
GSM-WG

gsm-wg@ogf.org

Storage Resource Managers (SRM)
Design Document for version 3.0

Version 1: 27 December, 2006

Editors: Arie Shoshani and Alex Sim,
Lawrence Berkeley National Laboratory

Contributors:

Contributors:
Timur Perelmutov
Don Petravick

Fermi National Accelerator Laboratory (FNAL), USA

Ezio Corso
Luca Magnoni

Istituto Nazionale di Fisica Nucleare (INFN), Italy
International Centre for Theoretical Physics (ICTO), Italy

Arie Shoshani
Alex Sim
Junmin Gu

Lawrence Berkeley National Laboratory (LBNL), USA

Olof Barring
Jean-Philippe Baud
Flavia Donno
Maarten Litmaath
Peter Kunszt (Now at
CSCS)

LHC Computing Project (LCG, CERN), Switzerland

Shaun De Witt
Jens Jensen
Owen Synge

Rutherford Appleton Laboratory (RAL), England

Michael Haddox-Schatz
Bryan Hess
Andy Kowalski
Chip Watson

Thomas Jefferson National Accelerator Facility (TJNAF), USA

GSM-WG

gsm-wg@ogf.org

Copyright Notice

Copyright © Open Grid Forum (2006). All Rights Reserved.

Contents

Preface .. 2
1. Storage Areas and Storage Spaces ... 3
2. Space ownership and space lifetime .. 4
3. File ownership and file lifetime ... 5

3.1 File ownership .. 5
3.2 File lifetime ... 6

4. File placement functions ... 7
4.1 srmPrepareToPut ... 7
4.2 srmPrepareToGet ... 7
4.3 srmBringOnline .. 8
4.4 srmAddFilesToSpace ... 9

5. Releasing, removing, and purging files .. 9
5.1 Releasing files .. 9
5.2 Removing files ... 10
5.3 Purging files ... 10

6. Directory management ... 10
7. Semantic rules .. 11
8. New functions and terms since SRM v2.2 .. 11
Appendix: definition of terms ... 12
Intellectual Property Statement ... 13
Disclaimer .. 13
Full Copyright Notice ... 13

Preface

This design document reflects several years of evolution of a standard specification for
Storage Resource Managers. Storage Resource Managers (SRMs) are middleware
components whose function is to provide dynamic space allocation and file management
of shared storage components on the Grid. This document describes concepts that have
emerged as a result of several implementations of SRMs in the context of High Energy
Physics (HEP) projects in the USA and Europe, as well as their application to other
projects, such as LIGO and Earth System Grid (ESG). Previous implementations are
referred to as versions 1.x, and version 2.x. The latest version being implemented at the
time of this writing is version 2.2, which has been adopted by the World-wide Large
Hadron Collider (LHC) Computing Grid (WLCG) that supports ATLAS and CMS High
Energy Physics experiments. The purpose of this design document is to define and
explain the new concepts as extensions of functionality of previous versions. This will
provide the basis for the specification of the next version v3.0.

Storage Resource Managers complement Compute Resource Managers and Network
Resource Managers in providing storage reservation and dynamic information on storage

GSM-WG

gsm-wg@ogf.org

availability for the planning and execution of Grid jobs. SRMs manage two types of
resources: storage spaces and files. When managing space, SRMs negotiate storage
space allocation with the requesting client, and/or assign default space quotas. When
managing files, SRMs assign files to storage spaces, invoke file transfer services to move
files into the space if file are not available locally, pin files for a certain lifetime, release
files upon the client's request, and use file replacement policies to optimize the use of the
shared space. SRMs can be designed to provide effective sharing of files, by monitoring
the activity of shared files, and making dynamic decisions on which files to replace when
space is needed. In addition, SRMs perform automatic garbage collection of unused files
by removing files that were released by the clients, or whose lifetime has expired when
space is needed.

This document describes new concepts of storage space definition and ownership,
clarifies lifetime definitions, and summarizes functions to get files into spaces, as well as
releasing or removing files from storage spaces. It is organized according to the table of
content below. It is intended as the “functional design document” for SRM version 3.0.

1. Storage Areas and Storage Spaces

A Storage Element can have multiple Storage Areas. Each storage area can be specified
by the storage area administrator as consisting of one or more storage components. A
storage component is specified by its properties which include:
a) Access Latency: online, nearline (see definition in appendix)
b) Retention Policy: custodial, output, replica (see definition in appendix)
c) Size (in bytes)

Any combination of storage components in a storage area is permissible. Examples of
storage components are: online-replica (e.g. a common disk space allocated for online
access), online-custodial (e.g. a highly protected online disk that may keep multiple
replicas), and nearline-custodial (e.g. a high-quality robotic tape system with backup
capability). Thus, a storage area can consist of a single storage component (such as
online-replica) or multiple storage components (such as online-replica AND nearline-
custodial). Storage areas that consist of multiple storage components are referred to as
“composite storage areas”. Storage areas can share one or more storage components.
This allows storage components to be partitioned for use by different user-groups or
Virtual Organizations (VOs).

The SRM interfaces expose only the storage area, not its components. However, a space
reservation to a composite storage area can be made requesting Access Latency-
Retention Policy combinations that may effect which parts of the storage components are
assigned. Specifically, a space reservation to a composite storage area can request the
following combinations to target the online or nearline storage components:
a) online-replica to target the online storage components;
b) nearline-custodial to target the nearline storage components (assuming it support
custodial retention policy);

GSM-WG

gsm-wg@ogf.org

c) online-custodial to target both the online and nearline storage components.

The space associated with the storage area is referred to as the “storage space”. The
storage area administrator needs to have a space_token in order to have users refer to the
storage area, and request space reservation in it. The space in the storage area is initially
declared in the SRM using the administrative function srmDeclareStorageArea. The SRM
will assign and return a space_token for the space in the declared storage area.
Optionally, a storage_space_name can be assigned by the administrator in order to
discover the space_token if it is lost, or provide users with a human readable way of
referring to the space. The above declaration capability can make it possible for multi-
component storage areas to be declared as a single space. This permits the SRM to
assume full control of where files end up and even how many replicas to maintain. In
contrast, a single-component storage area does not provide such flexibility.

If the storage element manager wishes to make each of the storage components visible to
users, each needs to be declared separately to the SRM. For example, a storage element
may wish to have three storage areas visible. The first is a global space that includes
online-replica and nearline-custodial. The second is a fast online-replica space to be used
by a particular VO that paid for it, and the third a slow online-replica space for other
VOs. These three spaces can be declared and given any desired name such as Disk-Tape,
FastDisk, and OnlineDisk, respectively.

Once the storage area is declared and assigned a space_token, clients can reserve space in
it if they are given the privilege to do so. This is discussed in the next section.

2. Space ownership and space lifetime

All the storage areas are initially owned by the storage element administrator, and can be
assigned to one or more clients or VOs. For example, a single storage area can be
assigned to two VOs, where each is assigned half the space. Each has to be reserved by
the VO manager with the srmReserveSpace function where the space_token of the
storage area is provided as a parameter, as well as the desired size and lifetime of the
reservation. After this operation is performed, the reserved space is assigned a
space_token (for the VO to use) and each VO is considered the owner of that space. For
example, the space in a storage area that was given the space_name of Disk1Tape1, can
be partitioned into two spaces: Disk1Tape1-CMS, Disk1Tape1-ATLAS, using the
srmReserveSpace function.

Once a VO acquires a space, it can permit other users to reserved space in it. This is
performed by a user with the same srmReserveSpace function, where the VO
space_token is provided as a parameter, as well as the size and desired lifetime. If
successful, a space_token will be assigned to the user to use. Of course, the requested
size and lifetime cannot exceed the size and lifetime of the parent space owned by the
VO. Once the space reservation has been performed, the reserved space is owned by the
user, but the parent owner has the right to reclaim that space at any time.

GSM-WG

gsm-wg@ogf.org

Space reservation is hierarchical, in that any user of a space can grant permission to
others to reserve space in the space they own. The SRM needs to verify that such
reservations do not generate a cycle of ownership, and deny the request in such a case. In
addition, it is possible for the owner of a space to reserve space in their own space. This
permits a user to partition a space into sub-spaces for control over the use of the space if
desired. For example, an experiment manager may wish to partition their space for use
by two groups, and even replicate files in the two spaces. The number of levels of space
hierarchy supported is a choice of the SRM implementation (or the storage element
manager). Similarly, the minimum space size supported is an implementation choice.

An owner of a space can reclaim any of the subspaces at any time by using the
srmPurgeFilesFromSpace function by providing the space token of the sub-space. This
will be discussed in a later section. The space owner is also allowed to discover the
space_tokens of all its sub-spaces with the srmGetSpaceMetadata function.

The size and lifetime that a user can request is an authorization policy that VOMS need to
enforce. For the purpose of this document, we assume that VOMS will enforce
permissions, size and lifetime. However, if a VOMS is not available, such limitation
could be set by the SRM, and the SRM enforce that. Currently, there are no functions for
setting space usage permissions and policies. We envisioned that in a future version,
ACL support for file ownership and granting permission for the use of the space will be
supported.

3. File ownership and file lifetime

3.1 File ownership

A file can have multiple replicas in an SRM. When a file is first put into an SRM, it is
assigned an SURL (site URL), and it is placed into some space. A specific SURL can
be requested by the owner of the file in a directory structure if the SRM support directory
functions; otherwise the SRM assigns it an SURL. That first replica is referred to as the
“primary replica”. The owner of that primary replica is referred to as the SURL-owner.
Thus, by definition, the SURL-owner is the owner of the primary replica. There are three
functions that can create new SURLs: srmPerpareToPut, srmRemoteCopy, and srmCp.
We will describe each later. We note that the concept of “primary replica” is used in
order to prevent accidental removal of the “last replica” of a file. This is enforced by
allowing a removal of a primary replica by the SURL owner only with the srmRm
function. That function removes the SURL, the primary replica, and all of the secondary
replicas.

SRM v3.0 supports ACLs for files. Therefore, an SURL-owner can assign other users as
SURL-owners. That original owner can then be removed as an SURL-owner, allowing a
simple way to change (add or remove) ownership (for example, when one user wishes to
assign files to another user). The SRM has to enforce that an SURL has a least one
owner. As pointed above, all SURL-owners are also the owners of the primary replica
for that SURL.

GSM-WG

gsm-wg@ogf.org

Replicas can be made using several functions for different purposes, including
srmPrepareToGet, srmBringOnline, and srmAddToSpace. When replicas are created,
they are assigned a “replica-owner”, who is the client that performed the function that
created the replica.

3.2 File lifetime

When a file is first put into some space, it can be assigned a lifetime by specifying the
desired “fileLifetime”; otherwise a default lifetime is assigned. That file lifetime is the
lifetime of the “primary replica”, and is considered by definition the SURLLifetime as
well. A file_lifetime is assigned to a file in a storage space when it is first put into that
space by a user with the srmPrepareToPut, srmRemoteCopy, and srmCp functions.

After a file is brought into an SRM space, it can be replicated into the same or other
spaces with the srmAddToSpace function. When the file is replicated it is assigned a
lifetime, either as requested, or by default. The lifetime of a replicated file must always
be shorter than the SURLLifetime (i.e. the lifetime of the primary replica). Thus, the
SURLLifetime is the longest time of all the replicas, and therefore is considered a
property of the SURL in the SRM namespace.

A fileLifetime is also referred to as a “pinLifetime”, since it implies that the file replica
will be pinned in a space for the duration of the lifetime. FileLifetimes are intended
prevent files from clogging storage spaces. When the lifetime expires, files can be
removed by the SRM. The only exception is primary replicas that have to be explicitly
removed by the owner. Typically, files that are intended to be in the SRM for a long time
should have an “indefinite” lifetime (a specific reserved). Of course, files can be
explicitly removed before the lifetime expires.

Another way to make a file eligible for removal is to “release the file”, or “release the
pin” on the file replica. In this case, the file is marked for a possible removal, but is only
removed when space is needed by the SRM. Releasing of pins is also a way of managing
one own’s space. For example, a request for large number of files can be made, but the
assigned space is not large enough to hold all the files. In such cases, a fraction of the
files can be put in the space, and when they are consumed, the client can “release” the
files, so additional files can be brought by the SRM into the “released space”.

Only the owner of the SURL can change the SURLLifetime, by changing the lifetime of
the primary replica. This can be done with srmAssignNewFileLifetime, including a
shorter lifetime than the current lifetime. (Note: this function was previously referred to
as srmExtendFileLifetime, but was renamed to allow shorter lifetime assignment). If the
SURLLifetime is made longer than the current lifetime, the primary replica’s lifetime has
to be extended. However, if a shorter lifetime is assigned, the lifetime of all replicas have
to be shortened accordingly.

GSM-WG

gsm-wg@ogf.org

The lifetime of a replica cannot exceed the lifetime of the space it is in. Therefore, when
extending a file lifetime, it may be necessary to extend first the space lifetime.

When placing a file in a composite space, only a single lifetime can be provided (i.e. one
cannot specify a lifetime for each component), since the composite space is a considered
a single entity. The SRM decides where to place the file in order to accommodate the
requested lifetime.

4. File placement functions

There a several functions that can place files in storage spaces. srmPrepareToPut is used
for placing new files into a space. srmRemoteCopy also places new files into a space by
copying it from a remote site. In both cases a new SURL is assigned, as well as its
SURLLifetime (i.e. the fileLifetime of the primary replica). srmCp is a function that
copies a file that exists in the SRM, but gives it a new SURL, and therefore a new
SURLLifetime is assigned as well.

4.1 srmPrepareToPut

When the srmPrepareToPut request is made for multiple files, the SRM may return
transfer URLs (TURLs) for some of then. These TURLs are space holders for files to be
put into the SRM by the client. Since there is no way for the SRM to know when the file
was placed in successfully, it is expecting to get an srmPutDone call.

There is another lifetime concept (not related to the file lifetime) when using
srmPrepareToPut. It is the lifetime allocated by the SRM for placement of the file into a
space. This lifetime is NOT the lifetime that will be assigned to the file after
srmPutDone is issued. In order to avoid confusion, this lifetime is referred to as the
“putLifetime”. Thus, the srmPrepareToPut function has two lifetime parameters: the
putLifetime - the length of time that the SRM will keep the space for the file to be put in,
and the fileLifetime - the length of time assigned to the primary replica after the file was
put into the SRM).

Once a file has be put into an SRM, it cannot be put in again, except if the
“overwriteOption” parameter is set. In this case the file will be overwritten by the new
version, as well as all replicas removed. However, existing replicas that are in use remain
unchanged if not released or their lifetime expired.

In addition, there are three functions that place replicas in spaces, and therefore keep the
same SURL. Since they are replicas, only a shorter lifetime than the SURLLifetime can
be assigned to them. These are: srmPrepareToGet, srmAddFilesToSpace, and
srmBringOnline. We describe the behavior of each of these three functions next.

4.2 srmPrepareToGet

GSM-WG

gsm-wg@ogf.org

When files are replicated by an srmPrepareToGet they are said to be pinned in the space.
A “pin” of a replica for a lifetime is associated with the request and with the user that
issued the request. The SRM may want a file replica to be shared by multiple users. The
users have the illusion of having there own replica. Furthermore, a single user can issue
multiple requests for the same file (for example, from multiple cluster nodes that access
the same space). For this reason, it is important for the SRM to keep the association of a
pin on a replica with both the userID and the requestID. This is necessary in order to
keep the illusion of multiple replicas, and allow various undo operations, such as
releasing files and purging files. Thus, if the same file is requested by two (or more)
requests, the file will have two (or more) PinLifetimes. This permits the SRM to share
the file by the requests. Even if the requests were from the same user, there will still be
multiple PinLifetimes assigned to the replica, because the requests are different. All
requests are identified by requestIDs that are assigned by the SRM. A user can provide a
requestIDDescription to the SRM in order to recover the requestID in case it is lost.

srmPrepareToGet is a function intended for incremental use of files. It brings files into
an online space if the files are not there already and returns Transfer URLs (TURLs) for
each file that is already in the space when performing a srmStatusOfGetRequest. A
lifetime is assigned to each file as soon as it is placed in the space, and the client can
access that file as soon as the TURL is provided. Thus, the end of lifetime for the files
can be staggered over time. A space_token can be provided to designate the online space
to be used for the request. If the space is not large enough for all files in the request, this
function brings in as many files as the space permits. When files are “released” (i.e.
the“pin” associated with that request is released) by the user after using them, the
released space can be used to bring in additional files.

4.3 srmBringOnline

srmBringOnline is a function that was introduced in order to ask for files that are in a
composite space to be brought online for subsequent use. It is similar conceptually to
srmPrepareToGet, but unlike srmPrepareToGet no TURLs are returned. Also, it cannot
succeed by bringing online some of the files. After all the files are brought online, they
are all assigned the requested lifetime, so that all file lifetimes expire at the same time
(i.e. the end-of-lifetime is the same for all the files). Consequently, the end-of-lifetime
for all the files is determined by the time that the last file in brought in plus the requested
lifetime. This is unlike srmPrepareToGet where file lifetime can be staggered.

srmBringOnline can be applied only to a single space that has nearline space as well as
online space. When performing this function the SRM is in full control as to where files
end up and this information is not visible to the client. For example, the SRM may have
multiple online spaces, and it can choose which will be used for each file of the request.
Similarly, the SRM can choose to keep multiple online replicas of the same file for
transfer efficiency purposes. Once srmBringOnline is performed, subsequent
srmPrepareToGet can be issued by clients, and TURLs returned, where each TURL
indicates where the corresponding file can be accessed, and the protocol to be used.

GSM-WG

gsm-wg@ogf.org

Similar to srmPrepareToGet, multiple srmBringOnline can be issued for the same files.
Here again, the SRM can provide the illusion of keeping multiple replicas, by keeping
track of pins according to userID and requestID.

A target space_token cannot be provided with this function. If one desires files to be
brought into another space srmAddFilesToSpace should be used.

4.4 srmAddFilesToSpace

srmAddFilesToSpace is a function intended for getting secondary replicas into a new
space. The source space cannot be specified, and it is up to the SRM to select where to
get the replica (it could choose to copy the primary replica or to copy another replica if it
exists in a more convenient space). A target space_token has to be provided (i.e. it is a
required parameter). Conceptually, srmAddFilesToSpace is similar to srmPrepareToPut
in that once the file is in a space, a subsequent srmAddFilesToSpace for the same file is
not allowed. However, unlike srmPrepareToPut an “overwriteOption” parameter is not
available, since only primary replicas can be overwritten.

The execution of this function is considered complete only after all files are brought into
the space. If the space is not large enough for all the files, the execution of this function
is considered “partial success”. Similar to srmBringOnline, this function is intended for
making files available for subsequent operations (such as srmPrepareToGet) the end-of-
lifetime for all the files must be the same.

5. Releasing, removing, and purging files

There are four functions provided for releasing, removing, and purging files.

5.1 Releasing files

Releasing a file is used to let the SRM know that the client has no need for the replica at
the time of the release. Releasing a file is associated with a request only, and therefore
we can used the term “releasing the pin” of a file. The SRM may choose to keep the file,
especially if the file is shared by another client. Only when all pins are released, can the
file be removed if the SRM needs the space.

The most usual case, a client would want to release files associated with a particular
request. This can be performed with the srmReleaseRequestedFiles function. If no files
are specified, then all files for that request are released, and therefore this function can be
used to release all the files in a previous request. This function can be used to release file
brought into a space with the srmRequestToGet and srmBringOnline functions.

However, it is also useful to release all files (or selected files) in a particular space
regardless of the request the client issued. This is useful for a quick way of releasing all
files requested previously by a client from a particular space. This can be performed with

GSM-WG

gsm-wg@ogf.org

the srmReleaseFilesFromSpace function. In this case, only files that were brought in by
the client are released; that is, files for which the client is the pin-owner.

5.2 Removing files

Release files based on requests is not sufficient. It should be possible for SURL owners
to remove files from a space, regardless of who brought them in. This can be performed
with the srmReleaseFilesFromSpace function. This function will forcefully remove files
regardless of whether they are currently pinned by other users. However, if the file to be
removed is a primary replica, the function will fails. Instead, an advisory about primary
replica files is returned, so that such files can be explicitly removed with the srmRm
function. The srmRm function is a namespace function, and as such the SURL will be
removed and all the replicas of the file from all spaces they are in. Of course, only the
owner of a file can execute this function.

5.3 Purging files

The owner of a space has the power to remove all files from the space regardless of how
they were brought into the space and who owns the file replicas. This is referred to as
purging files from a space. For this purpose the function srmPurgeFilesFromSpace can
be used. However, this function can be dangerous in that a primary replica of the file
may be removed by a space owner who is not the SURL owner of the file. Therefore,
this function will not remove the primary replica. Here again, advisory about primary
replica files is returned, and only the owner will be able to remove the primary replica
with the function srmRm.

To summarize, 5 functions for releasing, removing, and purging files are available:
srmReleaseRequestedFiles (release requested files for a particular request),
srmReleaseFilesFromSpace (release all files by replica-owner regardless of request),
srmRemoveFilesFromSpace (remove all replicas of the files by SURLowner),
srmPurgeFilesFromSpace (all replicas regardless of file ownership), and
srmRm (remove SURL from namespace and all replicas from all spaces).

6. Directory management

The functions srmMkdir, srmRmdir, srmCp, srmMv, and srmRm are intended to have the
same behavior of a file system. In SRMs they are considered namespace functions.
Thus, Mkdir has only the effect of adding a directory SURL, and srmRmdir removes the
directory SURL provided the directory has no files in it. srmCp into a space creates a
new incarnation of the file and is given a new (different) SURL, and it is owned by the
client who issued the function. Therefore, a new lifetime can be assigned to the file,
including a longer lifetime than the original file. srmMv leaves the physical file and all
its replicas in the space they reside, but assigns a new SURL to the file. The ownership
of the file and its SURLLIfetime do not change. Note that in order to physically move a

GSM-WG

gsm-wg@ogf.org

file from one space to another and have a new target SURL assigned, an srmCp has to be
performed, followed by an srmRm for the source SURL.

7. Semantic rules

• A reserved space cannot exceed the lifetime and size of its parent space.
• The lifetime of a replicated file must always be shorter than the SURLLifetime.
• A lifetime of a file put into a space cannot exceed the lifetime of the space.
• Since srmAddFilesToSpace and srmBringOnline are considered completed only after

all files are brought into the corresponding spaces, the end-of-lifetime of all files is
set to the end-of-lifetime of the last file brought in. This is not the case for
srmPrepareToGet or srmPrepareToPut.

8. New functions and terms since SRM v2.2

Function name changes
• srmAssignNewFileLifetime instead of srmExtendFileLifetime
• srmPurgeFilesFromSpace instead of srmPurgeFromSpace
• srmAddFilesToSpace instead of srmChangeSpaceForFiles
• srmReleaseRequestedFiles instead of srmReleaseFiles (to avoid confusion with

srmReleaseFilesFromSpace)

Term changes
• putLifetime instead of desiredPinLifetime, // on TURL
• TFileExpirationMode instead of TFileStorageType (refers to volatile, durable,

permanent). Also, new terms for volatile, durable, permanent are introduced:
“releaseWhenExpired”, warnWhenExpired, and neverExpire.

New functions
• srmDeclareStorageArea
• srmReleaseFilesFromSpace

GSM-WG

gsm-wg@ogf.org

Appendix: definition of terms

1) Retention Policy: REPLICA, OUTPUT, CUSTODIAL

• Quality of Retention (Storage Class) is a kind of Quality of Service. It refers to
the probability that the storage system loses a file.

• The type will be used to describe retention policy assigned to the files in the
storage system, at the moments when the files are written into the desired
destination in the storage system. It will be used as a property of space allocated
through the space reservation function. Once the retention policy is assigned to a
space, the files put in the reserved space will automatically be assigned the
retention policy of the space.

• Description of Retention Policy Types
• Replica quality has the highest probability of loss, but is appropriate for

data that can be replaced because other copies can be accessed in a timely
fashion.

• Output quality is an intermediate level and refers to the data which can be
replaced by lengthy or effort-full processes.

• Custodial quality provides low probability of loss.

2) Access Latency: ONLINE, NEARLINE

• Files may be Online or Nearline. These terms are used to describe how latency to
access a file is improvable. Latency is improved by storage systems replicating a
file such that its access latency is online. We do not include here “offline” access
latency, since a human has to be involved to achieve online latency. For SRMs,
one can only specify ONLINE and NEARLINE.

• The type will be used to describe an access latency property that can be requested
at the time of space reservation. The content of the space, files may have the same
or “lesser” access latency as the space.

• The ONLINE cache of a storage system is the part of the storage system which
provides file with online latencies.

• Description of Access Latency types
• ONLINE has the lowest latency possible. No further latency

improvements are applied to online files.
• NEARLINE file can have their latency improved to online latency

automatically by staging the file to online cache.

GSM-WG

gsm-wg@ogf.org

Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain
a general license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the OGF
Executive Director.

Disclaimer
This document and the information contained herein is provided on an “As Is” basis and
the OGF disclaims all warranties, express or implied, including but not limited to any
warranty that the use of the information herein will not infringe any rights or any implied
warranties of merchantability or fitness for a particular purpose.

Full Copyright Notice

Copyright (C) Open Grid Forum (applicable years). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
OGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the OGF
Document process must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF
or its successors or assignees.

