>1048576</FileSizeLimit>
<CoreDumpLimit>0</CoreDumpLimit>
<OpenDescriptorsLimit>64</OpenDescriptorsLimit>

</jsdl-posix:POSIXApplication>
</Application>

<wsag:Item>
<Location>//jsdl-posix:FileSizeLimit</Location>
<xsd:restriction base="xsd:positiveInteger">

<xsd:maxInclusive value="524288000"/>
</xsd:restriction>

</wsag:Item>
<wsag:Item>

<Location>//jsdl-posix:CoreDumpLimit</Location>
<xsd:restriction base="xsd:positiveInteger">

<xsd:maxInclusive value="524288000"/>
</xsd:restriction>

</wsag:Item>
<wsag:Item>

<Location>//jsdl-posix:OpenDescriptorsLimit</Location>
<xsd:restriction base="xsd:positiveInteger">

<xsd:maxInclusive value="1024"/>
</xsd:restriction>

</wsag:Item>

Template:Service Description Term

Template: Creation Constraint<FileSizeLimit>16777216</FileSizeLimit>
<CoreDumpLimit>0</CoreDumpLimit>
<OpenDescriptorsLimit>1024</OpenDescriptorsLimit>

Offer: Service Description Term

•Maximum 500 MB file size limit (Default 1MB)
•Maximum 500 MB core dump size limit (Default 0MB)
•Maximum 1024 open file descriptors limit(Default 64)

•16MB file size limit
•0 MB core dump size limit
•1024 open file descriptors limit

22

Job Submission Example Using prototype
JSDL document as Service terms contd.

<OperatingSystem>
<OperatingSystemType>

<OperatingSystemName>LINUX</OperatingSystemName>
</OperatingSystemType>

</OperatingSystem>
<CPUArchitecture>

<CPUArchitectureName>x86</CPUArchitectureName>
</CPUArchitecture>

<wsag:Item>
<Location>//jsdl:CPUArchitecture/CPUArhitecturename</Location>
<xsd:restriction base="jsdl:ProcessorArchitectureEnumeration">

<enumeration value="x86_32"/>
<enumeration value="x86_64"/>
<enumeration value="x86"/>

</xsd:restriction>
</wsag:Item>
<wsag:Item>

<Location>
//jsdl:OperatingSystem/jsdl:OperatingSystemType/jsdl:OperatingSystemName

</Location>
<restriction base="jsdl:OperatingSystemTypeEnumeration">

<enumeration value="LINUX"/>
<enumeration value="FreeBSD"/>

</restriction>
</wsag:Item>

Template:Service Description Term

Template: Creation Constraint

Offer: Service Description Term

<OperatingSystem>
<OperatingSystemType>

<OperatingSystemName>LINUX</OperatingSystemName>
</OperatingSystemType>

</OperatingSystem>
<CPUArchitecture>

<CPUArchitectureName>x86_32</CPUArchitectureName>
</CPUArchitecture>

•Choice of "LINUX" or "FreeBSD" (exclusive)
•Choice of "x86", "x86_32", or "x86_64" CPU types (exclusive)

•"LINUX"
•"x86_32"

23

Job Submission Example Using prototype
JSDL document as Service terms contd.

<IndividualNetworkBandwidth>
<Exact>100000000</Exact>

</IndividualNetworkBandwidth>

<wsag:Item>
<wsag:Location>//jsdl:IndividualNetworkBandwidth</wsag:Location>
<xsd:sequence>

<xsd:element name="Exact" minOccurs="1" maxOccurs="unbounded">
<xsd:simpleType>

<xsd:restriction base="xsd:double">
<xsd:enumeration value="1000000000"/>

<xsd:enumeration value="100000000"/>
<xsd:enumeration value="10000000"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</wsag:Item>

Template:
Service Description Term

Template: Creation Constraint
•Choice of 10, 100, or 1000 Mb/s network connectivity for nodes
(inclusive)

<IndividualNetworkBandwidth>
<jsdl:Exact>1000000000</jsdl:Exact>
<jsdl:Exact>100000000</jsdl:Exact>

</IndividualNetworkBandwidth>

•Selects 100/1000 Mb/s network speeds
(the scheduler can choose which)

